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Abstract - Eelgrass (Zostera marina) is a keystone component 

of coastal ecosystems. However, anthropogenic pressures 

have caused community decline worldwide. Delineation and 

continuous monitoring of eelgrass distribution is an integral 

part of understanding these pressures and effectively 

managing them. A proposed tool for monitoring is remote 

imagery. However, to apply this technology, an 

understanding is required of the spectral behavior 

submerged coastal substrates. In this study, in situ above-

water hyperspectral measurements were used to define key 

spectral variables providing greatest separation between Z. 

marina and associated substrates. The selected variables 

were: slope500-530nm, first derivatives (R’) at 566nm, 

580nm, and 602nm, and yielded 98% overall classification 

accuracy. Classification of a hyperspectral airborne image 

showed a major advantage of variable selection was meeting 

band sample size requirements of the maximum likelihood 

classifier, which yielded classification accuracies of over 85%.  
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1. INTRODUCTION 

Eelgrass (Zostera marina) is a vital component of inter- and 

sub-tidal ecosystems. Widely recognized for its ecological and 

conservation value, it provides shoreline stability (Fonseca & 

Cahalan, 1992), mediates biochemical balance in the immediate 

and broader ecosystem (Apostolaki, 2010), and provides a 

fundamental nursery ground and food source for a variety of 

marine organisms (Borg et al., 2006). Populations, however, have 

experienced worldwide decline. An estimated 2–5% of seagrass 

ecosystems are lost annually due to anthropogenic pressures, both 

direct (development and recreation) and indirect (climate change 

and light limiting effects of activities such as aquaculture, upland 

activities, and pollution) (Apostolaki et al., 2009). Loss is 

projected to accelerate as human pressure grows. Therefore, a 

baseline and continued monitoring of eelgrass distribution is 

exceedingly important in mitigating additional loss and managing 

existing meadows. A proposed tool for such monitoring is remote 

imagery, which can cost- and time- effectively cover large and 

inaccessible areas frequently (Dekker et al., 2005). However, 

effective application of this technology requires an understanding 

of the spectral behaviour of eelgrass and associated substrates.  

The spectral properties of submerged substrates are influenced 

not only by their mineral and pigment components and the 

properties of water column, but also by the characteristics of the 

remote sensor. High spatial and spectral resolutions offer greater 

discernibility of spatial and spectral detail, but at the expense of 

processing time due to large data volumes. Data reduction 

methods address this issue by removing redundant variables and 

retaining those offering the greatest distinction between substrates 

(Richards & Jia, 2005). In this light, the goal of this study was 

two-fold: (1) to use in situ hyperspectral measurements to identify 

bands or bands indices (hereafter called spectral variables) which 

maximize spectral separation of eelgrass from other substrates and 

(2) to test the identified variables in image classification. 

 

2. METHODOLOGY 

2.1 Study Area 

This research took place at Sidney Spit, a 1.78km2 protected 

marine area on the north-eastern extreme of Sidney Island, British 

Columbia, Canada, which encompasses a 1.8 km long sand spit 

and shallow lagoon and is protected within the Gulf Islands 

National Park Reserve of Canada (GINPRC) (Figure 1). The 

major submerged substrates present at the site were eelgrass 

(Zostera marina), green algae (Ulva fenestrata, Enteromorpha 

spp., and filamentous green algae), sand, sea asparagus 

(Salicornia virginica) and small patches of brown algae (Fucus 

spp., Sargassum muticum, and Laminaria saccharina). 

Figure 1. Sidney Spit, Sidney Island, BC, is part of the Gulf 

Islands National Park Reserve of Canada (GINPRC). Pale red 

area is Marine protected area within the park; dark red is 

Marine Extension area. 

 

Measurement of water biophysical conditions at the time of 

spectral sampling revealed the following characteristics: 

temperature (avg = 11.5 °C); salinity (29 ppt); total suspended 

material, TSM (4.03 g m-3); total organic carbon, TOC (47.60%); 

absorption by chromophoric dissolved organic material, aCDOM 

(0.24 m-1); and Chl-a (2.44 mg m-3); clearly characterizing a case 

2 water type (O’Neill, 2011). The relative magnitude of measured 

Kd values was related to the distribution of the water constituents. 

