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Abstract – This work investigates the optimization and 
validation of Support Vector Machines (SVMs) for land 
cover classification from multispectral aerial imagery and 
lidar data. For the optimization step, a new method based on 
a curve fitting technique was applied to minimize the grid 
search for the Gaussian Radius Basis Function (RBF) 
parameters. The validation step was based on two 
experiments. In the first, four SVM kernel models (Gaussian 
Radius Basis Function; Linear; Polynomial; and Sigmoid) 
were tested and compared to each other. In the second, 
SVMs were compared against two classifiers of different 
characteristics (the Self-Organizing Map (SOM) and the 
Classification Trees (CTs)) based on four study areas with 
different sensor and scene characteristics. The comparison is 
based on two criteria: overall classification accuracy; and 
commission and omission errors per class. The results 
demonstrate: the higher overall classification accuracy; the 
lower range of commission and omission errors per class of 
the SVMs as compared to other classifiers. 
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1. INTRODUCTION 

Research on land cover classifcation from aerial images and 
lidar data has been fuelled in recent years by the need for data 
acquisition and updating. The high dimensionality of aerial and 
satellite imagery presents a challenge for traditional 
classification methods based on statistical assumptions. On the 
other hand Support Vector Machines (SVMs), as one of the 
more recent developments in the field of machine learning, have 
proved reliable and accurate in many pattern classification and 
nonlinear regression tasks. There have been few applications of 
SVMs for the analysis of aerial imagery and laser scanner data. 
Secord and Zakhor (2006) proposed a two step method for 
detecting trees from aerial imagery and lidar data consisting of 
segmentation followed by SVM-based classification. The 
results showed that the segmentation followed by classification 
outperforms the point-wise method. Haitao et al. (2007) applied 
an object-oriented SVM for land cover classification by fusing 
high-resolution aerial imagery, Digital Surface Model (DSM) 
and the calculated textural features (variance, contrast) of aerial 
imagery using Gray Level Co-occurrence Matrix (GLCM). The 
results showed that SVMs provided greater classification details 
and accuracy and the computational performance for 
classification was improved. 
 
The motivation behind this study is that there are several issues 
requiring consideration in respect of the application of SVM for 
classifying aerial images and lidar data: (1) how can we limit  
 

 
the range of the inherent grid search of SVM parameters using 
an adequate approach in terms of complexity and time of 
computations; (2) which SVM kernel performs the best for 
image and lidar data fusion; (3) how accurate, in terms of 
overall classification accuracy and class-specific accuracy, are 
SVMs compared to statistical and neural classifiers?. The 
objective of this paper is to answer these questions, based on an 
intensive investigation of four SVM models using four datasets 
with different sensor and scene characteristics. The rest of the 
paper is organized as follows. The next section describes the 
study areas and data sources, followed by a brief description of 
the methods used.  After that, the results are presented and 
evaluated. We summarise our results in the last section. 
  

2. STUDY AREAS AND DATA SOURCES 

2.1 Test Zones and Input Data 

Four test datasets of different sensor and scene characteristics 
were used in this study as summarized in Table 1 and 2. Test 
area 1 is a part of the region surrounding the University of New 
South Wales campus, Sydney Australia, which is a largely 
urban area. The colour imagery was captured by film camera at 
a scale of 1:6000. The film was scanned in three colour bands 
(red, green and blue) in TIFF format, with 15µm pixel size 
(GSD of 0.09m) and radiometric resolution of 16-bit as shown 
in figure 1(a). Test area 2 is a part of Bathurst city, NSW 
Australia, which is a largely rural area. The colour (red, green 
and blue) images were captured by a Leica ADS40 line scanner 
sensor and supplied as an ortho image as shown in figure 1(b). 
Test area 3 is over suburban Fairfield, NSW Australia covering 
low density development, and large industrial buildings as 
shown in figure 1(c).  The image data was acquired by a film 
camera at a scale of 1:10,000 which was scan digitized and 
supplied as an ortho image. Test area 4 is over Memmingen 
Germany, featuring a densely developed historic centre and 
industrial areas as shown in figure 1(d). Multispectral images 
(CIR), including an infrared image with the same resolution as 
the colour bands, were acquired by a line scanner sensor and 
supplied as an ortho image. 
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Figure 1. Orthophotos for: (a) UNSW; (b) Bathurst; (c) 
Fairfield; and (d) Memmingen. 

Table 1. Characteristics of image datasets. 

