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Abstract - Traditional ground based monitoring of mining 

activities are no longer acceptable or sometimes sufficient in 

terms of assessing sustainable business practices. Remote 

sensing is increasingly influencing the changing social and 

management processes of mineral extractions. This study 

focuses on the application of hyperspectral remote sensing 

to monitor water and vegetation pollutions at the Dexing 

Copper Mine (DCM), China. The 2007 CHRIS/Proba image 

was selected for this research. A focus of this study was the 

mapping of the tailings water body in addition to an 

assessment of the relative health of mine environment 

vegetation stress. This study critiques the use of advanced 

satellite based hyperspectral techniques in the monitoring of 

mineral resource extraction in accordance with the 

principles of sustainable development. 
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1 INTRODUCTION 

Sustainable mining practices involve managing the 

environmental, economic, community, safety and resource 

efficiency dimensions (Laurence, 2011). Due to the toxicity of 

many mine site activities both in surface and underground 

operations have the potential to cause significant impacts not 

only on the environment but also on other dimensions of 

sustainable mining. The new generation of satellite platforms 

with their ability to capture data of higher spectral and spatial 

resolution has the capability to emerge as essential new tools for 

use in mine site monitoring. Although satellite remote sensing 

has provided significant contribution in construction, 

development and monitoring aspects of many projects in 

different industries,  its use in mining industry is somewhat 

underutilised (Du et al., 2003; McPherson, 2006). This study 

utilises hyperspectral image acquired from the Compact High 

Resolution Imaging Spectrometer (CHRIS) satellite (Barnsley et 

al., 2004) to trial two pollutants tracking scenarios; one 

qualitative mapping of the mine tailings water, and another 

measurement of the relative health of the vegetation in the 

adjacent mine environment.   

2 STUDY SITE 

Dexing Copper Mine (DCM) situated in Jiangxi Province of 

China (Figure 1Figure 1. Location of the Dexing Copper Mine.) 

is one of the largest open pit copper mines in Asia. DCM 

underground mining was started in 1965, with the open pit 

operation commencing in 1971. Currently DCM produces 

around 36 million tonnes of copper ore annually. 600 million 

tonnes of overburden and waste rock, containing small 

quantities of copper and other metals have accumulated since 

the commercial production of the mine in the area (Wu et al., 

2009). This overburden and waste rock dumps are the source of 

acidic mine discharge in the area. 

 

Many researchers have studied environmental pollution of the 

DCM area by ground based geochemical  studies (He et al., 

1997, 1998; Teng et al., 2009) as well as remote sensing based 

approach using Landsat  (Wang et al., 2003; Wang et al., 2004; 

Yan et al., 2004; Zhao et al., 2003), ASTER (Cheng et al., 

2008) and Hyperion (Gan et al., 2004) images.  

 

 

Figure 1. Location of the Dexing Copper Mine. 

3 IMAGE ACQUISITION AND PRE PROCESSING 

The CHRIS hyperspectral sensor is mounted on board the 

European Space Agency (ESA) small satellite platform PROBA 

(Project for On Board Autonomy) has multi-angular acquisition 

capabilities. CHRIS can acquire up to five consecutive images 

of a ground target in a single satellite overpass from different 

viewing angles (i.e. 0°, ±36°, and ±55°). Images selected for 

this study were selected from the nadir (0°) image acquisition 

acquired in Mode 3 on 31st December 2007. The dataset was 

pre-calibrated by using HDF Clean V2 (Cutter, 2006) followed 

by atmospheric correction of the image was performed using  

BEAM 4.8 (Brockmann Consult 2010), an open-source toolbox, 

together with CHRIS BOX 1.5.2. Multi-angular characteristic of 

CHRIS causes viewing distortions, especially for the first and 

last images with larger observation zenith angles. The image 

was geometrically rectified using BEAM to remove minor 

distortions. The image was then georeferenced through image to 

map registration tool of the software ENVI (ITT VIS, 2011). An 

extremely low RMS error of 0.140907 pixels was achieved 

during the image registration process.  

4 MAPPING MINE TAILINGS LEACHATE  

The ENVI (ITT VIS, 2011) hourglass processing flow was used 

to define hyperspectral endmembers to identify the most 

spectrally pure or unique pixels within the dataset and map their 

locations and sub-pixel abundances. The initial processing 

incorporates polished apparent reflectance data as the input for 

further  spectral reduction through the Minimum Noise Fraction 

(MNF) transformation as modified from Green et al. (1988). As 

there are no field-derived spectra available for this study, all 18 

MNF bands were selected for further processing to preserve full 

data dimensionality. The Pixel Purity Index (PPI) (J.  W.  

Boardman et al., 1995) was used to find the most spectrally 

pure or extreme pixels in the data. A threshold value 2.5 was set 

to define the pixels as extreme ends of the projected vector. The 

automated clustering method was used to retrieve all possible 

endmembers. The method yields n+1 endmembers where n in the 

number of input MNF bands. The automated clustering 
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therefore defined 19 class endmembers. The hyperspectral 

image was classified using Spectral Angle Mapper (SAM) 

method (Center for the Study of Earth from Space -CSES, 1992; 

Kruse et al., 1993) with these 19 endmembers. The tailings 

water body was defined as a separate region of interests (ROI) 

from hourglass processing and SAM rules images. Each rule 

image was enhanced through linear contrast stretching of the 

histograms. The minimum and maximum stretching value was 

used as the threshold constraints for the respective rule image to 

further define water ROI. The pixels defining water ROIs were 

then integrated to n-D Visualiser (J. W. Boardman, 1993; J. W. 

