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Abstract – With the focus on new available hyperspectral imaging sensors sensitive within the thermal infrared (TIR) 

wavelength region, this study is testing the ability of the TIR in deriving soil erosion relevant parameters (e.g. texture, 

organic carbon content) from soil spectral measurements with the respect to commonly used VNIR-SWIR 

spectrometers. Therefore a study site was chosen located within an agricultural area in Western Australia, which is 

suffering from soil loss through wind erosion processes. VNIR-SWIR and TIR soil spectra derived from laboratory 

measurements using common field instruments were therefore resampled to imaging sensor spectral specifications 

(HyMAP and TASI-600). Prediction models have been established via multivariate regression analysis techniques to 

quantitatively estimate the soils’ physical-chemical parameters using signatures from different spectral regions. 
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1.0 INTRODUCTION 

 

Soil loss, acknowledged for negatively affecting 

paddock yield and profit, is a worldwide concern due 

to a reduction in surface soil fertility. This is 

especially true for farmers working on arid and semi-

arid lands exposed to pressure through intensified land 

use and/or changing environmental conditions.  

Farming in the Western Australian wheatbelt area is 

dealing with such limitations because of its 

susceptibility to wind erosion. During the hot dry 

summer, strong winds blow across soils with 

desiccated surface layers. These surface layers, which 

are dominated by sandy soils, suffer from reduced 

stability qualities. Low in cementing agents, such as 

clay and soil organic matter, these fine particles are 

also carrying the soils’ fertility potential, but have 

poor abilities to resist abrasion and so can easily be 

eroded by wind (Brady and Weil, 2008).  

An assessment of the paddock’s susceptibility to soil 

erosion, as well as the observation of the paddock’s 

erosive progress could provide farmers and land 

managers with a database to recommend actions to 

combat soil loss in an operative way. Thus, there is a 

need for large-scale measurement, mapping and 

monitoring of surface parameters, such as the soils’ 

surface grain size distribution and soil organic carbon 

content. 

The use of hyperspectral techniques to quantify 

essential pedogenic surface parameters is attractive for 

soil scientists due to the reduction in the need for time- 

and cost-intensive soil laboratory analyses and field 

campaigns (Ben-Dor et al., 1999). Several studies 

have demonstrated that such soil characteristics can be 

quantified and predicted statistically via their spectral 

signatures in the commonly used/accessible visible to 

shortwave infrared (0.4 to 2.5 µm) wavelength region 

(Bartholomeus et al., 2008; Viscarra Rossel et al., 

2006; Chabrillat et al., 2002; Chang and Laird, 2002). 

This issue was addressed through a joint venture, 

comprising the expertise of Australian partners from 

Commonwealth Scientific and Industrial Research 

Organization (CSIRO) and the Department of 

Agriculture and Food of Western Australia (DAFWA), 

Japanese partners from the Earth Remote Sensing Data 

Analysis Center (ERSDAC), and the German 

Research Centre for Geoscience. Working together on 

the test area in the Mullewa district, which is located 

within Western Australia’s wheatbelt region, we 

focused on a research project on agricultural issues. 

Soil surface properties such as soil texture and organic 

carbon content, all known for being crucial players 

controlling the extent of soil surface loss, were 

quantified and predicted via their spectral signatures 

from multivariate regression analysis techniques. 

To meet the objectives, high-dimensional spectral 

surface data were collected during the dry season 

(February 2010) throughout a simultaneous field- and 

airborne-campaign within the investigated area. 

Thereby, almost 150 soil samples (not all of them are 

analyzed so far) were collected and spectrally 

measured under controlled laboratory conditions, both 

in the Visible to Near Infrared (VNIR)-Shortwave 

Infrared (SWIR) and TIR spectral regions. Also 

VNIR-SWIR hyperspectral airborne data was recorded 

with the HyMap (www.hyvista.com) spectral imager 

to later apply the derived prediction models on a large 

scale basis (in a subsequent study). Another airborne 

hyperspectral imaging over-flight is planned to acquire 



data in the thermal infrared spectral region once the 

instrument is completed (Thermal Airborne 

Spectrographic Imager TASI-600, www.itres.com). To 

test the ability to quantify and predict soil surface 

properties from high spectral resolution remote 

sensing data, the multivariate statistical analyses were 

performed on spectral signatures, resampled to typical 

imaging sensor spectral specifications (HyMap and 

TASI-600).  