Test area 
Size 
(Km) 

bands 
pixel 
size 
(cm) 

Camera 

UNSW 0.5 x 0.5 RGB 9 LMK1000 

Bathurst 1 x 1 RGB 50 
ADS40 

Line scanner 
Fairfield 2 x 2 RGB 15 LMK1000 

Memmingen 2 x 2 CIR 50 
TopoSys Falcon II 

line scanner 

Table 2. Characteristics of lidar datasets. 

 UNSW Bathurst Fairfield Memmingen 
 Optech 

ALTM 
1225 

Leica 
ALS50 

Optech 
ALTM 
3025 

TopoSys 

Spacing across 
track (m) 

1.15 0.85 1.2 0.15 

Spacing along 
track (m) 

1.15 1.48 1.2 1.5 

Vertical 
accuracy (m) 

0.10 0.10 0.15 0.15 

Horizontal 
accuracy (m) 

0.5 0.5 0.5 0.5 

Density 
(Points/m2) 

1 2.5 1 4 

Sampling 
intensity 
(mHz) 

11 150 167 125 

Wavelength 
(µm) 

1.047 1.064 1.047 1.56 

Laser swath 
width (m) 

800 777.5 700 750 

Recorded 
pulse 

1st and 
last 

1st and 
last 

1st and 
last 

1st and  
last 

2.2 Training and Reference Datasets 

All tests were conducted using identical training sets. The 
training data for each test area consists of 1644, 1264, 1395 and 
1305 training pixels for buildings, trees, roads and ground 
respectively for each band of the input data. Class “ground” 
mainly corresponds to grass, parking lots and bare fields. 
 
In order to evaluate the accuracy of the results, reference data 
were captured by digitising buildings, trees, roads and ground in 
the orthophotos. In order to overcome the horizontal layover 
problem of tall objects such as buildings, roofs were first 
digitized and then each roof polygon was shifted if possible so 
that at least one point of the polygon coincided with the 
corresponding point on the ground. For Fairfield, the 
orthophoto and the lidar data correspond to different dates. 
Thus, we excluded from the analysis 41 building polygons that 
were only available in one data set. Larger areas covered by 
trees were digitised as one polygon. Information on single trees 
was captured where possible. 

 
3. METHODOLOGY 

The classification process was implemented in several stages as 
follow: 
 
3.1 Filtering of lidar point clouds   

First the original lidar point clouds were filtered to separate on-
terrain points from points falling onto natural and human made 
objects. A filtering technique based on a linear first-order 
equation which describes a tilted plane surface has been used 
(Salah et al., 2009). Data from both the first and the last pulse 
echoes were used in order to obtain denser terrain data. After 
that, the filtered lidar points were converted into an image 
DTM, and the DSM was generated from the original lidar point 
clouds. Then, the nDSM was generated by subtracting the DTM 
from the DSM.  
 
3.2 Generation of Attributes  

Our experiments were carried out characterizing each pixel by a 
32-element feature vector which comprises: 25 generated 
attributes, 3 image bands (R, G and B), intensity image, DTM, 
DSM and nDSM.  The 25 attributes include those derived from 
the Grey-Level Co-occurrence Matrix (GLCM), Normalized 
Difference Vegetation Indices (NDVI), slope and the 
polymorphic texture strength based on the Förstner operator. 
The NDVI values for the UNSW, Bathurst and Fairfield test 
areas were derived from the red image and the lidar reflectance 
values, since the radiation emitted by the lidars is in the IR 
wavelengths. Since the images derived for the Memmingen 
dataset include an IR channel, the NDVI was derived from the 
image data only. The attributes were calculated for pixels as 
input data for the three classifiers. Table 3 shows the attributes 
and the images for which they have been derived. Only those 
attributes which are uncorrelated have been selected. All the 
presented attributes were used for every test area. A detailed 
description of the filtering and generation of attributes process 
can be found in Salah et al. (2009). 

Table 3. The full set of the possible attributes from aerial 
images and lidar data. √ and x indicate whether or not the 
attribute has been generated for the image. PTS refers to 
polymorphic texture strength; HMGT refers to 
GLCM/homogeneity; Mean refers to GLCM/Mean; entropy 
refers to GLCM/entropy. 