Boardman & Kruse, 1994) to further define clusters of pure 

endmember pixels in 18-dimensional space. Mean spectra of 

water ROIs were included in a spectral library for classification. 

 

The SAM classification has effectively highlighted target pixels 

with smaller SAM angles (closer match). The lowest value of 

the histogram of the classified rule image displayed as a flat line 

represents significant matches for the given target spectra. 

Figure 2 shows values ranging from 0.023 to 0.543 which were 

stretched to form the output rule image display range of 0 to 

255.  

 

 

Figure 2. Histogram of the rule image of the classified water. 

 

The resultant stretched rule image is shown in Figure 3 using 

the standard ENVI rainbow colour scheme where the spectral 

matches for water targets decreases across red (highest match) 

to blue colours (moderate-high match). 

 

Figure 3. The rule image of the water showing spectral signatures at  (a) Mine tailings No.4 (b) Mine tailings No. 2 (c) the Le’an 

River (d) the Dawu River. 

 

The water spectra at mine tailings no. 4 (Figure 3a) maps 

alkaline water corresponding to pH~11 (Gan, et al., 2004). A 

decreasing trend in apparent pH is highlighted from the centre 

towards the periphery of tailings deposits. This trend is also 

evident in tailings no. 2 (Figure 3b), however this could be 

influenced by the depth and turbidity of water. The spectra of 

the Le’an River and Dawu River shows characteristic of both 

acidic and alkaline water, which could be attributed to acidic 

runoff from mining waste dumps. 

 

Similar trends can be identified in the surrounding mine areas, 

clearly indicating the potential for further qualitatively mapping 

of mine leachate in surrounding water bodies with hyperspectral 

imagery. 

5 MAPPING MINE ENVIRONMENT VEGETATION 

Vegetation Indices (VIs) are simple numerical indicators that 

reduce multispectral or hyperspectral data to a single variable 

for the accurate measurement, monitoring, and modelling of 

terrestrial ecosystems at a range of spatial scales (Merton, 

1998). Based on the wavelength range of 18 spectral bands of 

the CHRIS image, 14 vegetation indices were analysed resulting 

in three selected to map the relative health of the vegetation 

adjacent to the mine environment. VI’s trialled included: 

(i) The Modified Red Edge Normalized Difference Vegetation 

Index (mNDVI705) as a narrowband greenness vegetation 

index.  



(ii) The Anthocyanin Reflectance Index 1 (ARI1) as a leaf 

pigment vegetation index. 

(iii) The Structure Insensitive Pigment Index (SIPI) as a light 

use efficiency index. 

The nadir spectrally polished georeferenced image was used to 

create a spatial map highlighting patterns of overall vegetation 

health and vigour in the adjacent mine environment. Figure 4 

maps healthy vegetation as responding to lower apparent stress 

VI values, whereas classes mapped as vegetation under apparent 

stress may be associated with more toxic environments resulting 

from increased airborne or leachate derived mine pollutants. 

Spectral signatures clearly show signs of partial or total 

senescence of these vegetated area and down-regulation of 

photosynthesis. The nadir image was divided into nine classes 

from the most stressed vegetation (class 1) to the healthiest 

vegetation (class 9) as shown in Figure 4. 

 

 

 

 

Figure 4. Relative health of the vegetation in DCM area. 

 

The black areas represents pixels containing no vegetation 

(mNDVI705 ≤ 0.2) within the mine and adjacent areas. 

Importantly, vegetation immediately adjacent to the Dawu River 

is classified as high stress, possibly associated with high mining 

leachate concentrations. The area surrounding the Dawu River 

was overlain with the SRTM DEM topography dataset to 

highlight the effects of stress in elevated terrain. All areas up 

slope from the drainage system containing high leachate 

concentration mapped as lower apparent stress with this index 

as shown in Figure 5. 



 

 

Figure 5. (a) Relative health of the vegetation (b) The red area represents more elevated terrain.

It is observed that there is a stronger relationship between areas 

with higher elevation exhibiting more vigorous vegetation 

health values. Vegetation on the tops of hills away from 

moisture sources normally exhibits the opposite trend due to the 

reduced availability of soil water. Importantly, high stressed 

vegetation in low elevation areas, although in a moister 

environment, is more likely to be influenced by the adverse 

effects of mining leachate. 

6 CONCLUSION 

Orbital hyperspectral remote sensing provides a new tool for the 

monitoring of environments adjacent to mine sites. Field spectra 

could have further validated these results however access to 

these data was restricted. Satellite remote sensing is still largely 

rated by the mining sector as an interesting research tool with 

great potential. However, it will take some time for this sector 

to fully integrate this new tool with traditional ground based 

surveying and monitoring methods. An increased number of 

satellites now provide an economic means to collect or validate 

environmental patterns resulting from mine waste. Furthermore, 

image analysis software is rapidly developing which further 

improves the accuracy and adoptability of this technology. 

Environmental scientists and engineers within the mining sector 

are increasingly adopting remote sensing technology to further 

understanding of the needs, cultural context, and organizational 

environment of mines.                                
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