The thermal infrared wavelength region reveals 

promising capacities for that topic, since the strongest 

of the silicate fundamental molecular vibration bands 

(reststrahlen bands of the Si-O stretching) occur in the 

8-14 microns atmospheric window (Salisbury and 

D’Aria, 1992; Cudahy, 2000). The dominance of 

sandy surfaced soils in the investigation area, with 

quartz as their major component, which influences soil 

texture characteristics, points to the TIR being at least 

a good alternative to the VNIR-SWIR region. A 

combination of both regions however, including the 

spectral contrast power for minerals having OH- and 

Si-O- bonds, might even have advantages in 

describing soil texture characteristics. 

In our presentation, we will discuss our joint research 

concept and present preliminary results using 

multivariate prediction models to quantify soil 

parameters from the VNIR-SWIR, the TIR and from a 

combination of both spectral regions. 

 

2. METHODS 

 

Study area 

The study area is located in the semi-arid wheatbelt 

region of Western Australia close to the provincial 

town of Mullewa, which is around 380 km north of 

Perth. The region’s climate is characterized by mildly 

wet winters and hot dry summers and was classified as 

Dry Warm Mediterranean by Beard (1976). Located 

geologically within the Perth Basin (the town of 

Mullewa is on the Yilgarn Craton, however the sample 

sites chosen for this study are within the Perth Basin), 

the area is dominated by an undulating sand plain 

system, which involves yellow and red sands and an 

alluvial valley system with relict red loams over a red-

brown hardpan, which key out as Tenosols and 

Kandosols in the Australian Soil Classification (Isbell, 

1996), respectively. 

 

Soil sampling and analyses 

Within an area of approximately 360 km2 a selection 

of soil samples, scraped from the upper 10 mm 

surface, were collected during a field campaign in 

February 2010. Each sample is a representative of a 

plot area surrounded by a 7.5 metres radius circle. 

Some additional samples were collected further south 

of the area, where grey sands (Tenosols) and alkaline 

clays (Vertosols) were sampled to stretch the variance 

in soil characteristics. Based on qualitative X-ray 

diffraction results, the mineralogy of the samples show 

that the soils are quartz dominated with minor 

kaolinite, feldspar and smectite, as well as traces of 

iron oxides and calcite. 

So far 89 of 150 soil samples were analysed and used 

in this study. The soil samples were air dried and then 

homogenised through a 1 mm sieve. Grain size 

distribution was defined by using standard pipette 

method following Stokes law (Mc Kenzie et al., 

2002.) 

 

Soil spectral measurements 

Soil reflectance in the VNIR-SWIR spectral region 

was measured in the laboratory on the homogenised 

samples using an ASD FieldSpec-Pro spectrometer 

with a contact probe (GFOV~10mm) in the range 

from 350- to 2500-nm. Spectral resolution is 3-4 nm in 

the 350- to 1000-nm region (spectral sampling 1.4 

nm), and 10-12 nm in the 1000- to 2500-nm region 

(spectral sampling 2 nm). The entire spectrum is 

resampled at 1 nm for display purposes, which 

resulted in 2151 spectral bands.  

Soil radiance spectra in the TIR region were recorded 

indoors using a micro Fourier Transform 

Interferometer (µFTIR) (model 102, D&P 

instruments) covering the spectral range from 7 to 14 

µm with a resolution of 6 cm-1 on a 4.5° 

(GFOV~20mm) field of view. The measurements 

were performed on identical soil sample surfaces for 

the TIR and VNIR-SWIR recordings.  

The samples were preheated (60°C) to relatively 

suppress interfering background radiance. The 

instrument was regularly calibrated using a blackbody 

(model 41P, D&P instruments) and the background 

temperature. Radiance was converted to emissivity 

signatures using a Planck curve fitting algorithm 

(Green, A., pers. comm.). Bands between 7 and 7.630 

µm were excluded from the spectral range due to 

extreme noise levels, resulting in 208 spectral bands 

for analysis. 

