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Abstract – The effect of rain gauge number and density on 

the performance of blended satellite-derived and gauge 

rainfall analyses for Australia is examined. The TRMM 

multi-satellite precipitation analysis (TMPA) product, 3B42, 

and daily rainfall observations from the network of surface 

rain gauges were used. A kernel-based statistical blending 

algorithm was used to produce gauge-only and blended 

satellite-gauge gridded rainfall estimates at approximately 

5-km resolution across the continent. Daily rainfall surfaces 

were generated from simulated distributions of between 

100-4,000 real-time rain gauges and assessed – using 

Australia-wide average error statistics – against an 

independent set of daily gauge measurements. Results 

indicate that with more than 1,000 gauges there is marginal 

benefit of including the satellite rainfall retrievals in the 

interpolation of gauge observations. The use of TMPA data 

improves upon gauge-only analyses in regions of the 

continent with densities < 4 gauges per 10,000 km2.  
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1.  INTRODUCTION 

 

Satellite-derived precipitation estimates have the potential to 

greatly improve spatially-distributed hydrological modelling 

capability (Pan et al., 2010).  Unlike the isolated point 

measurements provided by rain gauges, satellite-based 

precipitation estimates offer greater spatial coverage with higher 

temporal frequency than many of the current gauging networks. 

However, the coarse spatial resolution of many of the satellite 

precipitation products currently available is considered one of 

the impediments to their wide-spread adoption in hydrological 

modelling. Moreover, the fact that the precipitation products are 

retrievals derived from thermal and/or (more recently) 

microwave radiance observations, makes them less desirable 

than the direct measurements made by rain gauges.  

 

In Australia, continental interpolated surfaces of rain gauge data 

are available at 0.05° resolution (Jeffrey et al, 2001; Jones, et 

al., 2009). The density of rain gauge data is largest in the 

populous areas of Australia and smallest in the dry interior 

(Figure 1), confounding straightforward interpolation across the 

continent. Satellite-based estimates provide synoptic images of 

the spatial distribution of precipitation events at 0.5–3 hourly 

intervals, at between 0.07° – 0.25° resolution (Joyce et al., 

2004; Kubota et al., 2007; Huffman et al, 2007).  

 

While the absolute accuracy of satellite rainfall products is 

questionable, and remains subject of on-going worldwide 

assessment (Ebert et al, 2007; Ebert, 2011), they nevertheless 

provide unique information on the spatial extent of the rainfall, 

particularly for those regions of the continent where the network 

of rain gauges is sparse. By exploiting the accuracy of station-

level rain gauge measurements and the spatial coverage of the 
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gridded rainfall products, it has been asserted that the blending 

of these two sources of information mitigates the shortcomings 

of the respective data sets to produce blended precipitation 

estimates at continental scales (Xiong et al., 2008; Vila et al., 

2009; Rozante et al., 2010). 

 

An investigation was conducted into the performance of a 

number of statistical blending techniques to produce daily 

rainfall analyses from satellite precipitation products and rain 

gauge observation for the Australian continent (Renzullo et al, 

in prep.). An examination of the Australia-wide average 

performance statistics reveals that in terms of accuracy (e.g. 

root mean squared error (RMSE), mean absolute error (MAE) 

and bias), there appears little difference between blended 

satellite-gauge estimates and gauge-only analyses; a finding 

consistent with other studies (e.g. Oke et al, 2009). Table 1 

summarises the findings for some of the blending methods: i.e. 

ordinary point kriging (pk) of gauge data only; co-kriging of 

gauge and satellite data with pixel values collapsed to the gauge 

point locations (clpspk); co-kriging of gauge and satellite data 

with gauge values up-scaled to the resolution of the satellite 

estimates (coinpk); and the kernel-based algorithm of Li and 

Shao (2010) used to generate gauge-only (LSg) and blended 

satellite-gauge analyses (LSb). The table shows that the gauge-

only methods (pk and LSg) in most measures out perform the 

blending methods, suggesting that in terms of overall 

performance there is no advantage to including the satellite 

precipitation product in the generation of daily rainfall analyses 

(more details in Renzullo et al., in prep). 