Characteristic blue absorption by CDOM, blue and red absorption 

by Chl-a and red scattering by total suspended matter (TSM) 

caused higher Kd values in those ranges and lowest Kd (~0.4 m-1) 

in the green range.  

 

2.2 Data Acquisition 

Initially, substrate ground-truth was conducted by photograph, 

description of substrate type and percent cover (plus shoot density 

in the case of eelgrass), and GPS for a total of 387 sites from June 

through August 2008, and then further in July 2010 (120 

additional sites). On August 14-18 and 31, 2008, in situ above-

water spectra were collected from onboard a small motor vessel. 

The following data were collected at each of these field sites: (1) 

GPS location; (2) above water photos and underwater videography 

for substrate identification and density estimation; (3) depth; (4) 

wind speed to correct radiometric measurements for stray light 
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added by the water surface; and (5) above-water hyperspectral 

measurements for spectrally characterizing submerged substrates .  

Above-water in situ radiance spectra (N=49) were measured 

over the four major substrates, eelgrass (Z. marina) (n=25), green 

algae (U. Fenestrata and Enteromorpha sp.) (n=8), sand (n=9), 

and deep water (>30 metres) (n=7). Total water leaving radiance 

(LT(λ), 40° from nadir) and sky radiance (Lsky(λ), 40° from zenith) 

were measured one metre above the water surface using a 

Satlantic HyperSAS mounted on a tripod in the boat. The radiance 

sensors had a half-angle FOV of 3°, two-nanometre spectral 

resolution and a spectral range of 350 - 800nm. Total irradiance 

(ES(λ), cosine collector at zenith) was measured with a Satlantic 

OCR-3000 sensor (Satlantic, 2003). Spectral were acquired 

continuously (every two seconds) for a period of 40 seconds, for 

20 spectra per site, while effort was made to maintain a LT sensor 

viewing geometry of 90° from the sun to avoid specular reflection  

(Mobley, 1999). All measurements were made in clear weather 

with less than 20% cloud cover, low wind speeds (<10 ms-1), and 

solar zenith between 30-60° (Hooker et al., 2004).    

Sun glint outliers were removed from the LT spectra following 

Hooker et al., (2002). The remaining radiance measurements were 

converted to above-water remote sensing reflectance (Rrs(λ)) using 

the modified Fresnel reflectance glint correction algorithm S95 of 

Ruddick et al., (2006) and then averaged. To correct a vertical 

offset error inherent in each spectra due to the slight variability of 

ρ' between acquisitions, each spectrum was offset by a value equal 

to the mean reflectance value from 750-800nm, standardizing each 

spectrum to a NIR value of zero in this range.  

After spectra corrections, six benthic classes were defined 

based on substrate type and depth: deep water (dW)(>30m), deep 

sand (dS) and deep eelgrass (dE) (>3m); shallow sand (sS), 

shallow eelgrass (sE) and shallow green algae (sAg)(<3m). No 

green algae sites could be found deeper than three metres and so 

representative spectra are absent.  The three metre threshold was 

defined because depth stratification has been shown to improve 

classification accuracy (Phinn et al., 2005) and preliminary 

analysis of reflectance spectra showed noticeable magnitude 

differences beyond this depth, particularly at 700-750 nm. 

2.3 Data Reduction and Variable Selection 

To identify major spectral variables in the in situ spectra, three 

methods were employed. First, major reflectance features were 

identified by visual examination of the class spectral means. 

Second, the exact locations (R’λ) of these features were identified 

as zero values in the first derivative spectra. It has been observed 

that while spectral magnitude of a single substrate can be variable, 

spectral shape is typically retained (Vahtmae et al., 2006). To 

account for spectral shape, the third step involved calculating the 

ratios and slopes (denoted λ:λ and sλ-λ) between the features 

identified in first derivative analysis, for a total of 23 indices. All 

first derivative values and 14 published vegetation indices were 

added to the list for a total of 388 spectral variables. 

