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Abstract: Kalman filter algorithm is sensitive to computer roundoff and numeric accuracy sometimes degrades to the point where 
the results cease to be meaningful. The primary goal of this research is to discuss an algorithm that involve matrix factorization and 
try to take advantage of the simplicity and versatility of the Kalman filter without falling victim to its potential numeric inaccuracy 
and instability. In order to verify its efficiency and reliability, we put the factorization method into GNSS parameter estimation. 
Result shows that factorization method can avoid divergent phenomenon caused by computer roundoff, and the dimension of 
covariance matrix reduce greatly. 
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Instruction 

With the developing of GNSS, its application range has 
expanded to various industries and fields. Many states and 
unions have already developed their own satellite positioning 
system, such as GLONASS in Russia, Galileo in Europe union 
and Compass in China. So nowadays how to estimate GNSS 
parameters more accurately is a hot point. The traditional 
method is least square estimation, but not so suitable for 
kinematic positioning. Kalman’s elegant solution of the discrete 
linear estimation problem has had a major impact in GNSS 
filed. Unfortunately, numeric accuracy and stability problems 
have often prevented calculators from successfully computer 
mechanizing it. Numerical experience (Bellantoni(1967) and 
Leondes(1970))has shown that Kalman filter algorithm is 
sensitive to computer roundoff. Thus estimation practitioners 
have been faced with a dilemma. As we know, numerical 
difficulties have occurred in problems with singular or nearly 
singular estimate covariance matrices. So an alternative and 
more consistently reliable solution to the numerical instability 
problem is to perform some or all of the computations using 
extra precision arithmetic. It can reduce the effects of roundoff 
errors versus an increase in computation and computer storage 
requirements. Factorization method based on Household 
transformation is such a solution, it has inherently better 
stability and numerical accuracy than does the Kalman filter. 
This paper we begin our investigation of factorization method 
with a review of the classical least square and Kalman filter 
algorithm. 
 
1. Least square algorithm 

Suppose that we are given the linear GNSS observation 
equation at epoch k . 

kkkk lxAv −= δ            (1-1) 

Where kv  is an vector of observation errors, kA is the 

coefficient matrix, kxδ is the vector of variables that are to be 

estimated, kl is the observation. Then 
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Where kP is the weight matrix of observation. Thus, kxδ can 
be estimated with its covariance matrix. 
In stationary model, we take kX  as virtual observation in 

1+k  epoch. Then  
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Where 0
1+−=′ kk XXl . And that 
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Which simplifies to 
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During processing, receiver clock offset is a white noise 
parameter, each epoch will have a new parameter. For 1+k , 
we do not need the previous receiver clock offset, we can 
remove it from coefficient matrix. 
Suppose kja , is the element of coefficient matrix, kc is the 

constant matrix. If we want to remove the parameter of number 
i , coefficient matrix and constant matrix have to be changed 
as: 
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From 1+k  epoch, there will be new parameter corresponding 
to number i . 
 
2. Kalman filter algorithm 

In kinematic positioning, parameters estimated by k epoch can 
not be directly used as virtual observations in 1+k  epoch. 
Kalman filter theory establishes the state equation between two 
epoch according to the kinestate of receiver. 
Suppose 1+kX  is the predicted value of 1+k  epoch based 

on kX , 
1+kXD is its covariance matrix. 

            kkk XX Φ=+1                (2-1) 
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Where kΦ is state-transition matrix, kQ is process noisy 
matrix.  

)0,1,1,1(diagk =Φ  

),,,( 2
dtdzdydxk tQtQtQdiagQ σ∆′∆′∆′=  

2
dtσ  is the noise of receiver clock offset, dzdydx QQQ ′′′ ,, express 



the movement of receiver.  
Take 1+kX  as virtual observation for 1+k  epoch. 

According to formula(1-3)and(1-4), we can update 1+kX  and 

1+kXD . 
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Using matrix decomposition theory that deduced by 
bibliography [2], formula(2-3) can write as  
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Formula (2-4) and (2-5) is the classical Kalman filter recursion 
formula. 
Generally Kalman filter algorithm can obtain desired result, but 
for some specific conditions things are quite different. First I 
want to introduce you a concept roundoff. Roundoff errors are a 
side effect of computer arithmetic using fixed or floating point 
data words with a fixed number of bits. For example, let 
I denote the identity matrix. Consider the filtering problem 
with measurement sensitivity matrix 
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and covariance matrices IP = and IR 2δ= ,Where 

roundoff<2δ but roundoff>δ . In this case, the product 
THPH will be singular and is not invertible. 

In order to solve this problem, factorization method is 
introduced. 
 
3. Factorization Method based on Household transform-
ation 

Recall the least square performance functional from section 1 
min)( 2 =−= ii lxAxJ δ          (3-1) 

and let H , H be an orthogonal matrix. Because of property of 
orthogonal matrix[4], we can write 

min)( 2 =−= ii HlxHAxJ δ        (3-2) 

In fact, )(xJ  is independent of H and this can be exploited. 