 

This paper attempts to explain why the satellite precipitation 

product used in Renzullo et al. (in prep) does not appear to 

improve interpolator performance over the use of gauge data 

alone. We performed Monte Carlo simulations to observe the 

effect of gauge number on national average error statistics of 

daily rainfall estimates in Australia. Next we assessed the 

changes in relative performance of an interpolator with or 

without the use of satellite data for different levels of gauge 

density across Australia.  

 

Table 1.  Daily Australian average performance statistics over 

31 May 2009 – 31 May 2010 for some interpolations methods 

(see text for explanation). 

 pk clpspk coinpk LSg LSb 

RMSE (mm) 3.66 3.84 3.90 3.54 3.59 

MAE (mm) 0.87 0.93 0.92 1.04 1.08 

Bias (mm) 0.29 0.23 0.37 -0.33 -0.36 

 

2.  DATA AND METHOD 

 

Daily gauge data used in this investigation covering the period 

31 May 2009 – 31 May 2010 were obtained from the data 

holdings of the Australian Bureau of Meteorology (BoM). The 

observations are interpreted as the 24-hour accumulated rainfall 

to 9am (local time) on the day of interest. The data include the 

measurements from the network of gauges reporting in near 

real-time (NRT), i.e. within 24 hours of 9am on the day of 



interest, and the measurements from a larger post real-time 

(PRT) monitoring network reporting daily rainfall for the day of 

interest some days to months later (Figure 1). Note that the 

number of gauges identified in the NRT network is larger than 

what is available in practise (~1,500 gauges) because not all the 

identified NRT gauges report daily rainfall every day. It is 

typical, however, for there to be twice as many PRT gauges as 

NRT gauges.  

 

 
Figure 1.  Spatial distribution of rain gauges reporting daily 

rainfall for 7 September 2009 in (a) near real-time (1951 

gauges) and (b) post real-time (3105 gauges). 

 

The satellite precipitation data used in the study were obtained 

from the Tropical Rainfall Measuring Mission (TRMM) multi-

satellite precipitation analysis (TMPA) system (Huffman et al., 

2007).  The system provides a range of satellite products with 

quasi-global coverage and generates one of the longest 

continuous archives of high quality products, known as 3B42 

(starting 1 Jan 1998). The 3B42 (and its NRT equivalent, 

3B42RT) are based on retrievals from combined microwave and 

thermal remote sensing observations to estimate precipitation 

rate (in mm per hour) daily at 3-hourly intervals (Huffman et al, 

2007). The 3B42 has the added enhancement, not available in 

NRT, of bias adjustment against a global gauge network that 

includes a subset of Australian gauges, much fewer than those 

displayed in Figure 1 (~7,000 worldwide; GPCC, 2011).   

 

A daily satellite rainfall product was produced by linearly 

interpolating each pixel value of the 3B42 rain rates through 

time and then accumulating the series such that the daily totals 

have a consistent interpretation with the daily gauge observation 

(Renzullo, 2008). Figure 2a shows the daily satellite-based 

rainfall estimates from 3B42 for 1 March 2010.  

 

 
Figure 2.   Daily rainfall estimates for 1 March 2010: (a) 

derived from the TMPA 3B42 rain rates; and (b) 3B42-gauge 

blend from the Li and Shao (2010) method (LS). 

 

To limit the scope of the investigations to the effect of satellite 

product on gauge data interpolation, we consider here only one 

interpolation method. The performance of alternative 

interpolation methods is described elsewhere (Renzullo et al., in 

prep). The method used here is the kernel-based double-

smoothing algorithm of Li and Shao (2010). The method has 

been shown to be comparable in performance to co-kriging, for 

example, however unlike co-kriging (which requires a co-

varying field) the method is not as affected by an all-zero 

covariate in the generation of gridded rainfall estimates. An 

alternative would be to use kriging for gauge-only estimates and 

co-kriging for the blended satellite-gauge estimates.  Focusing 

on Li and Shao (LS) means that the one method is used to 

generate gauge-only (hereafter LS gauge-only, LSg) or blended 

satellite-gauge (hereafter LS blended, LSb) rainfall analyses.  

