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Abstract- a methodology of soil moisture assessment around 

a levee based on a backpropagation neural network and 

using Synthetic Aperture Radar (SAR) data is developed. 

Soil moisture changes along a levee over a period of time 

can help to monitor and find potential failure indicators 

such as slides and sand boils around the levee.  Several 

analytical and empirical models have shown relationships 

between SAR backscatter and soil moisture. The algorithm 

includes three steps (1) segmentation of levee area into a 300 

meter buffer zone from levee centerline, and removal of the 

trees using a threshold; (2) extracting the backscatter and 

texture features from each pixel within the buffer; (3) soil 

conductivity calculation using a backpropagation neural 

network.  We use SAR data from UAVSAR and 

conductivity measurements as ground-truth data.  With 

10% of the data set allocated to testing samples, the result 

shows an RMSE around 8 mS/m and the correlation 0.64. 

Keywords: Synthetic Aperture Radar (SAR), feature 

extraction, neural networks,  

 

1.   INTRODUCTION 

 
Soil moisture plays a significant role in many applications such 

as agriculture, atmospheric science, and hydrology.  The 

estimation of soil moisture using synthetic aperture radar has 

been investigated in recent decades by many researchers.  The 

radar backscattering coefficients are affected by soil moisture, 

surface roughness, and incidence angles.  In addition, the 

backscatter data also are sensitive to low vegetation and trees.  

Different approaches have been developed to estimate soil 

moisture using SAR data.  Most empirical models developed 

are for soils without significant vegetative cover.  The empirical 

models of Oh et al. (1992) and Dubois et al (1995) are popular 

models for bare surfaces in which they use inversion techniques 

to retrieve the surface roughness and relative dielectric constant 

from bare soil.  Theoretical scattering models show that the 

backscattering coefficients are more affected by surface 

roughness than soil moisture (Oh, 2004); therefore assessing 

soil moisture is a difficult in areas of varying roughness.  Also 

the presence of vegetation increases the complexity of the 

backscattering.  Thus, as our study area is covered by thick 

grasses and occasional shrubs, new methods of soil moisture 

estimation are being investigated in place of the existing 

empirical models (Oh, Dubois, etc) built on bare soil conditions 

( Hajnsek, 2009). 

 

There are other approaches to estimating soil moisture and soil 

prosperities using matching learning and training samples 

(Liou, 2001; Chang 2000).  Since the relationship between the 

SAR backscattering coefficients and the soil moisture is 

complex and non-linear, a neural network can be employed and 

trained to obtain the soil moisture.   

 

The study area encompasses portions of levees built along the 

Mississippi River.  Parts of this levee system are occasionally 

weakened by combinations of extreme meteorological and 

hydrologic events.  These can result in slope failure in the form 

of slough slides on the riverward side and as sand boils behind 

the landward slope of the levee.  Since increase in soil moisture 

usually accompanies these failures, monitoring the moisture 

content can provide an indication of vulnerability and 

impending failure of a levee segment.  Changes in spatial and 

temporal patterns of soil moisture can reveal signs of instability 

and help identify zones of weakness.  Such information can be 

used effectively by levee managers to stabilize the susceptible 

segments before failure occurs. 

 

2.  DATA 

 

The broader study region covers an area of the United States 

extending bounded by 32°N to 34.5°N and 90.5°W to 91.5°W.  

SAR data was acquired over this area on 25 January 2010 by 

the UAVSAR platform flown by NASA.  This data is quad-

polarized L-band (23.79 cm) measurements collected over a 22 

km wide swath at a 25-60° look angle range.  The ground cell 

size of the multi-look, orthorectified radar data was 

approximately 5 by 7 meters. As a proxy for soil moisture, 

apparent electrical conductivity measurements were collected 

on the same day in a small subset of this area.  These 

measurements were collected using an electromagnetic soil 

conductivity meter, model EM38-MK2 made by Geonics 

Corporation.  The sensor in this device reads the strength of the 

electromagnetic fields which is proportional to the soil’s 

electrical conductivity over a given depth range (Morris, 2009), 

which in turn is proportional to the moisture content (Grisso, 

2009).  The output is then presented in units of mS/m 

(millisiemens per meter).  The range of values measured in our 

study area was 30 to 85 mS/m.  The instrument was towed back 

and forth across a levee section of interest, creating an irregular 

collection of spatial samples.  Samples that fell within the 

ground cells of pixels in the radar imagery were assigned to 

those coordinates. 

