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ABSTRACT: In many applications, three dimensional terrain scene has to be updated in local area with high-precision data, in 
order to build a local high-precision scene. Aim at the dynamic updating of local terrain data, this paper puts forward a GPU 
tessellation-based "Mosaic" method of local high precision terrain. Through the interpolation and subdivision on the terrain grid 
within the updating area in GPU to increase the number of triangles, as a result, the geometrical accuracy of the local terrain model is 
improved without increasing the bandwidth of the memory and video memory. The results show that the precision of updating area 
meet the demand and this algorithm’s execution efficiency is obviously better than the common method. 
KEY WORDS: Three dimensional terrain scene; Local terrain updating; Real-time grid tessellation; GPU algorithms 
 

1. INTRODUCTION 

The 3D terrain scene has been widely applied in many fields, in 
many applications the user often pay more attention to the local 
area of the scene, take emergency rescue in the earthquake as an 
example, the user often focus on residential areas and 
indifferent to the mountains, so it is necessary to construct a 
more elaborate disaster scene within the important area. This 
paper aim at construct local fine scene with high precision data 
based on the large scale virtual scene, also is to realize the fast 
updating of local terrain scene. 
At present, the 3D terrain application system usually update 
local terrain data by reprocessing the data, integrating the new 
data to the original data set, and then restarting the terrain 
visualization system, which is contrary to the original intention 
of the real-time simulation system. Dynamic updating takes 
grater advantages: (1) Considering the spatial distribution, the 
focused area may be any part of the scene, and may be chosen 
by user’s impromptu decision. So it is difficult to construct the 
important virtual scenes once by data preprocessing. (2) 
Considering the continuous, local data are usually 
discontinuous, the simulation system can dynamically loading 
new data in real-time, without shutting down the system. 
 
 

2.  RELATED WORKS 

The data organization and the rendering processes of the 
existing terrain rendering method[1-2] are interrelated and 
inseparable, is aimed at a single scale terrain rendering or 
similar scale, therefore can only satisfy the scene rendering of 
fixed size and form. In view of the present study, there is few 
aim at unified terrain rendering of multi scale, Li Wenqing[3] 
realized unified rendering of global terrain scene and local 
scene by GPU vertex and fragment program, at the rendering 
stage of global terrain and local with two separate class, which 
is able to render multi-scale terrain, but greatly increase the 
amount of calculation. 
This paper takes advantage of the new features of modern GPU-
Tessellation, which use the Tessellator (a internal hardware unit 
of GPU) to subdivide rough terrain mesh by adding an extra 
vertex, and greatly increase the amount of triangles. 
In recent years, the GPU tessellation technology is gradually 
applied to terrain rendering. Story[4] and Ni[5] introduced 
DirectX11 GPU tessllation rendering pipeline, and the general 
principles and methods for real-time rendering of terrain with 
tessellation; Rollin[6] and San[7] discussed the properties of GPU 
tessellation of OpenGL and its application to terrain rendering; 
Cantlay[8] and Valdetaro[9] using GPU tessellation achieved 

multi-resolution terrain rendering; Yusov[10] realized terrain 
rendering by LOD selecting and Patch segments. Due to the 
patch is used as the processing unit, adjacent patches are 
relatively independent, terrain rendering algorithm based on 
GPU tessellation do not need hierarchy management,  and the 
consistency problem between adjacent patches on different 
levels can be solved through shared edge subdivision. It has a 
natural advantage for local high precision terrain "mosaic" 
 

3. OUR METHOD 

Due to the terrain structure is in a fixed state when updating the 
local data, there is much difference in area and precision of 
local data and large scale terrain. Dynamic loading of new high 
precision data is seen as a "mosaic" operation in the existing 
low precision terrain. As the meshes of rendering terrain has 
been fixed, the new loaded data with higher precision are still 
sampled with old resolution, as a result, it is unable to reflect 
the accuracy of new loaded data. In this case, remote sensing 
images rendering as textures also appear fuzzy. 
The problem that terrain meshes is oversized can be achieved 
through mesh refinement. However, there would be much 
redundancy if refinement is done to the whole scene, so 
refinement can only be done to the covered area of new data. 
The process is shown as Figure 1. 
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Figure 1. Flow chart of local terrain data updating 
 
3.1 GPU tessellation 

In order to increase the details of terrain meshes, extra terrain 
mesh points are needed, this could be completed by GPU. The 
development of GPU rendering pipeline might be divided into 3 
stages: The first stage is only for simple geometric 
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transformations and drawing; The second stage is Geometry 
shader which is used to create new elements in GPU with low 
efficiency; The third stage is GPU tessellator, which is fixed in 
the DirectX11 graphics rendering pipeline as a device unit, can 
be used to increase details of meshes efficiently. 
The GPU tessellation can be applied efficiently to terrain 
rendering by increasing details of rough terrain meshes, the 
accuracy of the terrain model is improved without increasing 
the transmission pressure between graphics memory and the 
main memory. 
 