 

An example of the blended satellite-gauge gridded rainfall 

estimates generated using the LS method, using the full 

complement of gauge data (i.e. NRT + PRT) is displayed in 

Figure 2b. We can see that it possesses many of the features of 

the input satellite rainfall product (notably the spatial patterns), 

but the effect of gauge data on the rainfall estimates is also 

visible (e.g. northern NSW).  

 

To further limit the scope of the investigations we consider the 

gauge and satellite data for the month of March 2010. In March 

2010 wide-spread flooding occurred in western, central and 

southern Queensland with some areas receiving their average 

annual rainfall in a single day (BoM, 2011). In Western 

Australia, severe thunderstorms on 21-22 March resulted in 

significantly higher rainfall in the south-west land division with 

many new daily rainfall records set in and around the Perth 

metropolitan area (BoM, 2011).   Six days in March 2010 with 

extensive rainfall patterns (e.g. 1 March, Figure 2) were chosen 

for the simulations described below.  

 

For six days in March 2010, a de-clustered random sample was 

selected from the complete set of gauge observations to serve as 

the independent validation data for each day. De-clustering was 

performed to minimise the impact of the dense grouping of 

gauges in populated areas (Figure 1) on the error statistics. The 

number of validation data for each day ranged from 1301 – 

1717.  Random samples of 100, 250, 500, 750, 1000, 1500, 

2500 and 4000 gauges from the remaining set provided the 

fitting gauge data for our investigations. The random sampling 

was repeated 100 times for each sample size. Figure 3 provides 

an example of the sampled gauge data from 1 March 2010.  

 

 
Figure 3. Random samples of daily gauge data (NRT + PRT) 

for 1 March 2010: fitting data sets based on (a) 250, (b) 1000 

and (c) 4000 gauges; (d) de-clustered distribution of 1717 

gauges used to validate the interpolated surfaces 

3.  RESULTS AND DISCUSSION 

 

For each day the LS method was applied to each of the 100 

replicates of fitting gauge data.  LSg estimates were derived 

using the gauge data and a spatially uniform background field of 

zeros. The LSb estimates used the same gauge data but also the 

satellite-derived daily rainfall products. Examples of the 

resulting daily rainfall maps are provided in Figure 4. 



 
Figure 4.  Daily gridded rainfall estimates for 1 March 2010 

based on simulated fitting data: LS gauge-only estimate using 

(a) 250 and (c) 1,000 samples; and LS blended estimates using 

(b) 250 and (d) 1,000 samples. 

Figure 4 shows that with a very small number of fitting data 

across the country, the LSb estimates are more realistic in terms 

of spatial pattern than the LSg estimates. In this case the 

satellite data are the dominant source of estimation skill (‘skill’ 

defined below). As the number of fitting gauge data increases, 

the effect of satellite-derived daily rainfall on the resulting 

estimates is that the interpolation artefacts become less 

pronounced, as the gauge values dominate the estimation. 

 

Continental average RMSE, MAE and bias were calculated for 

all LSg and LSb estimates using the validation gauges (e.g. 

Figure 3d). Generally, as the number of fitting gauge data 

increased from 100-4,000 the RMSE and MAE decreased by on 

average 30-40%. Differences in error statistic between LSg and 

LSb estimates were largest for low number of gauges (with 

gauge-only errors being greater) but rapidly decreased as gauge 

numbers increased. Figure 5a shows the average MAE for the 6 

days for both LSg and LSb estimates.  It can be seen that above 

1,000 gauges differences in MAE is less than 1%.  

 

 
Figure 5.  Summary of continental MAE and skill for the LS 

gauge-only and LS blended estimates averaged over the 6 days 

and 100 simulations in March 2010. 

Estimation ‘skill’ was computed as the relative difference of the 

errors compared to reference error values. In our case the 

reference values were the RMSE or MAE, respectively of the 

gauge-only RMSE and MAE using 100 gauges. The skill 

calculated with MAE is displayed in Figure 5b. The skill for 

LSg estimates using 100 gauges samples is (by definition) zero. 