 

Figure 1 shows a UAVSAR polarimetric color composite image 

of the study area.  The inset shows the detailed area of interest 

within which a small subset of the levee area was sampled for 

soil conductivity.  Figure 2 is a high-resolution aerial 

photograph  of the portion of the detail area which includes an 

unrepaired slough slide, overlaid with the soil conductivity 

measurements that were taken.  Unrepaired slide areas 

generally have different roughness compared to the non-slide 

healthy area of the levee.  Because such slide areas are a major 

focus of the broader investigation of levee condition 

assessment, it was chosen as the area of interest for this soil 

moisture estimation study. Successful estimation of spatial 

patterns of soil moisture variability in such areas are expected 

to contribute to improvements in the levee vulnerability 

classification application. 



 
 

Figure 1.  Radar image of the study area along the Mississippi 

river; Inset: close-up of area used in this investigation 

 

 

 
 

Figure 2.  Location of soil conductivity measurements 

 

 

 
 

 

Figure 3.  Flow chart of the methodology 

 

3.   METHODOLOGY 

 
A flow chart of the soil moisture assessment using a back 

propagation neural network is depicted in Figure 3.  First the 

areas dominated by trees along and beyond the edges of the 

levee are removed from the area of interest so as not to distort 

the statistics of the sample.  Training sets are then selected 

based on field information from slide and non-slide areas.  

Features are extracted and put into a backpropagation neural 

network (BNN).  The BNN weights and other parameters are 

trained based on the ground-truth data.  In testing mode,  the 

trees and the area out of the levee buffer are also removed.  

Then, the features at each pixel in the study area are computed 

and are input into the BNN using the weights derived in 

training mode.  The output then gives the estimated soil 

conductivity at each pixel location.   

 

3.1 Segment the Levee Area              

Due to the difficulty of computing accurate soil moisture over 

tree covered areas, these areas are removed using the HV 

backscatter values.  Figure 4 shows a histogram of two classes 

identified as levee area (blue) and trees (red).  As can be seen, 

the HV value can separate the two classes effectively using a 

threshold of HV = -20 (db).  The result of tree removal in the 

levee buffer segment is depicted in Figure 5 (blue mask).   

 

 
 

Figure 4.  HV backscattering histogram of levee area and trees 

 

 

 
 

Figure 5.  Segmented area (blue) after tree removal 

 



3.2 Feature Extraction 

In the next step, feature data are extracted from the segmented 

area.  The features used include the magnitudes of the 

polarimetric backscattering coefficients HH, VV, and HV,   as 

well as their ratios  HH/VV and HV/VV, along with texture 

features such as window statistics (mean and variance), and 

wavelet features.  Wavelet features used are the mean and 

standard deviation of the energy of approximation and vertical, 

horizontal, and diagonal detail coefficients of a two-level 

decomposition of each pixel and its neighbors (sliding window 

size 7).  A total of 51 features were thus extracted at each pixel 

location. 
 

3.3  Backpropagation Neural Network 

A backpropagation neural network is a multilayer, feed-forward 

network trained by the backpropagation method (Fausett, 

1993).  It is defined by the input, output, and hidden layers; the 

weight parameters; and the specified transfer function.  The 

first layer has weights (W) which are applied to the input 

feature values.  The number of hidden layers is dependent on 

the application.  The weights of each hidden layer are applied to 

the outputs of the previous layer.  All layers have biases, and 

the last layer is the network output.  The BNN used in this work 

includes one hidden layer, and one output neuron.  Figure 6 

shows the scheme of the BNN used in this work. 

