
 

Fueling the Source: Mapping and Modeling Carbon and Woody Resources for Continental 

Africa 
 

L. Prihodko
a
, N. P. Hanan

b
, B. McKeown

a
, G. Bucini

a
, A. Tredennick

a,c
 

 

aColorado State University, Fort Collins, Colorado, USA – (Lara.Prihodko, Becky.Mckeown, Gabriela.Bucini)@colostate.edu 
bSouth Dakota State University, Brookings, South Dakota, USA – Niall.Hanan@sdstate.edu 

cGraduate Degree Program in Ecology, Colorado State University – Andrew.Tredennick@colostate.edu 

 

  

Abstract - Complex interactions among climate change 

and ecosystem processes (plant demographics, tree-grass 

interactions, grazers, browsers, fire and nitrogen) 

challenge our ability to predict future carbon stocks in 

Africa and other tropical regions. Recent work suggests 

Africa has a near zero decade-scale carbon balance, but 

that climate fluctuations induce sizeable variability in 

ecosystem productivity and savanna fires, greatly 

enhancing the inter-annual variability in global 

atmospheric [CO2]. If, indeed, Africa’s net biogenic 

carbon balance is near-zero, this also has profound 

implications for the socioeconomically and culturally vital 

availability and sustainable harvest of wood and charcoal 

for fuel. We present remote sensing based woody biomass 

assessments for sub-Saharan Africa (SSA) using a 

combination of optical and radar datasets, and spatially 

explicit estimates of fuel-wood demand derived from 

country-scale statistics.  We describe a simplified, low-

dimensional model of African ecosystems and use it to 

explore carbon and fuel-wood dynamics in response to 

climate variability and disturbance factors.   
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1. INTRODUCTION 

The African Carbon Exchange (ACE) model aims to bridge 

the gap between traditional remote sensing-based models, 

that are often overly simplistic from a systems perspective, 

and traditional biogeochemical and dynamic global 

vegetation models which are complex, poorly adapted for 

stochastic parameterization, and less amenable to 

assimilation of diverse remote sensing and field datasets for 

model parameterization, conditioning, and optimization. The 

ACE model was designed to use phenomenological 

relationships, where possible, that represent the major 

bioclimatic limits to vegetation (from deserts to moist 

tropical forests in Africa): these include observations of 

maximum woody biomass across the rainfall gradient (Bucini 

et al., in prep), and maximum tree-size, that constrain 

individual and population growth rates, and relationships 

describing herbaceous growth with respect to rainfall and 

woody competition. The model incorporates simplified 

descriptions of demographic processes (adult and juvenile 

trees) in response to resource competition, climate variability 

and disturbances through wood harvest, herbivory and fire. 

Humans have utilized wood for over 500,000 years (Sharpe 

1976, Gowlett et al. 1981, Goren-Inbar et al. 2004) and it 

remains the primary energy source in Africa (Kebede et al. 

2010), and indeed in most less developed and transition 

economies of the world. On average 77% of people in SSA 

have limited or no access to electricity and thus depend upon 

wood to provide the energy necessary to meet basic human 

needs (International Energy Agency (IEA) 2000, Kebede et 

al. 2010). Though access to alternate forms of energy is 

increasing (through wider availability and human migration 

to urban centers), the shift from wood energy to other sources 

has been slow primarily due to the increased cost over 

inexpensive, or free, fuelwood (Babanyara and Saleh 2010). 

Thus, the continued availability of woody biomass for 

harvest is essential to human well being in SSA, and the 

ecological and carbon cycle implications thereof require 

further study. 

Here we present recent estimates of above ground woody 

biomass in Africa derived from remote sensing and field 

measurements.  We also show spatially explicit estimates of 

fuel-wood demand derived from country-level statistics on 

per capita wood demand and a gridded population database. 

We simulate vegetation dynamics for the continent in 

response to long-term (20th Century) rainfall, including 

competitive interactions and demographics of trees and 

grasses, fire interactions, and response to wood harvest. We 

compare preliminary model simulations to remotely sensed 

wood biomass with and without fuel-wood harvest.  Model 

simulations represent broad patterns in remotely sensed wood 

biomass across Africa. Wood harvest at continental scales 

has relatively minor impacts on carbon stocks across Africa, 

despite locally significant loss of woody vegetation in and 

around the hot spots of human population near major cities 

and in the East African highlands and coastal West Africa.   

