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Abstract – A substantial number of studies compare 

conventional classifiers (e.g. Maximum Likelihood, 

Decision Trees, Neural Networks or Support Vector 

Machines (SVM)) in a single location. We propose here an 

in-depth comparison of classifications by assessing the 

potential of SVM (often the “winner” in the previously 

mentioned studies) versus a range of the machine learning 

algorithms developed during the last decade: Naïve Bayes, 

C4.5 algorithm, Random Forest, Regression Tree and k-

Nearest Neighbor. They were tested over different 

ecosystems across Moorea Island (French Polynesia) using 

various sensors. Our results show that SVM outperforms 

other classifiers in 75% of the situations. We point out 

that SVM has a successful ability to deal with complex 

pixel-by-pixel classification problems (with high level of 

details, speckle noise and few bands). This ability is 

intrinsic to the paradigm of SVM classification as (i) it is 

based on few meaningful pixels, i.e. support vectors; and 

(ii) it occurs in a high dimensional feature space even 

when bandwidth is narrow. 
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1. INTRODUCTION 

 

One of the most widespread applications in the field of 

remote sensing is certainly classification. It consists in 

grouping pixels of a scene into classes of objects to create a 

thematic representation. Today, an increasing number of 

sensors of greater diversity and higher resolution are 

available to the remote sensing community. We have thus the 

means to consider increasingly complex objects at finer and 

finer scales for classification. 

 

For a long time remote sensing have focused on 

anthropogenic structures (urban areas, crop lands, forest 

plantations, etc), but an increasing number of studies are 

revolving around tropical ecosystems such as rainforests or 

coral reefs which are structurally complex objects with global 

stakes. Complexity of tropical ecosystems does not lie in its 

spatial organization at the landscape scale but at the finer 

scales of the community or the population. Complex classes 

are made of several species (generally more than in non-

tropical areas) with individual variation of growth and 

development, phenology, disturbance and stress influencing 

the spectral response of the ecosystems. The transition area 

between two adjacent but different communities (“ecotone”) 

in marine as well as in terrestrial ecosystems is also 

progressive and the limit between two classes is intrinsically 

thematician-dependant (Andréfouët and Roux, 1998; Pouteau 

et al., 2010). 

 

Another reason of the development of applications on 

tropical ecosystems is the emergence of more and more 

efficient classification methods. The success of a classifier 

lies in its performance (in terms of accuracy) and its 

constancy (in various situations). However, a substantial 

number of studies compare conventional classifiers (e.g. 

Maximum Likelihood, Decision Trees, Neural Networks and 

Support Vector Machines (SVM)) in a single geographic 

location. We propose here an in-depth comparison of 

classifications by assessing the potential of SVM (often the 

“winner” in the previously mentioned studies) versus a range 

of the machine learning algorithms developed during the last 

decade. They were tested over various geographic locations 

at multiple scales and on multiple remotely sensed data. 

2. MATERIAL AND METHODS 

2.1 Study site 

Moorea is the fourth highest island in French Polynesia 

(South Pacific) with a highest point, mont Tohiea reaching 

1207 m. It is 134 km² with a shape vaguely resembling a 

triangle with two nearly symmetrical bays opening to the 

north side: the Cook’s and Opunohu Bays. It was selected 

because of the diversity of land covers and remotely sensed 

data from multiple sensors available on this island. 

 

A range of areas was selected across the Moorea Island 

including anthropogenic terrestrial ecosystem (ATE), natural 

terrestrial ecosystem (NTE) (native rainforest) and marine 

ecosystem (ME) (coral reef) to test whether our results are 

generic (Figure 1). For imagery with a decametric resolution, 

the full island was considered; for imagery with metric 

resolution, the red square as ATE and the green rectangle as 

NTE were considered; and for imagery with sub-metric 

resolution, the yellow square as ATE, the blue square as ME 

and the magenta square as NTE were considered. These 

subsets were chosen in order to consider comparable number 

of pixels for each source. 



 

 

2.2 Remotely sensed data 

The analysis was based on both Synthetic Aperture Radar 

(SAR) and multispectral data (Table A). SAR data was used 

for terrestrial areas only. SAR data available on Moorea 

include a 5 m-resolution AirSAR scene from 2000 with 4 

bands: Cvv, Lhh, Lhv, Lvv and a 2.5 m-resolution 

TerraSAR-X scene from 2009 with also 4 bands: Xvv, Xvh, 

Xhv, Xhh. On the other hand, multispectral data used in this 

study include a 30 m-resolution Landsat-7 ETM+ scene from 

2000 with 3 bands, a 20 m-resolution SPOT scene from 1986 

with 3 bands, a 0.6 m-resolution pan-sharpened Quickbird 

scene from 2006 with 4 bands and a 0.5 m-resolution pan-

sharpened WorldView-2 scene from 2010 with 8 bands. 

  

2.3 Compared machine learning algorithms 

SVM, introduced by Vapnik (1998), was compared with a 

range of machine learning algorithms developed during the 

last decade and, to our knowledge, rarely compared: Naïve 

Bayes (Rish, 2001), C4.5 algorithm (Quinlan, 1996), 

Random Forest (RF; Breiman, 2001), Boosted Regression 

Tree (BRT; Lawrence et al., 2004) and k-Nearest Neighbors 

(kNN; Franco-Lopez et al., 2001). We used the Weka 

workbench (http://www.cs.waikato.ac.nz/ml/weka/) 

implementation of the above mentioned algorithms except for 

SVM for which a LIBSVM implementation was used into the 

ENVI/IDL v4.6 environment. As recommended by Hsu et al. 