LSb estimates for 100 gauges are observed to have some skill 

(albeit a small amount), suggesting that at such low gauge 

numbers the satellite data improve the performance of the LS 

method over the use of gauge data alone. As the fitting gauge 

number increases so too does the skill for both approaches, and 

the difference in skill between methods is on average < 3% 

between 1,000-1,500 gauges.  

 

To understand the effect of gauge density on the performance of 

the LS method, we partitioned Australia into large N°× N° cells. 

The number of fitting gauges falling within each cell was used 

to define the gauge density. We used all 100 simulations for 

each fitting data set to account for different gauge configuration 

within each cell. The LSg and LSb estimates coinciding with 

the validation gauges were used to compute the RMSE and 

MAE for each gauge density. The relative difference in blended 

to gauge-only RMSE’s is displayed in Figure 6 for a 5°× 5° cell 

size.  We see that for densities less than 80 gauges per 5°× 5° 

cell, the blended estimates had smaller RMSE than the gauge-

only estimates by as much as 20% on average. Similar results 

were obtained for different cell sizes, namely 125, 160, 205 and 

220 gauges per 6°, 7°, 8° and 9° cells, respectively. 

Standardising these results yields densities of between 3-4 

gauges per 1°× 1° cell. This suggests that for regions with low 

gauge density the satellite data improved estimates over the use 

of gauge data alone. Above 4 gauges per 1°× 1° cell the LSg 

estimates appear to provide better fits on average than the LSb 

estimates.  

 

Figure 6 also displays the relative difference in RMSE between 

the 3B42-derived daily rainfall estimates and LSg estimates.  

The results suggest that for regions of Australia with densities 

less than 15 gauges per 5°× 5° cell (equivalent to < 1 gauge per 

1°× 1° cell) the satellite-derived product performs better than 

the gauge-only rainfall analysis. Above that density LSg 

provides the better estimates.  We can also infer from Figure 6 

that the blended estimates are always an improvement on the 

satellite data alone. 

 

 

 
 

Figure 6. Relative differences in RMSE between LSb and LSg 

(black solid line) and 3B42 daily rainfall and LSg estimates 

(dashed grey line) for different density of gauges in 5°×5° cells 

across Australia.  



 

Figure 7.  Number of days out of 366 between 31 May 2009 - 

31 May 2010 where density is less than 4 gauges per 1°×1° cell 

for (a) NRT and (b) combined NRT+PRT rain gauge networks. 

The density of gauges over the 31 May 2009 – 31 May 2010 

period is summarised in Figure 7 for both NRT gauges and all 

(NRT+PRT) gauge networks. White regions correspond to the 

areas of the country where for 366 days the density of daily rain 

gauges was less than 4 per 1°× 1°  cell. Conversely, regions of 

the country where the density was never less than 4 gauges per 

1°× 1°  cell are highlighted in black (0 days). Based on Figure 

6, it is expected that satellite data will only improve LS blended 

rainfall estimates in the white region of Figure 7. 

 

4. CONCLUSIONS 

An examination of continental average error statistics on 

blended satellite-gauge precipitation data reveals that when the 

number of gauges is low, inclusion of the 3B42 satellite rainfall 

estimates is an improvement over the use of gauge data alone. 

The difference in performance of the LSg and LSb estimates is 

negligible above 1,000 fitting gauges. In Australia, the number 

of gauges reporting daily rainfall in near real-time is ~ 1,500, 

well above the 1,000 gauge threshold for satellite data to make a 

difference to the estimates. In reality, as in our simulations, as 

gauge numbers increase we find that they appear in the already 

well populated regions of the continent.  Our examination of the 

effect of gauge density shows that the inclusion of satellite-

based 3B42 daily rainfall estimates are only expected to make a 

difference in the interior of Australia. Indeed, in very low 

density areas satellite data alone appeared to be more skilful 

than LSg estimates. In parts of the country with densities greater 

than 4 gauges in approximately 10,000 km2, we do not expect to 

see the satellite data improving rainfall estimates over gauge-

only interpolation. Further investigation is required to explore 

the interaction of gauge density and configuration on the results. 
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