A two step statistical reduction was then used: M-statistic 

(Kaufman and Remer, 1994) followed by discriminant analysis 

(DA). The M-statistic was calculated for each variable of all cases 

of eelgrass-other substrate class pairing (i.e. eelgrass-sand) 

following Kaufman and Remer (1994), where M > 1.0 indicated 

good class separation and M < 1.0 indicated poor separation. The 

variables with the highest M-statistic values were retained, and 

termed “Set 1.” In the second step, a DA with stepwise variable 

selection was run on the Set 1 variables to eliminate remaining 

redundancy, yielding “Set 2,” the minimum variable set with the 

maximum discriminating ability (Bandos et al., 2009). A Set 2 

was derived for each of the following separability cases: shallow 

substrates (< 3m), deep substrates (> 3m), and both shallow and 

deep substrates together. The classification accuracy of each Set 2 

was evaluated by applying the derived DA model to the dataset 

with leave one out cross-validation and 500 bootstrap samples 

stratified by substrate at a confidence level of 95%. 

 

2.4 Classification of hyperspectral airborne image    

The reduced variable set (Set 2) derived from the previous 

steps was further tested on hyperspectral imagery. Supervised 

classification algorithms were applied to an AISA hyperspectral 

airborne image acquired over Sidney Spit by Terra Remote 

Sensing on August 16, 2008 at 12:14 during low tide (0.42m), 

with a spatial resolution of 2x2m, spectral resolution of 2 nm and 

spectral range of 408 - 2494nm. Prior to classification, the six 

flight lines were geometrically corrected with Hyperbatch, a 

custom software developed by the Hyperspectral and LiDAR 

Research Group at the University of Victoria. The flight lines 

were geographically matched to one another manually to 

minimize residual geo-locational error (RMSE = 0.60m), and then 

mosaicked together. A land mask was defined as DN(450nm) > 

2200 and a Gaussian spectral smoothing window of 10 nm was 

applied to each pixel to remove spectral noise. Empirical line 

calibration (ELC) atmosphere correction was performed with one 

deep water site and one shallow sand site as input, and corrected 

for surface glint following Hedley et al. (2005). Optically deep 

water was masked with a threshold of 5.5 metres, which was the 

eelgrass detectability threshold of the AISA sensor at 566 nm 

following Dekker et al. (2005). The resulting image was termed 

Image 1. Image 1 was reduced to the variable set selected in 

Section 2.3: s500-530, R’566, R’580, R’602 to create Image 1R.  

The minimum distance supervised classifier was applied to 

both images. The more statistically complex maximum likelihood 

(ML) classifier was applied only to the variable reduced Image 1R 

and not to the full spectral resolution Image 1 due to statistical 

constraints; ML requires the band set to contain less than n-1 

bands, where n is the number of training samples in each substrate 

class (Bandos et al., 2009). In this study, the 175 bands of the full-

resolution spectra greatly exceeded n -1, as n varied from 2 to 51.  

Approximately 20% of the ground-truth data sites (n= 99) 

were used for classifier training. The remaining 80% of sites (n= 

408) were used in validation of each image to determine eelgrass 

producer and user accuracies, as well as overall accuracy (Story & 

Congalton, 1986). The classification scheme was the same as the 

in situ scheme, but with the addition of shallow brown algae 

(sAb), and exposed sea asparagus (eAsp).  

 

3. RESULTS AND DISCUSSION 

3.1 Spectral characteristics of the benthic substrates  

Figure 2 summarizes the above-water reflectance spectra. 

Eelgrass and its associated substrates were spectrally distinct and 

the spectral shapes and relative magnitudes were in agreement 

with reported in situ above-water measurements (e.g. Dierssen et 

al., 2003). Spectral attenuation features of the water column and 

constituents (as described in Section 2.1) were found in all 

measured spectra and were more pronounced with water depth. 