(2010), optimal C and γ parameters were found by means of 

the grid-search method using cross-validation. After several 

tests and following the literature, the Radial Basis Function 

(RBF) kernel and the One Against One (OAO) algorithm 

have been retained (see Hsu et al., 2010 for more details on 

these methods). 

 

Pixel-by-pixel classifications were processed with training 

sets containing 250 pixels for each of the 4 classes (fixed 

because number of classes affects accuracy according to 

Andréfouët et al. (2003)) adapted to the level of spatial 

details available in the images (landscape, community or 

 
 

Figure 1. Presentation of the Moorea Island and localization of the subsets considered for classification: for imagery with a decametric 

resolution, the full island was considered; for imagery with metric resolution, the big rectangles were considered; and for imagery with 

sub-metric resolution, the small squares were considered. For color meaning, please see the second paragraph of part 2.1. 

 

Table A. Main characteristics of image products from the 

different sensors 

 

Sensor Resolution (m) Date # bands 

Landsat-7 ETM+ 30.0 2000 3 

SPOT 20.0 1986 3 

AirSAR 5.00 2000 4 

TerraSAR-X 2.75 2009 2 

Quickbird 0.60 2006 4 

WorldView-2 0.50 2010 8 

 



 

 

species levels). Accuracy assessment was based on 250 pixels 

per class. 

3. RESULTS 

No significant differences between overall accuracy (OA) 

obtained by classifying ATE, NTE and ME were found, what 

suggest that machine learning algorithms developed during 

the last decade are able to manage complexity due to the 

structure of NTE and ME. 

 

Our results show that SVM is a relevant machine learning 

algorithm for classification of tropical ecosystems (Figure 2) 

since it outperforms other classifiers in 75% of the situations. 

kNN better performs for the Landsat-7 ETM+ classification, 

as well as BRT for the AirSAR classification of the NTE and 

RF for the TerraSAR-X classification of the NTE. Except in 

this case, we denote that RF performs far worse than the 

other compared classifiers. 

 

SVM is successfully able to deal with complex classification 

problems. Indeed smaller is the number of bands (the spectral 

resolution) and finer is the level of details (the spatial 

resolution), generally worst is the classification OA (Figure 

3). As an example, classification processed on the 30 m-

resolution Landsat-7 ETM+ scene performs worse than 

classification processed on the 0.60 m-resolution Quickbird 

scene. Likewise, classification processed on the 4 bands 

Quickbird scene performs worse than the classification 

processed on the 8 bands WorldView-2 scene. Nevertheless, 

we point out that the OA achieved by the SVM decreases less 

than the other classifiers when the complexity of the 

classification process increases. In other words, the difference 

between the OA achieved by the SVM and the OA achieved 

by the other classifiers generally increases when the 

complexity increases. 

 

 
A-1 

 
A-2 

 

 
D-1 

 

 
D-2 

 
B-1 

 

 
B-2 

 

 
E-1 

 
E-2 

 
C-1 

 

 
C-2 

 

 
F-1 

 
F-2 

Figure 2. A sample of the scenes used for the analysis and the corresponding SVM classifications. A-1 is the Landsat-7 ETM+ scene 

and B-1 is the SPOT one. In A-2 and B-2, green represents non-anthropogenic areas, red is anthropogenic areas, cyan is coral reef 

and blue is deepwater. C-1 is a composite view of an anthropogenic area from AirSAR with Cvv band as red, Lhv as green and Lhh 

as blue. In C-2, orange is secondary forest, green is tree plantations (Pinus caribaea and Falcataria moluccana), red is crop lands 

and white is ponds (water stocks, shrimp farming). D-1, E-1 and F-1 are Quickbird scenes. In D-2, orange is pineapple fields, green 

is Tectona grandis plantation, red is Casuarina equisetifolia plantation and thistle is secondary forest (mainly Falcataria 

moluccana). In E-2, blue is detritic sedimentation, green is sand, yellow is living coral and magenta is dead coral. In F-2, green is 

dominated by Hibiscus tiliaceus, magenta by Neonauclea forsteri, brown by Inocarpus fagifer and white by Aleurites moluccana. 



 

 

4. DISCUSSION 

SVM is successfully able to deal with complex classification 

problems with high level of details, speckle noise and few 

bands. We argued that this ability is intrinsic to the paradigm 

of SVM classification. Indeed, the classification process 

occurs in a high dimensional feature space (Vapnik, 1998) 

which can arguably explain good performances achieved by 

SVM even when bandwidth is narrow. Moreover, high 

spatial resolution and presence of a lot of speckle noise 

produce a large amount of unmeaningful pixels. SVM seems 

less sensitive to them than other classifiers since, as pointed 

out by Foody and Mathur (2006), its classification process is 

based on few meaningful pixels, i.e. support vectors.  

 

From a practical point of view, regarding these results, we 

demonstrate that SVM does not provide any major benefit 

face to other compared classifiers (except RF) when used in 

“simple” classification problems (with a coarse spatial 

resolution or a satisfactory number of bands). On the 

contrary, when a user is dealing with a complex problem 

(with a high spatial resolution and a low spectral resolution), 

SVM is significantly the best candidate among those tested in 

this experiment. 
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Figure 3. Overall accuracy (OA) achieved by a range of 

machine learning algorithms applied on multiple sensors with 

multiple spatial resolutions. For algorithms abbreviation, 

please see the first paragraph of part 2.3. 
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