To reduce data dimensionality and with the future 

focus of applying the resulting models to a following 

hyperspectral imagery study, the spectra were 

resampled to imagery sensor spectral specifications. 

ASD spectra were resampled to HyMap spectral 

characteristics (125 bands with a spectral resolution of 

15-20 nm and a spectral range from 450- to 2480-nm). 

Thereby for bands affected by atmospheric water 

vapor (1338 – 1498 nm and 1801 – 2008 nm) 

absorbance were excluded from the spectral dataset. 

Thus, 111 bands for the VNIR-SWIR wavelength 

region remain. The µFTIR thermal infrared spectra 

were resampled to the TASI-600 specifications (32 

bands with a spectral resolution of 109.5 nm and a 

spectral range from 8 to 11.5 microns). The TIR 

spectra were brought to reflectance using Kirchhoff’s 

law (Nicodemus, 1965) for all the further analyses. 

 

Model construction 

To enhance spectral features some of the common 

spectroscopic pre-processing techniques have been 

applied on the spectra (Viscarra Rossel, 2008; Chang 

and Laird, 2002). The soil spectra were transformed 

from reflectance (R) to absorbance (log10 (1/R)) and 

also were mean centered. 



Dealing with numerous, potentially correlated 

predictor variables from relatively few observations, is 

a typical challenge in spectroscopy. Ordinary multiple 

regression is no longer practical in this case, due to 

multicolinearities. To control such associated 

overlapping features and difficult to interpret 

overtones, Partial Least Square Regression analysis 

PLSR (Martens and Naes, 1989) was used to relate the 

spectral information with the soil parameters. Leave-

one-out cross-validation was performed for validation 

and was used to determine the optimum number of 

factors (f) for the prediction models. To evaluate the 

prediction ability of the PLSR models the following 

statistical parameters were used. The coefficient of 

determination (R2) and the adjusted coefficient of 

determination (R2
adj) to estimate the quality of fit and 

the models’ predictive ability, respectively. The root 

mean square error of calibration (RMSEC) and the 

root mean square error of prediction (RMSEP) were 

used as a measure for the error in the calibration and 

the expected prediction error from the cross-

validation, respectively. Additionally, the explained 

X-variance and Y-variance of the models were 

specified. 

 

3. RESULTS AND DISCUSSION 

 

Soil Analyses 

The soil texture analyses resulted in four fractions: 

clay (<2 µm), silt (2 - 20 µm), fine sand (20 - 200 

µm), and coarse sand (200 µm – 2000 µm), whereas 

clay and subsumed sand (20 – 2000 µm) were used for 

the modeling. Soil organic matter content (SOM) was 

measured using the Walkley Black method (Walkley 

and Black, 1934). Clay ranges were from 3.8 % to 

68.4 %, silt from 0.01 to 67.1 %, and subsumed sand 

from 14.3 % to 96.1 %. Organic carbon ranges were 

from 0.05 % to 1.68 %.  

 

Interpretation of the soil spectra 

The measured spectra show absorption features typical 

for soils from semi-arid regions (Eisele et al., 2007). 

Figure 1 displays a selection of the VNIR-SWIR 

(ASD full range) soil reflectance spectra showing their 

shape variations. All of the soil spectra show the 

common clay feature in the SWIR (close to 2.2 

microns) and the common iron-oxide features in the 

VNIR (around 0.5 and 0.9 microns) wavelength region 

(Clark et al. , 1993).  

 

 

 
Figure 1: Selection of soil reflectance spectra in the 

VNIR-SWIR wavelength region (ASD full range) 

 

Figure 2 shows reflectance spectra in the TIR (µFTIR 

full range) wavelength region for the same selection of 

soil samples as in Figure 1. The thermal infrared soil 

spectra clearly show the sandy character among the 

soil samples. Quartz, as their dominant mineral, 

displays the strongest of the reststrahlen bands in the 

thermal infrared region of any of the silicate minerals 

(Salisbury et al., 1992), producing a principal 

Christiansen feature from 8- to 9.5-microns with a 

triple feature in between, and a secondary Christiansen 

feature from 12.4- to 13-microns, containing a double 

feature. 

