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Abstract- NASA has been collecting massive amounts of 

remote sensing data about Earth's systems for more than a 

decade. Missions are selected to be complementary in 

quantities measured, retrieval techniques, and sampling 

characteristics, so these datasets are highly synergistic. To 

fully exploit this, a rigorous methodology for combining 

data with heterogeneous sampling characteristics is 

required. For scientific purposes, the methodology must 

also provide quantitative measures of uncertainty that 

propagate input-data uncertainty appropriately. We view 

this as a statistical inference problem. The true but not-

directly-observed quantities form a vector-valued field 

continuous in space and time. Our goal is to infer those true 

values or some function of them, and provide to uncertainty 

quantification for those inferences. We use a spatio-

temporal statistical model that relates the unobserved 

quantities of interest at point-level to the spatially 

aggregated, observed data. We describe and illustrate our 

method using CO2 data from two NASA data sets.  
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1. INTRODUCTION 

 

The motivation for this work is the need to combine data from 

two remote sensing instruments to paint a complete and 

quantitative picture of the distribution of carbon dioxide (CO2) 

in the lower part of Earth’s atmosphere. CO2 enters and leaves 

the atmosphere only near the surface, and so monitoring 

changes in this important greenhouse gas near the surface may 

shed light on sources and sinks of CO2 in the Earth’s system. 

However, no instrument observes everywhere all the time so 

the best way to get a complete global picture is to combine 

information from multiple sources. In addition, different 

satellite instruments use different technologies and have 

different strengths and weaknesses. Combining their data 

provides the added advantage of capitalizing on complementary 

strengths.  Finally, if the combined data are to be useful for 

scientific analyses and policy making, quantitative uncertainty 

measures must be provided.  

 

In this article, we show how mid-tropospheric CO2 data from 

NASA’s Atmospheric Infrared Sounder (AIRS) can be 

combined with total column CO2 data from NASA’s 

Atmospheric Carbon Dioxide Observations from Space 

(ACOS; based on data from Japan’s Greenhouse Gases 

Observing Satellite (GOSAT)) to estimate CO2 in the lower 

atmosphere. In Section 2, we describe our methodology, and in 

Section 3 we provide estimates and their uncertainties of lower 

atmosphere CO2 over the continental US for 15 days in June 

2009. We conclude with a discussion in Section 4.  

 

2. SPATIO-TEMPORAL DATA FUSION 

 

Consider two different remote sensing instruments’ views of a 

spatial field at a single instant in time as shown in the top panel 

of Figure 1. The two instruments discretize the scene 

differently and add measurement errors with different biases 

and variances to the discretized pixel values. The instruments 

will also typically have different patterns of missingness, as 

shown by the black pixels. Presented with only the middle 

images in Figure 1, could we infer the true fields shown on the 

left? Could we infer the true fields from the images on the right 

alone? The answer is yes in both cases if we can rigorously 

account for: 1) the fact that pixel values are spatial averages, 2) 

the fact that there is measurement error associated with pixel 

values, and 3) the fact that there is spatial correlation in the true 

field. We could make even better inferences if we could exploit 

the middle and right images simultaneously, and do better yet if 

could make use information across time periods. 

 

 

 
 

Figure 1. Left panels: examples of a true, spatially continuous 

geophysical field at two successive time points. Middle panels: 

the field as viewed by a remote sensing instrument. Right 

panels: the field as viewed by another remote sensing 

instrument. 

 

 

Here we suggest a formal statistical framework for inferring the 

true value of the geophysical field at any point location, s, 

using remote sensing observations from two instruments at 

multiple time points. We begin by focusing on a single time 

point.  
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The relationships between the true field at a single point in time 

and the corresponding instrument images in the middle and 

right panels of Figure 1 can be formalized. Let Y (s)  be a 

random variable representing the true, underlying geophysical 

phenomenon of interest. The top-left panel of Figure 1 is an 

image of Y (s)  for all locations in the domain. Let B1 (s)  be a 

pixel, centered at s, observed by instrument 1, and let B2 (s)  

be a pixel, centered at s, observed by instrument 2. In general, 

the pixels for two instruments can be different. Let 

 

 