The most marked differences between benthic classes occurred in 

the green spectral range between 500-600 nm, coinciding with the 

lowest Kd values. Within this spectral region, a broad green peak 

at the photosynthetic pigment absorption minimum between 560 

and 575nm was present for all substrates (Figure 2). Green peak 
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ascending and descending slopes of all classes became steeper 

with decreasing water depth. Overall, green algae slopes were 

steeper than those of eelgrass, likely due to epiphyte presence. 

The marked absorption feature in the blue range present in all 

substrates due to CDOM and phytoplankton Chl-a, was 

strengthened in vegetation classes by chlorophyll-a and -b, and 

lutein, and by the additional accessory pigment β-carotene in 

green algae. The other major absorption feature of Chl-a and -b   

appeared in the red region at 662-669 nm for all except sand, 

which occurred at 675nm (Figure 2). The presence of epiphytic 

diatoms on eelgrass and green algae was signified by a unique 

Chl–a and –c absorption trough between 630-640nm and a broad 

spectral flattening caused by fucoxanthin absorption in the 530-

566nm range and physical obstruction of eelgrass green 

reflectance in the 500-600 nm range (Fyfe, 2003). For all shallow 

vegetation classes, the red-edge occurred in the range of 670-

705nm and a NIR peak occurred between 687 - 710 nm (Figure 2). 

Figure 2. Mean above-water substrate reflectance and 95% CI. 

 

3.2 Spectral variable selection 

The M-statistic generally defined higher values for the first 

derivative variables and indices, suggesting that spectral shape 

was more effective at substrate separation than reflectance 

magnitude. Shallow water Set 2 variables were s500-530, R’566, 

R’580, and R’602 for a total classification accuracy of 97%.  The 

only misclassification was of one (out of eight) green algae 

sample classified as shallow eelgrass. Deep water Set 2 variables 

were s500-530, R’580, and R’602 for a total classification 

accuracy of 100%. Caution should be taken in interpreting this 

result as the sample size of deep eelgrass was small (n = 4). The 

Set 2 variables for each depth group were pooled to test their 

combined efficacy in a single classification. The stepwise DA 

retained all four variables in the model for a total classification 

accuracy of 98%, misclassifying, the same green algae sample as 

shallow eelgrass. The retained high accuracy for combined depths 

suggests that if these variables were used to classify a remotely 

sensed image, it would not be necessary to stratify by depth. Set 2 

variables for the combined depths, derived from the discriminate 

analysis, are reported with M-statistic values in Tables 1 and 2.  

 

Table 1.  Set 2 showing spectral separability of shallow eelgrass 

(<3m) from other substrates. The numerical values are the M-

statistic results; a shaded box represents good separability (M > 1).  

Band sS sAg dE dS dW 

s500-530 5.73 1.63 1.90 0.49 1.76 

R'566 0.56 1.40 2.51 0.68 2.80 

2.797
R'580 2.10 1.64 0.33 3.21 1.05 

R'602 5.70 0.64 0.56 2.46 0.25 

 

Table 2.  Set 2 showing spectral separability of deep eelgrass 

(>3m) from and other substrates. The numerical values are the M-

statistic results; a shaded box represents good separability (M > 1).  

Band sS sAg sE dS dW 

s500-530 11.45 2.91 1.90 4.55 0.09 

R'566 1.62 0.56 2.51 1.47 1.10 

R'580 3.86 2.93 0.33 6.60 2.10 

R'602 8.93 1.19 0.56 4.22 0.26 

 

To calculate these variables in an image, one would require 

ten bands of 4 nm bandwidth: R500, R530, R554, R568, R578, 

R582, R600, R604, R668, R710 nm. These bands are in agreement 

with Fyfe’s (2003) guidelines for an appropriate seagrass 

classification band set as they are narrow and do not overlap. They 

target the peak (R’566) and shoulders (s500-530 & R’580) of the 

green reflectance maxima, the red absorption feature (R’602), and 

the epiphyte reflectance region (R’580). However, while Fyfe’s 

recommendations are based on reflectance, this study selected 

measures of reflectance, which capture spectral shape. 

Image classification accuracy should be robust to atmospheric 

interference because the variable set is independent of the blue 

wavelengths, where atmospheric interference is greatest. It may 

not, however, be robust for more turbid waters; as turbidity 

increases, light attenuation in the water increases, causing the 

maximum depth of eelgrass detection to become shallower. 