 

 

 
 

 
Figure 6.  Backpropagation neural network with one hidden 

layer 

 

The features xi are placed into the input layer.  The weights in 

the hidden layer (W) and output layer (V) are initialized and 

trained using a portion of the ground-truth measurements 

allocated to training.  During the training phase, the errors are 

backpropagated from the output layer to hidden layer using the 

delta rule such that the total squared error of the output 

becomes minimum. 

 

4.   RESULTS  

 

The BNN was trained using ground-measured conductivity data 

and the corresponding features derived from the SAR data.   

 

 
Figure 7.  Training , validation, and testing the data set. 

 

Figure 7 shows how the MSE (mean squared error) of the BNN 

output converges.  Of the available ground truth data, 70% were 

used for training the BNN, 20% were used for validation, and 

the remaining 10% for testing.  In this case, the total number of 

ground-truth samples is 125 pixels.  Therefore the number of 

training, validation, and testing pixels are 87, 25, and 12, 

respectively.  In the figure the blue, green, and red curves show 

the MSE of the training, validation, and test data, respectively, 

against the numbers of training epochs.  The minimum error 

occurs at epoch 10 with MSE = 18 (RMSE = 4.3).  The BNN is 

stopped at this epoch to prevent over fitting as evidenced by the 

validation MSE increasing beyond that point.   

 

 

 
 

Figure 8.  Scatter plot of conductivity estimates for training, 

validation, and testing data against the corresponding ground 

truth data  

 

 

The scatter plot of the training (blue), validation (green) and 

test data (red) against the corresponding estimated data is 

shown in the Figure 8.  It can be seen that the data cluster fairly 

well around the zero line (output = target), with somewhat 

higher deviations for the validation and test data than the 

training data.  The statistics from these data are summarized in 

Table 1. 

 

 

 



Table 1.  Statistical results for each data set 

 

Data/ 

Validation 
Train Validation Test 

RMSE 4.3 8.2 8.9 

Correlation 

coefficient 
0.89 0.68 0.64 

 

 

Table 1 shows the RMSE and correlation coefficients for the 

three data sets.  The RMSE for the training, validation and test 

data are 4.3, 8.2 and 8.9 mS/m, respectively.  The 

corresponding correlation coefficients are 0.89, 0.68, and 0.64. 

 

The significant increase in error level for the validation and 

testing data sets is probably indicative of an insufficient number 

of training samples, particularly in light of the relatively high 

number of features used.  

 

Figure 9 shows the spatial distribution of the conductivity 

estimates for the segmented area (the blue mask from Figure 5).  

This figure shows that the river side (left side) of the levee has 

higher conductivity than the land side (right side).  It can be 

seen that the slide area has the highest conductivity (dark blue).  

This is consistent with physical aspects of this environment.  

 

 

 
 

Figure 9.  The conductivity estimate for the segmented area  

 

 

5.   CONCLUSION 

 

In this work, an algorithm based on a backpropagation neural 

network using a variety of radiometric and textural features 

derived from polarimetric radar backscatter was developed to 

estimate the conductivity, and thus relative soil moisture, of an 

area around an earthen levee system.  Ground truth data for 

training and validation was obtained using a Geonics EM38-

MK2 measuring apparent soil conductivity.  Results for the 

limited study area included an RMSE around 8 mS/m with a 

correlation coefficient of 0.64.  The conductivity estimates for 

the area of interest including a slough slide area are physically 

consistent for soil moisture in such an environment, and may 

prove useful in the application of airborne SAR to the problem 

of levee condition assessment. 

 

Many more samples of ground-truth measurements are needed, 

and taken over a wider area, before broader conclusions can be 

drawn. This study was limited by the number of samples that 

were acquired during an airborne radar data collection flight.  

Future work will address these limitations.  Another ongoing 

aspect of the study is the evaluation of the use of satellite-based 

SAR versus the airborne UAVSAR used in this investigation. 

The currently available spaceborne SAR platforms use shorter-

wavelength instruments, which do not penetrate soil as much as 

the L-band UAVSAR, thus adding and additional complications 

to their use for soil moisture estimation. 
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