 

3.3 SVM Classification 

SVMs are based on the principles of statistical learning theory 
(Vapnik, 1979). SVMs delineate two classes by fitting an 
optimal separating hyperplane (OSH) to those training samples 
that describe the edges of the class distribution. As a 
consequence they generalize well and often outperform other 
algorithms in terms of classification accuracies. Furthermore, 
the misclassification errors are minimized by maximizing the 
margin between the data points and the decision boundary. 
Since the One-Against-One (1A1) technique usually results in a 
larger number of binary SVMs and then in subsequently 

attribute 
Red  

Band 
Green   
Band 

Blue  
Band 

Intensity DSM nDSM 

PTS √ √ √ √ √ √ 
HMGT √ √ √ √ √ √ 
Mean √ √ √ √ √ √ 
entropy √ √ √ √ √ √ 
Slope x x x x x √ 

(c) (d) 



 

 

intensive computations, the One-Against-All (1AA) technique 
was used to solve for the binary classification problem that 
exists with the SVMs and to handle the multi-class problems in 
aerial and lidar data. The Gaussian radial basis function (RBF) 
kernel has been used, since it has proved to be effective with 
reasonable processing times in remote sensing applications. 
Two parameters should be specified while using RBF kernels: 
(1) C, the penalty parameter that controls the trade-off between 
the maximization of the margin between the training data 
vectors and the decision boundary plus the penalization of 
training errors; (2) γ, the width of the kernel function. In order 
to estimate these values and to avoid making exhaustive 
parameter searches by approximations or heuristics, we used a 
grid-search on C and γ using a 10-fold cross-validation. SVMs 
were compared against two classifiers of different 
characteristics: the Self-Organizing Map (SOM) (Kohonen, 
2001); and the Classification Trees (CTs) (Breiman et al. 1984).  
 
3.4 Model Selection for SVMs 

 
The problem is that there is no rule for the selection of the 
kernel’s parameters, and the best values of C and γ for the 
current problem are not known beforehand. Both parameters C 
and γ depend on the data range and distribution and they differ 
from one classification problem to another. As a result there are 
an infinite number of possible pairs of parameters that could be 
taken into consideration. The most effective method to optimize 
the C and γ parameters is a grid-search using the cross-
validation error as a measure of quality. Based on these facts, 
we used a grid-search on C and γ based on a 10-fold cross-
validation. The cross-validation procedure can prevent 
overfitting problems and results in better accuracy (Hsu et al., 
2009). Basically pairs of (C, γ) were tested and the one with the 
best cross-validation accuracy was selected. First we applied a 
coarse grid with ranges of values of [0.001, 0.01, 1,……, 10 
000] for both C and γ. Then we applied a finer grid search in the 
neighbourhood of the best C and γ, obtained from the coarse 
grid, with ranges of values [(C or γ)-10, (C or γ) +10] and with 
interval of 0.01 to obtain a better cross-validation. Once C and γ 
have been specified, they were used with the entire training set, 
to construct the optimal hyperplane.  
 

4. RESULTS AND DISCUSSIONS 
 
4.1 Grid-search optimization 

 
Although the grid-search approach achieves good model 
selection, resolution searches can result in a large number of 
evaluations. An intensive literature search in remote sensing, 
machine learning and pattern recognition fields showed that the 
issue of limiting the range of the SVM inherent grid-search has 
not been studied. In this section, we introduce a new approach, 
based on a curve fitting technique, for optimizing the grid-
search for the kernel parameters. Since both parameters, C and 
γ, depend on the data range and distribution and in order to 
minimize the grid search range, a set of 22 statistics have been 
calculated for each group of attributes. Then, the correlation 
coefficients between each statistic and both of C and γ were 
computed to examine the strength and direction of the 
relationship between each statistic and C and γ.  The results 
demonstrated a relatively strong negative relationship between 
the sum of the input data and both C and γ. We therefore 
minimized the range used for the grid search based on the 
inverse proportionality relationship between the sum of the 
input data and both of C and γ. First, three values of C and γ 
were selected (representing minimum sum, maximum sum and 

the closest value to the mean sum). Then, a single-term 
exponential curve was fitted to these three values of C and γ as 
shown in Figure 2. Then the confidence bounds have been 
calculated for the fitted curve with a 99% level of certainty. 
This means that we will have a 99% chance that all the three 
values of C or γ are contained within the lower and upper 
confidence bounds. Figure 2 demonstrates that C and γ for the 
remaining 4 groups of attributes, shown by the crosses in the 
figure, are still also contained within the lower and upper 
prediction bounds produced by the three values of C and γ 

because of the correlation between C, γ and the sum. Since both 
C and γ are positive values, the grid searches will be in the 
positive range of the confidence bounds. These results show 
that the sum can be an adequate indicator to minimize the grid 
search for both C and γ.  
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Figure 2. Minimizing the bounds of the grid search for UNSW 
test area. 