 

2. METHODS 

Wood Biomass Estimates 

Differently from other studies, we did not directly relate 

remote-sensing to biomass data. Our continental woody 

biomass map was developed in two main steps:  i) the 

creation of a woody canopy cover map based on field 

measurements (>700 sites; Sankaran et al., 2005, plus 

additional sites) and combined optical (MODIS) and radar 

(quikSCAT ) observations (Bucini et al. in preparation); ii) 

the application of a separate allometric equation describing 

the ratio of wood biomass (B) per unit canopy cover (C) 

derived at 170 field sites to estimate biomass from cover.   

Our approach took advantage of radar sensitivity to woody 

vegetation elements, the increased capacity of assessing 

biometric variables such as biomass and cover by 

synergistically include optical and radar data (Saatchi, 

Halligan et al. 2007; Bucini, Hanan et al. 2010), and avoided 

the problem of saturation normally found in the relationship 

between radar backscatter and biomass (Mitchard, Saatchi et 

al. 2009). Information Theory approaches were used to select 

among numerous potential empirical models, with final 

selection including QuickScat HV backscatter, HV standard 

deviation, MODIS vegetation index (NDVI) and the annual 

range between minimum and maximum NDVI.  

The ratio B/C was derived using data from 170 field sites 

across Africa and the change in B/C with increasing mean 

annual rainfall fitted.  For example, similar woody canopy 

cover (C) in dry shrubland has lower biomass (and thus 



 

lower B/C) than in moist tropical forests. We applied a linear 

regression for B/C as a function of mean annual precipitation 

(PPT) (B/C ~ PPT, r2 = 0.59) and then predicted biomass for 

Africa from the woody cover dataset.   

 
Figure 1. Above ground wood biomass for sub-Saharan Africa.  

Estimates were derived from >700 field measurements used to 

calibrate an empirical relationship at 1 km resolution with 

Quickscat radar and MODIS vegetation index and then 

aggregated to 0.5
o
 x 0.5

o
 grid-cells for this analysis.  

 

Fuel-wood demand  

Fuel-wood demand is based on country-level statistics 

obtained from the United Nations Food and Agriculture 

Organization (FAO) Forestry Database (Food and 

Agriculture Organization of the United Nations 2010). The 

FAO database reports for each country estimates of wood 

that is harvested and used locally for fuel – either directly as 

wood or converted to and combusted as charcoal. For this 

analysis we assume that the FAO data provide an accurate 

reflection of fuelwood demand, although comparison with 

the relatively small literature reporting local assessments 

suggests that FAO tend to underestimate total consumption. 

Country-scale estimates from 2008 were converted to 

kg/country/year from m3/country/year using the average 

wood density for African species (605 kg/m3) as reported in 

the Global Wood Density Database (Zanne et al. 2009). We 

then converted to kg/person/year using total population data 

for each country from the 2005 Gridded Population of the 

World database (Center for International Earth Science 

Information Network 2005). We then applied the per capita 

fuelwood demand estimates back to the gridded population 

database at the spatial resolution of 2.5’. Using this approach 

we obtain spatially detailed (2.5’) estimates of fuelwood 

demand at scales well below national levels (Tredennick et 

al., in prep).    

 

African Carbon Exchange Model 

The African Carbon Exchange (ACE) model is an extension 

to the model described by Hanan et al (2008). It conceives of 

trees and grasses that compete for water and are impacted by 

climate (including long-term changes in climate and [CO2]), 

nitrogen availability, herbivores and fires.  The major 

difference with respect to the earlier model is that woody and 

herbaceous leaf production, and woody growth and mortality, 

are dynamic functions of annual rainfall, and we add 

consideration of fuel-wood harvest, grazer and browser 

dynamics and their response to, and effect on, vegetation 

productivity, nitrogen and stochastic fire dynamics. 

Simulations use the ~100 year (1902-2006) actual rainfall 

analysis provided by the Climate Research Unit (CRU; 

Mitchell and Jones, 2005), with a single cycle used for initial 

spin-up, and two cycles used for model integration with, and 

without, wood harvest taken into account.   

 
Figure 2. Fuel-wood demand in Africa (kg/ha/year). Estimates 

were derived from FAO country-level statistics and a gridded 

human population database at 2.5’ resolution and then 

aggregated to 0.5
o
 x 0.5

o
 grid-cells for this analysis. 

 

 

3. RESULTS AND DISCUSSION 

Wood biomass estimates for Africa are shown in Figure 1 

aggregated to a 0.5o x 0.5o grid scale used for model 

simulations.  These estimates are derived from our woody 

canopy cover analysis based on a large number (>700) of 

field sites with measured cover, and empirical relationships 

with Qscat radar (HV backscatter, HV standard deviation) 

and MODIS optical vegetation indices (NDVI; mean NDVI 

annual range) (Bucini et al., in prep). We then converted 

canopy cover estimates to biomass estimates using the B/C 

allometry discussed above.  In future we will extend these 

relationships to represent uncertainty propagation from 

woody cover, through the B/C relationship, to biomass 

estimates.       