          Z1 (B1 (s)) =
1

| B1 (s) |
Y (ss∈B1( s )

∫ )ds +ε1 (B1 (s)) ,     (1) 

 

and 

 

          Z 2 (B2 (s))=
1

| B2 (s) |
Y (ss∈B2( s )

∫ )ds +ε 2 (B2 (s)),  (2) 

 

 

where Z j (B j (s))  is the value observed by instrument j  in the 

pixel B j (s) , B j (s)  is the area of the pixel, and ε j (B j (s))    is 

the measurement error. Denote the set of observations from 

instrument j  by 
  
Z j = (Z j (B j (s j1 )),K ,Z j (B j (s jN j )) ′ ) , where 

prime indicates vector transpose, and N j  is the number of 

observations. This is a column vector formed by concatenating 

all non-missing observations for the instrument. For any 

location s in the domain, Y (s)  can be optimally estimated as a 

linear combination of the available observations from 

instrument j  by ˜ Y j (s) = ′ a jsZ j . Optimal estimates are obtained 

by solving for the coefficient vectors, a js , that minimize  

 

 

          MSE(Y (s), ˜ Y j (s))= E Y (s)− ′ a jsZ j
2
   (3) 

 

 

subject to the unbiasedness constraint,  

 

 

          E(Y (s))= E( ˜ Y j (s))= E( ′ a jsZ j ) ,    (4) 

 

 

where E(⋅)  is the statistical expectation operator. The two 

estimates ˜ Y 1(s) and 
˜ Y 2(s) are unbiased and optimal in the sense 

of having minimum mean squared error given their respective  

input data, but they will not be identical. Their mean squared 

errors given in (3) will also be different and the one with the 

lower value is preferred.   

 

Now suppose we form an estimator that uses both instruments’ 

data simultaneously: 

 

 

          ˆ Y (s)= ′ b 1sZ1 + ′ b 2sZ2 .     (5) 

 

 

The coefficients b js  are obtained by minimizing 

 

 

          MSE(Y (s), ˆ Y (s))= E Y (s)− ( ′ b 1sZ1 + ′ b 2sZ2 )
2
 (6) 

 

subject to,  

 

          E(Y (s))= E( ˆ Y (s))= E( ′ b 1sZ1 + ′ b 2sZ2).   (7) 

 

 

Now, MSE(Y (s), ˆ Y (s))≤ min j MSE(Y(s),
˜ Y j (s))[ ] because if 

either instrument’s data were to contain no “useful” 

information, the corresponding b js  would be the zero vector. 

We call the estimates ˜ Y 1(s) and 
˜ Y 2(s) kriging estimators and 

ˆ Y (s)  the statistical data fusion estimator.  

 

Solving the constrained minimization problems in (3), (4), (6), 

and (7) requires expanding the expressions for mean squared 

error and substituting in the definitions (1) and (2). This results 

in a set of terms that depend on various parameters of the joint 

(spatial) distribution of the true field, such as Cov(Y (si),Y (s j )) , 

for all pairs of locations (si ,s j )  in the domain.  

 

Estimating these distributional parameters requires some 

additional modeling assumptions. In particular, we assume  

Y (s)  behaves according to a spatial mixed effects model, 

 

 

          Y(s)= t(s ′ ) α +ν(s),    ν(s)= S(s ′ ) η+ξ(s) .   (8) 

 

 

The term t(s ′ ) α is the spatial trend and captures the effect of 

simple explanatory variables. For example, t(s)  may be the 

latitude and longitude of s . The trend term reflects a modeling 

assumption that, to a coarse approximation, the value of Y (s)  

can be “explained” by its latitude and longitude. The term ν(s)  

explains additional variation in Y (s)  not captured by the trend. 

This additional variation has spatial structure: Y(si )  may be 

correlated with Y (s j )  where si  and s j  are two different spatial 

locations. The term ν(s)  is further broken down into S(s ′ ) η 

and ξ(s), where η  is a hidden (unobserved) vector-valued 

random variable that captures key features of the spatial-

dependence structure in the domain. The coefficient vector S(s) 

provides location-specific weights for combining the elements 

of η  to produce a contribution to ν(s)  for each specific 

location. Finally, ξ(s), called fine-scale variation, is a residual 

term to account for variation in ν(s)  not accounted for by 

S(s ′ ) η.  