 

 
Figure 2: Selection of soil reflectance spectra in the 

thermal infrared wavelength region (µFTIR full range) 

 

All of the measured soil spectra show two reflective 

minima (emissivity maxima) just left of the prominent 

Christiansen features at around 7.4 and 12.3 microns, 

due to the strong Si-O molecular vibration bands. 

Since, the TIR signatures were resampled to TASI 

spectral range from 8 to 11.5 microns for the 

prediction models, these regions will not be discussed 

further. Figure 3 and figure 4 show the spectral 

resampled (HyMap and TASI-600, respectively) and 

transformed (to log10 (1/R)) soil spectra as input to the 

prediction modeling. As shown in both figures, the 

VNIR-SWIR and the TIR spectra still contain most of 

the original variance in wavelength after resampling. 

 



 
 

Figure 3: Selection of resampled (HyMAP) and 

transformed (log10 (1/R)) soil reflectance spectra in 

the VNIR-SWIR as they found input to the calibration 

modeling 

 

Calibration and validation of the prediction models 

 

Calibration and validation were performed for the 

selected soil-erosion relevant parameters (% clay, % 

sand, and % organic carbon) as the response variables 

using the absorption spectra of the VNIR-SWIR, the 

TIR, and the VNIR and SWIR individually as 

predictors for the model. The results are summarised 

in Table 1. 

 

 

 
 

 

Figure 4: Selection of the resampled (TASI-600) and 

transformed (log10 (1/R)) soil reflectance spectra in the 

TIR as they found input to the calibration modeling 

 

 

 
 

 

Table 1: Prediction modeling calibration and 

validation results (number of samples (n), number of 

model factors (f), correlation coefficient (R2) and -

adjusted (R2
adj), root mean square error of calibration 

(RMSEC) and -prediction (RMSEP), explained Y-

variance).  

 

3.1 Clay content 

Predicting the soil’s clay content from the TIR spectral 

region, the model performed well using four factors. 

With a correlation coefficient of 0.93 (RMSEC = 2.42) 

in the calibration and 0.87 (RMSEP = 3.23) in the 

validation, explaining most of the Y-variance (93.04 

% in the calibration and 87.29 % in the validation) the 

results for the 32 thermal infrared bands were better 

than for the VNIR-SWIR-model (111 bands) on 5 

factors (table 1). Three samples, outstandingly rich in 

clay, have a strong leverage effect on the model. Two 

of these clay rich samples (55.0 % and 58.5 % clay) 

are among the additional vertosols samples, collected 

further south of the investigation area to stretch the 

clay content range. The very clay extreme sample 

(68.4 % clay) was taken within the study area from a 

dried out clay pan. The influence of these samples for 

the model was assessed as being positive, since 

excluding these samples would have caused a much 

higher factorial model (f > 15) to explain a similar 

amount of the Y-variance. Best results were achieved 

with using the VNIR-SWIR and the TIR spectral 

region simultaneously. A 5 factor model produced 

correlation coefficients of 0.96 (RMSEC = 1.91) for 

the calibration and 0.91 (RMSEP = 2.89) for the 

validation and explained 95.64 %  and 90.67 % of the 

Y-variance, respectively (Figure 5). 

 

 
Figure 5: Predicted verses observed soil samples for 

the VNIR-SWIR-TIR-model on clay content using 5 

factors. 

 

 

3.2 Sand content 

 

The models for predicting the soil’s sand content 

revealed the best outcomes in this study. Especially 

the TIR showed promising results for this wavelength 

region. The model parameters were already stable 

after three factors. Here, sand was predicted with very 

high correlation coefficients (R2=0.951 and 

R2
adj=0.947) and with a high certainty for further 



predictions (RMSEC = 3.2 and RMSEP = 3.5), 

explaining 95.13 % of the Y-variance in the 

calibration and 94.72 % in the validation, respectively 

(Figure 6). Predicting the sand content using the 

VNIR-SWIR and the TIR spectral region were inferior 

to using the TIR individually. The combined model 

needed two more factors to achieve similar results for 

the value of the correlation coefficients (R2=0.96 and 

R2
adj

 =0.94) and to explain a similar amount of Y-

variance (95.75 % in the calibration and 93.57 % in 

the validation). However, the root mean square error 

was slightly improved to 2.62 (RMSEC) and 3.1 

(RMSEP) using the additional 111 VNIR-SWIR 

bands.  