Fuel wood demand estimates for Africa are shown in Figure 

2.  Annual demand across most of Africa is ~2 orders of 

magnitude smaller than standing biomass stocks, except in 

harvest ‘hot spots’ in the high population centers near larger 

cities, in the east African highlands of Ethiopia, Kenya and 

the Rift Valley, and in coastal West Africa of Nigeria where 

maximum ‘demand’ at the 0.5o x 0.5o spatial resolution can 

be as high as 10,000 kg/ha/year.   

Preliminary model simulations of above ground woody 

biomass are shown for the final year of a ~315 year 

simulation (105 year spin-up, followed by 210 year 

integration) without impacts of wood harvest (Figure 3) and 

with fuel-wood harvest (‘demand’) subtracted each year and 

thereby impacting both standing stock of biomass, grass 

growth, fire frequency and woody demographics (Figure 4).    

For the moist tropical rainforest, the semi-arid savannas, and 

the arid deserts, model simulations of woody biomass are 

well correlated with observed woody biomass (compare Figs 

3-4 relative to Fig. 1).  Wood harvest impacts in these 

regions are relatively modest in most areas except in some 

more densely populated zones where wood harvest 



 

overwhelms the productive capacity of the systems and 

woody biomass stocks decline to near zero (Figs 3 & 4).    

On the other hand, model simulations in the mesic savannas 

show more evidence of bifurcations (for example the dark 

blue speckling in the miombo woodlands south of the Congo 

basin) relative to satellite-derived estimates of actual 

biomass. In these areas, tree cover in some grid cells declines 

to near-zero because of fire and the positive feedback  

between fire, adult and juvenile tree survival, and grass 

 
Figure 3. ACE Model above ground wood biomass simulations 

for sub-Saharan Africa without the fuel-wood harvest effect.  

 

 

 

 

production.   The stochastic fire model (where fire 

occurrence depends on grass biomass/fuel-load that defines a 

mean fire probability with a stochastic adjustment for actual 

fire occurrence) seeds in additional spatial variability in these 

mesic savanna areas, that exceeds the variability in ‘actual 

biomass’.  Wood harvest in these areas also has relatively 

minor impact but increases the frequency of these 

bifurcations. 

 

 
Figure 4. ACE Model above ground wood biomass simulations 

for sub-Saharan Africa with fuel-wood harvest effect. 

 

 

4. CONCLUSIONS 

 

The African Carbon Exchange (ACE) model is intended to 

represent the broad patterns of vegetation dynamics in 

response to climate and management using a low-

dimensional model with ecological realism.  The model seeks 

to balance simplicity and realism that will allow it to be used 

with a variety of satellite data products in a formal data-

assimilation framework, using satellite products including 

biomass and leaf area index products, and fire frequency. Our 

intent is to simulate the dynamics that control long-term 

carbon fluxes, including changes in above-ground and 

below-ground woody biomass, and changing soil carbon 

content.  These pools represent the only opportunity for long-

term changes in carbon balance of the continent and are thus 

the crucial pools to model in this model-data assimilation 

framework. ACE seeks to track changes in these pools as 

they respond to woody population demographics and 

responses to varying climate, wood harvest, agricultural 

conversion, fire and herbivory (although not all of these 

processes are yet incorporated in this version of the model).   

 

The bifurcation between high and low woody biomass 

simulated by ACE in the mesic savannas appears to 

exaggerate real fire feedbacks in the tree-grass system when 

compared to satellite biomass estimates.  This bifurcation 

emerges in the model through the interactions between tree-

grass competition and grass growth that controls fire 

frequency and resulting woody mortality, parameterised 

using field-observed relationships.  That the model 

exaggerates patterns in the mesic regions may be a simple 

response to model and/or parameter error and uncertainty. 

However, it may also reflect that fire occurrence in these 

areas is too high because herbivore consumption effects on 

grass biomass/fuel-load are not yet included.  Inclusion of 

herbivory (wild and domestic mammalian herbivores, 

insects) will provide stabilising mechanisms that we 

hypothesize will act together with fuel-wood harvest to 

reduce bifurcation tendencies and maintain the tree-grass 

mixtures characteristic of the vast savanna regions of Africa.  
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