 

Nguyen, Cressie and Braverman (2010) use (1) - (8) to 

formulate and implement Spatial Statistical Data Fusion 

(SSDF), a methodology for optimally estimating Y (s)  from 

two remote sensing data sets with different statistical 

characteristics (at a single time point). For SSDF it is not 

necessary to explicitly estimate η . The derivations of the data 

fusion coefficients, the optimal estimate ˆ Y (s) , and its 



uncertainty depend on η  only through its covariance matrix, so 

this covariance matrix is estimated directly.  

 

Space-time Data Fusion (STDF) builds on SSDF by assuming 

that the random vector η  evolves in time according to a lag-1 

auto-regressive process (AR(1)). That is, at each time step, one 

can exploit not only spatial dependence in the domain at that 

time, but also the temporal dependence with the previous time 

step via the relationship betweenηt  and ηt−1 . Our STDF 

methodology is motivated by Cressie, Shi, and Kang (2010) 

who introduced Fixed Rank Filtering (FRF), a framework for 

capturing temporal dependence in the context of optimal 

estimation from a single data set.    

 

Suppose now that we have access to data at more than one time 

point, say t −1 (top panel in Figure 1) and t  (bottom panel in 

Figure 1). The evolution of the spatial dependence structure is 

described by a first-order autoregressive relationship between 

ηt−1 , and ηt . The space-time data fusion estimator of Y  at 

location s  and time t , ˆ Y (s,t), is based on the optimal 

estimation of ηt  through a Kalman Filter.   

 

Using the model in (8), the data fusion estimator and its mean 

squared error are, 

 

 

          ˆ Y (s,t) = t(s ′ ) ˆ α t +S(s ′ ) ˆ η t |t + ˆ ξ t |t (s) ,   (9) 

 

 

         MSE(Y (s,t), ˆ Y (s,t))= E(Y (s,t)− ˆ Y (s,t))
2
,               (10) 

 

 

where  

 

 

         
  
ˆ η t |t = E(ηt |Z1(1),K ,Z1(t),Z2(1),K ,Z2(t)) ,               (11) 

 

 

  
ˆ ξ t |t (s) = E(ξ(s,t) |Z1(1),K ,Z1(t),Z2(1),K ,Z2(t)) ,             (12) 

 

 

and E(⋅ | ⋅) is the statistical expectation of the quantity on the 

left of the bar, given the quantity on the right. All parameters or 

their estimates that vary in time are subscripted by t . The  

subscript t | t  indicates that the subscripted variable is 

statistically conditional on all information up through and 

including time t , and Z j (t)  is the vector of observations from 

instrument j  at time t . Note that we do not explicitly derive 

the data fusion coefficients because they are not of interest in 

and of themselves. The formulas required to compute (9) – (12) 

can be obtained by concatenating the data vectors Z1(t)  and 

Z2(t)  into a supervector, making commensurate adjustment to 

covariance matrices and other quantities, and applying the fixed 

rank filtering formulas given by Cressie, Shi, and Kang (2010). 

Interested readers can find details and a thorough discussion 

there.  

 

 

3. ESTIMATING CO2 IN THE LOWER 

ATMOSPHERE FROM AIRS AND ACOS 

 

Our goal is to estimate the amount of CO2 in the lower part of 

the atmosphere using data from AIRS and ACOS. AIRS 

retrieves mid-tropospheric CO2 on 90 km footprints with near-

global coverage every three days. ACOS retrieves total column 

CO2 on 10 km footprints spaced about 150 km apart, in a 

narrow swath that repeats every three days.  

 

The theory in the previous section assumes Y (s,t) is a scalar, 

and instruments 1 and 2 both measure this quantity with 

different resolutions and other sampling characteristics. AIRS 

and ACOS do not measure the thing: AIRS measures the 

amount of CO2 in the mid-troposphere and above, and ACOS 

measures the amount of CO2 in the total column. The 

sensitivities of the two to different vertical levels in the 

atmosphere are depicted in the lower-left panel of Figure 2. To 

estimate CO2 in the lower atmosphere, we need to estimate the 

difference between ACOS and AIRS CO2 values. Fortunately, 

the theory in Section 2 easily accommodates this. 