We shall show how H can be chosen using Household 
transformation in bibliography [4]. 
For an arbitrary matrix )( nmRA nm ≥∈ × , there exists an 

orthogonal transformation mmRH ×∈ such that 
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Where s and A~ are computed directly from A , and the 
matrix H is only implicit, computer mechanization requires no 
additional computer storage other than that used for A . We use 
the properties [4]of the elementary Household transformation H  
that 

ulHl ii γ−=     vuulT
i += )(γ      (3-4) 

Where u is a unit vector of u , and u is the normal to the 
reference plane . v  is that part of il that is orthogonal to u . 

Formulation of H as a precursor to computing iHl requires an 

order of magnitude more computation than does the direct 
evaluation of iHl  using formula (3-4). Further, this formula 

shows that storage of the matrix H is not necessary.  So 
formula (3-2) can write 
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Where nnRR ×∈ , is an upper triangular matrix, 
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nRz ∈1 , nmRz −∈2 . 
By reducing the least square performance functional to the 
form (3-3), one can see by inspection that the minimizing xδ  
must satisfy 

01 =− zxRδ                  (3-6) 
These results are more elegant than is the brute force 
construction via the normal equation. More importantly, the 
solution using orthogonal transformation is less susceptible to 
errors due to computer roundoff. 
To prove this assertion we take this theory into GNSS 
pseudo-range positioning. Suppose there are m satellites at 

epoch k , with a priori matrix 0
1−kP . 0

1−kP  is a orthogonal 

matrix and can be decomposed to 00
0

1 RRP T
k =− ,where 0R is 

an upper triangular matrix. Take 0R  as virtual observation for 

k  epoch. 
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According to form (3-5) and (3-6), (3-7) can be written as 
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Where jir , , ib  is the element of R and 1z . kxδ and its 

covariance matrix can be estimated as 1)( −= RRP T
k . And 

kP  can be taken as virtual observation for 1+k  epoch. We 
can find that form (3-9) cause a reduction of the numerical 
ranges of the variables. Loosely speaking, one can say that 
computations which involve numbers ranging 

between N−10 and N10 are reduced to ranges between 
2/10 N− and 2/10N .  

 
4. Result analysis 

IGS station “shao” is used for our test. Time range is 24 hours, 
ionospheric delay is eliminated by LC combination; 
tropospheric delay via Saastmoinen model to correct the zenith 
delay and adopts GMF as mapping function; relativistic effect 
is modeled by the position and velocity of satellites; 
coordinates and clock offsets of satellite are calculated by 
broadcast ephemeris. 
Figure 4.1 gives the plot of position error using least squire 
method, Kalman filter method and factorization method 
respectively in stationary model. It is found that all three 
methods are elegant. 



 
 

Table 4-1 stationary positioning results of three methods(RMS) 

 X(m) Y(m) Z(m) 

Least squire 0.207 0.327 0.181 

Kalman filter 0.203 0.283 0.311 

Factorization  0.207 0.327 0.181 
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Figure4.1 stationary positioning results for three methods 
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Figure4.2 kinematic positioning results for Klaman filter and factorization 

 
Table 4-2 dynamic results of two methods(RMS) 

 X(m) Y(m) Z(m) 

Kalman filter 0.188 0.277 0.306 

factorization 0.188 0.277 0.306 
 

Table 4-1 summaries the RMS of three methods and find that estimations from least squire method are extremely the same as 



that from factorization method. It is not occasional because 
there are the same in origin. Estimations from Kalman filter 
method are somewhat have little difference with others. This is 
mainly because its process of receiver clock offset is 
different.We also suppose that the IGS station data is kinematic, 
and solving it in kinematic model. 
 
Figure 4.2 gives the position error plot of Kalman filter method 
and factorization method in kinematic model. 
 
Table 4-2 and figure 4.2 show us that Kalman filter method and 
factorization method can obtain the same result in kinematic 
positioning. This paper we do not encounter computer roundoff 
in Klanman filter processing, but this method discussed here 
can be used in GNSS parameter estimation, no mater stationary 
or kinematic. 
 
5. Conclusion 

This paper reviews classical least squire algorithm and Kalman 
filter algorithm, analyses the transmission of covariance matrix 
and explain their strategies in receiver clock offset estimation. 
Due to that Kalman filter algorithm is sensitive to computer 
roundoff and numeric accuracy sometimes degrades to the 
wrong point, this paper gives Factorization method based on 
Household transformation to solve the problem, and obtain 
some results. 
(1)estimation is more convenient, 1−R is not needed for 
calculation and nearly singular covariance matrices can be well 
solved. 
(2) Numeric storage is half than that use Kalman filter method. 
(3)Receiver clock offset can be eliminate directly from R 
matrix. 
(4)dimension of digital is greatly reduced,which can avoid 
computer roundoff. 
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