Therefore imagery should always be acquired at the lowest 

possible tide and at slack tide to avoid resuspension of particles. 

 

3.3 Classification of hyperspectral airborne image 

Of the two processing approaches used on the AISA image, 

the glint and atmospheric corrected (ELC) reduced variable image 

(1R) showed the best results. MD classification of the full-

resolution Image 1 yielded eelgrass producer/user accuracies of 

74%/ 86% for shallow (< 3 m) and 72%/ 90% for deep (> 3 m) 

eelgrass; overall accuracy was 63%. Error occurred primarily 

between sE-sAg and dE-dS. Approximately 11% of all sAg sites 

were misclassified as sE (producer error), while 14% of all pixels 

classified as sE were actually sAg and 29% of all dE sites were 

misclassified as dS (user error). MD classification of the reduced 

variable Image 1R yielded much lower accuracies: 20%/ 45% for 

shallow (< 3 m), 59%/ 59% for deep (> 3 m) eelgrass, and 24% 

overall accuracy. This was due to considerable confusion between 

shallow eelgrass (sE) and other green vegetation; 62% of all sE 

training sites were misclassified as eAsp, while 38% of all pixels 

classified as sE were actually sAg testing sites. In deep water, 

there was 40% user and 39% producer error between dE and dS.  

However, when ML classification was applied to Image 1R, 

accuracy increased considerably to 85%/ 96% for shallow (< 3 m) 

and 98%/ 93% for deep (> 3 m) eelgrass; overall accuracy was 

83%. The substrate map produced by this best classification is 

shown in Figure 3. The major source of confusion was between sE 

and sAg. About 5% of all sAg training sites were misclassified as 

sE (producer error) while 14% of all pixels classified as sE were 

actually sAg (user error). The sand class resulted in the least 

confusion at all depths, with 2% producer error at all depths. This 

confusion was mainly near the periphery of the eelgrass bed where 

sparse density and georeferencing error likely play a role.  

This result emphasizes the importance of variable reduction 

because the full-resolution hyperspectral data had too many 

variables to allow the more statistically complex maximum 
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likelihood classification (Bandos et al., 2009). The results 

obtained with a minimum distance classifier were inferior, 

especially when using the variable reduced band set (20% overall 

accuracy), suggesting that the Euclidian distance measurements 

used in the MD algorithm required a larger set of input bands to 

improve the classification or that the variable reduction approach 

eliminated variables containing important information about 

substrate separability. It is also possible that factors are not 

accounted for in the in situ spectra that are present in the image – 

a possibility supported by the lower classification accuracy even 

of the best image classification compared with in situ accuracy 

values. These factors include (1) higher spatial heterogeneity 

within the 2x2m image pixel compared with the in situ field of 

view, (2) lower substrate certainty due to combined locational 

errors of the GPS and image georeferencing, and (3) greater noise 

introduced by correcting a 1 km airborne atmospheric path, 

compared with 1 m in situ. Such effects would likely be greater in 

satellite imagery, such as IKONOS or Quickbird. 

Figure 3. Most accurate eelgrass map produced in this study: ML 

classification of: s500-530, R’566, R’580 and R’602. Eelgrass 

producer/user accuracies were 85%/ 96% for shallow and 98%/ 

93% for deep eelgrass. Overall accuracy was 83.2%. 

 

5. CONCLUSIONS 

The key wavelengths identified in this study are recommended 

for application with analysis of airborne and satellite imagery 

when the goal is delineating the spatial distribution of eelgrass. 

These maps could be used as baseline inventory data and, when 

merged with other ancillary data layers could be used to report on 

the structure and functioning of coastal ecosystems. However, it 

should be noted plant phenology, water properties and substrate 

types inevitably vary over time and between locations and it is 

therefore recommended that this variable set be tested on data 

gathered at Sidney Island over different seasons and at additional 

areas in the Gulf Islands National Park to confirm whether these 

models are local- and time-specific, or more widely applicable. 
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