 

 

 
 

Figure 2. Sampling characteristics of AIRS (red) and ACOS 

(blue). The lower-left show sensitivities of the two instruments 

to different atmospheric levels. 

 

 

Let Y1(s,t) be the true amount of CO2 in the mid-troposphere 

and above at location s and time t , and let Y2(s,t) be the true 

amount of CO2 in the total column at location s and time t . 

Let Y(s,t)= (Y1(s,t),Y2(s,t) ′ ) . The entire STDF methodology 

presented in Section 2 generalizes for this vector-valued case in  

enable simultaneous inference of the pair (Y1(s,t),Y2(s,t) ′ ) . In 

fact, there may be additional benefit if the components of 



Y(s,t) are correlated, as they surely are in this case. The 

methodology automatically exploits such correlations to 

improve the inferences and reduce uncertainties. The estimate 

of CO2 in the lower atmosphere is simply ′ c Y(s,t) , where ′ c  is 

the row vector (-1, 1). The mean squared error of this estimate 

is ′ c Σ(s,t)c , where Σ(s,t)  is the mean-squared-error matrix of 

Y(s,t). 

 

 

 
 

Figure 3. STDF estimate of CO2 in the lower atmosphere 

derived as the fused difference between ACOS and AIRS 

measurements (top), and the square-root of the mean squared 

errors of those estimates (bottom). 

 

 

We applied STDF to 30 days of AIRS and ACOS data for June 

2009 to estimate CO2 in the lower atmosphere over the 

continental US. Time t =1 was designated June 16-30, and 

time t = 0  was designated June 1-15. The spatial sampling of 

AIRS and ACOS data are shown in the top portion of Figure 2. 

Over the continental US, there were a total of 8407 AIRS data 

points and 1368 ACOS data points in June 2009. It took about 

20 seconds on 2.8 GHz MacBook Pro laptop to produce 3284 

estimates, and their mean squared errors, spaced every half-

degree. Figure 3 shows the estimates and the corresponding 

square-root mean squared errors.  These extremely fast 

computations are possible because of the specification of the 

spatial-dependence structure in (8) using S(s ′ ) η, which leads to 

a fast procedure for estimating and inverting the large matrix 

Cov(Y (si),Y (s j )) .  

 

4.  DISCUSSION 

 

We have demonstrated that STDF can be used to leverage both 

spatial and temporal dependence to estimate a function of two 

spatially continuous geophysical fields from noisy observations 

with different statistical characteristics. The maps in Figure 3 

look like they may provide reasonable estimates, but these have 

yet to be validated against independent in-situ oberservations. 

The effect of using only land data, however, is evident in the 

uncertainties in coastal areas. Inland Texas and New Mexico 

also show elevated uncertainties that must be investigated, 

especially because of the hot spot in this area in the top panel of 

Figure 3. It is also worth emphasizing that the validity of both 

the estimates and uncertainties depends on the means and 

standard deviations of the measurement error distributions 

associated with the terms ε1(B1(s))  and ε2(B2(s))  in Equations 

(1) and (2), and on other modeling choices discussed in 

Sections 2.1 and 2.2. In this exercise, we used measurement-

error statistics based on the judgment and experience of 

members of the AIRS and ACOS teams. A more rigorous 

analysis will ultimately be required as will a careful evaluation 

of the sensitivities of our results to the other modeling 

assumptions.  

 

Near-term methodological improvements center on reducing 

the duration of a time step in the STDF analysis. Currently, our 

method aggregates data over 15 days because the ACOS data 

are sparse, and estimates of statistical model parameters are 

unstable with fewer observations. However, CO2 transport 

occurs on shorter time scales, and the science community 

would prefer time steps on the order of three days.  We have 

used the method of moments to estimate model parameters 

here, but we are investigating expectation maximization (EM) 

as a more stable alternative. We are also beginning the process 

of validating our lower atmosphere CO2 estimates by 

comparing them to in-situ observations with the help of the 

AIRS and ACOS validation teams.  
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