 
4.2 Performance evaluation of SVMs kernels 
 
Before comparing SVMs with SOM and CT, the four SVMs 
kernels were compared to each other in terms of overall 
classification accuracy to select the kernel with the best 
performance as a representative of SVMs. The previously 
described attributes were applied in seven separate Groups 
which include those from: Red, Green and Blue bands of the 
aerial image; Intensity/IR image; DSM; nDSM and the Total 

Group of attributes. Then, SVMs were performed 28 times for 
each test area (7 groups of attributes for 4 kernel functions). 
Classification results for the UNSW test area using the SVMs 
and the Total Group of attributes are shown in Figure 3. 

 

   
 

Figure 3. Classification results using the SVMs and the Total 

Group of attributes for UNSW test area. Red: buildings, green: 
trees, black: roads and grey: ground. 
 
By comparing the classification results with the reference data, 
the contributions of each Group of attributes to the overall 
classification accuracy were computed and plotted against the 
Groups of attributes for the four test areas. Figure 4 is a typical 
example obtained for UNSW test area. Figure 4 shows that, 
using attributes generated from Red Group, Green Group, Blue 

Group, resulted in lower classification accuracies. In this case, 
RBF, Linear, Sigmoid and Polynomial kernels produced 
classification accuracies comparable to each other. On the other 
hand, incorporating attributes generated from lidar data, such as 

γ 



 

 

Intensity/IR Group, DSM Group and nDSM Group of attributes 
into the classification process, has significantly improved the 
classification accuracies. In these cases, the classification 
accuracies produced by the four kernels are slightly different 
with RBF performing the best. The Total Group of attributes 
resulted in the highest classification accuracy, and the four 
kernels performed comparable to each other. These results 
provide evidence that, in some cases of land cover classification 
by aerial images and lidar data fusion, the selection of the 
kernel in SVMs is not a critical factor for overall classification 
accuracy. If only attributes from lidar data are used, the RBF 
kernel would be the best choice.  
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Figure 4. Contribution of each Group of attributes to the 
accuracy of the classification results in case of UNSW test area. 
 
4.3 SVMs versus neural and statistical classifiers 
 
In order to evaluate the ability of the SVMs to classify the test 
data sets, the classification accuracies derived by SOM and by 
CTs were compared to the accuracies derived by the SVMs, and 
based on the same reference data. For this comparison, the Total 

Group of attributes was used and the overall classification 
accuracies were computed for each classifier using the four data 
sets as shown in Table 4. Results show that overall 
classification results were slightly more accurate with the 
SVMs, 96.8%, than with the SOM, 95.9%, or with the CTs, 
93.7%.  

 
Table 4. Performance evaluation of all classifiers for the four 

test areas. 

  Classification accuracy (%) 
Test area SOM CT SVM 
UNSW 96.8 95.05 96.9 
Bathurst 95 92.85 96.5 
Fairfield 96.8 96.15 97 
Memmingen 95 90.75 96.6 

 
Two additional measures were used to evaluate the performance 
of SVMs, namely: commission and omission errors. Unlike 
overall classification accuracy, commission and omission errors 
clearly show how the performance of the proposed method 
improves or deteriorates for each individual class. Commission 
errors are the percent of incorrectly identified pixels associated 
with a class, and omission errors are the percent of 
unrecognized pixels that should have been identified as 
belonging to a particular class. An assessment of the mean 
commission and omission errors for the four test areas confirms 
that SVMs and SOM produced commission and omission errors 
comparable to each other. On the other hand, CTs performed 
the worst in terms of commission and omission errors. One 
advantage of the SVMs over SOM and CTs is that the achieved 

commission and omission errors are less variable: whereas the 
application of SOM resulted in standard deviation of 3.69 % 
and 8.55 % for commission and omission errors respectively, 
and the application of CTs resulted in standard deviation of 
7.43 % and 5.70 % for commission and omission errors 
respectively, the application of SVM reduces these values to 
3.22 % and 5.25 %.  

 
5. CONCLUSION 

 
The optimization and validation of SVMs for land cover 
classification based on the fusion of lidar, multispectral aerial 
images and 26 auxiliary attributes were presented. Four test 
areas in different urban environments, based on lidar data 
derived from different sensors and different vegetation types 
were used. A new method to minimize the grid search for the 
RBF kernel parameters, C and γ, based on a curve fitting 
technique was successfully applied. On the other hand, the 
results show that in some cases the selection of the kernel in 
SVMs is not a critical factor for overall classification accuracy. 
If only attributes from lidar data are used, the RBF kernel would 
be the best choice. The results also demonstrate that SVMs 
outperform both SOM and CT in terms of overall classification 
accuracy, and commission and omission errors.  
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