 

 

 
Figure 6: Predicted verses observed soil samples for 

the TIR-model on sand content using 3 factors. 

 

 

3.3  Organic carbon content 

 

Due to the relatively low organic carbon content in the 

soils of the investigation area (OC content with 

maximum of 1.68 % and minimum of 0.05 % among 

the collected soil samples) the models for this 

response variable performed poorer for its prediction 

compared to the texture variables for both the VNIR-

SWIR and the TIR spectral signatures. Here, more 

outliers had to be removed from the data set, mainly 

those with outstandingly low content in organic carbon 

(OC < 0.1 %). 

Models for both regions, the VNIR-SWIR and the TIR 

lead to similar results for predicting the OC from its 

spectral signatures. Whereas the VNIR-SWIR needed 

a less comprehensive model (6 factors), this was due 

to the fact that most of the organic soil components 

show their spectral activity within this wavelength 

range. But both models performed sufficiently well to 

show the inherent correlation between the response 

and predictor variables (R2
 = 0.83 in the VNIR-SWIR 

and 0.84 in the TIR with an RMSEC of 0.11). 

Predicting the organic carbon content using the VNIR-

SWIR and the TIR spectral region in combination, 

performed better (like for predicting clay) than with 

using the VNIR-SWIR- or the TIR model individually. 

With a five factor model the organic carbon content 

could be predicted with a correlation coefficeint of 

0.88 for the calibration and 0.85 for the validation. 

RMSEC (0.09) and RMSEP (0.1) were reduced and 

the explained calibration Y-variance (88.34 %) and 

explained validation Y-variance (84.55 %) have both 

risen (Figure 7). 

 

 

 
Figure 7: Predicted verses observed soil samples for 

the VNIR-SWIR-TIR-model on organic carbon 

content using 5 factors. 

 

 

4. CONCLUSIONS 

 

The study reveals that the prediction of the selected 

soil erosion relevant parameters is feasible using 32 

bands within the thermal infrared emissivity spectra. 

These bands correspond to spectral specifications of a 

hyperspectral imaging sensor, the TASI-600. 

All of the three selected soil parameters show good 

correlations with the spectral signatures (R2
adj

 = 0.87 

for % clay, 0:95 for % sand, and 0.75 for % OC). Due 

to its direct opto-physical relationships, the models for 

the TIR region performed best for the sand fraction 

with its high quartz content. Predicting clay and sand 

content could be done more accurately and reliably 

with the TIR than with using the VNIR-SWIR region. 

In most of the cases, modeling with the TIR could be 

realised with a reduced number of model factors, even 

the TIR provides less than a third of the VNIR-SWIR 

bands. In the case of organic carbon content, the 

individual VNIR-SWIR- and TIR models performed 

similarly and could be improved through 

simultaneously using both regions for the prediction 

modeling (R2
adj

 = 0.84, RMSEP = 0.1). Combining the 

two spectral regions also improved the prediction of 

the clay content. However, to predict the sand content 

the performance of using the 32 TIR bands 

individually could not been improved by adding the 

111 VNIR-SWIR bands.  

Accordingly all of the spectral regions show their 

potential for a sufficient prediction for each of the soil 

erosion relevant parameters from the resampled 

laboratory spectral data. Nevertheless, with the focus 

on applying the prediction models to imaging 

spectroscopic data, we expect a surplus from the 

additional TIR bands. Dealing with limitations due to 

atmospheric influences and pixel inherent spectral 

mixture interactions, the use of TIR sensing will lead 

to a more flexible approach for quantifying soil 

parameters. In the case of predicting texture 

characteristics from very sandy soils (e.g. Mullewa) 

the TIR bands will promise more prediction accuracy, 

through their higher spectral contrast of their major 

mineral component, quartz. Taking into account the 



limited range of OC content among the soil samples, 

the models show that the prediction of this soil 

parameter is basically feasible for both of the spectral 

regions, but would profit from a combination of them. 
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