3.2 Local terrain "mosaic" 

Local terrain "mosaic" algorithm is designed based on GPU 
tessellation, as shown as Figure 2. The initial terrain grid 
resolution is determined by the initial terrain data, when new 
data is loading, compute the coverage of new data first, and 
mark the mesh grids within the scope, then compute the 
tessellation coefficient through new data, the coefficient will 
determine the degree of subdivision. Finally, the mesh is 
tessellated and rendering. 
 

 
 

Figure 2. Flow chart of local terrain “Mosaic” algorithm 
 
Figure 3 shows the processing flow of the local terrain “mosaic” 
in GPU. The processing of local terrain “mosaic” is embedded 
into GPU rendering pipeline, when updating, the area of new 
data is computed in real-time, then the area and spatial scale 
information are transferred to Hull shader, and then compute the 
tessellation coefficient which is then transferred to tessellator 
and tessellated the meshes. 
 

 
 

Figure 3. Rendering terrain with new graphics pipeline 
 
3.3  Generate tessellation coverage map dynamically 

 
The coverage of new data is random, and has irregular shape, so 
it is hard to accurately compute the coverage only by simply 
reading metadata. We rendered the coverage of new data into a 
gray map by Render to Texture in the pixel shader, the gray map 
records the area that would be tessellated. The coverage is 
rendered onto the gray map by orthogonal projection, as shown 
as Figure4. The gray map initialized in black, the initial value is 

0, only the pixels that located within the coverage would be 
changed and located between [0-255], the image will be transfer 
into Hull shader. 
 

 
 
Fig.4 Get the coverage of new data with orthogonal projection 

 
3.4 Compute the tessellation coefficient 

 
The tessellation coverage map assigned the coverage of 
tessellation, but did not specify the degree of tessellation, which 
is decided by the coefficient, tessellation coefficient will be 
computed in the Hull shader. Usually, the following factors will 
be considered into the calculation of tessellation coefficient: 
side length of patch, elevation value, screen error and viewpoint. 
However, because the Hull shader has calculated tessellation 
coefficient in rendering phase for rough terrain mesh, the 
coefficient  here(L) is a further tessellation parameters, which is 
added to the initial coefficient. The calculation process of L is 
as follows: 
Suppose the minimum execution unit(Patch) is a rectangular, 
the sampling interval of initial terrain data is 30m, while the 
new data’s is 5m, tessellation is operated in diploid until the 
minimum interval is less than or equal to the target sampling 
interval(5m). 
 
3.5 Tessellation control of tessellator 

 
Tessellator is able to formulate tessellation coefficient for each 
edge of a patch, 4 kinds of tessellation mode are supported: 
Integer Power, Pow2, Fractional_even and Fractional_odd, due 
to the tessellation coefficient of each edge could be inconsistent, 
which is helpful to realize the smooth transition between 
different subdivision level, thereby eliminating the jump 
phenomenon between levels. We choose Fractional_even mode 
in order to realize the continuous terrain meshes, the 
segmentation results in Figure 5. 
 

 
 
Fig.5 Effect of Fractional_even mode with different coefficient 

 
4. EXPERMENT RESULTS 

 



 

 

To verify the correctness and effectiveness of the algorithm, we 
completed the algorithm in the windows environment based on 
Direct3D and C++. When dynamic loading new terrain data, the 
system first generate a coverage map according to the 
geographical scope, then calculate the tessellation coefficient 
based on the precision of new data and original data, the 
sampling interval of the original data is 90m, while the new 
data’s is 5m. 
Figure 6 shows the effect of local high precision terrain mosaic, 
the mesh density of updated area is significantly higher than the 
surrounding area, and there is not cracks between different 
levels while the mesh density has a great leap, which is the 
advantage of GPU tessellation based method. Effect of drawing, 
Figure 7 shows the effect of remote sensing image rendering 
within the updated area. 
 

 
 

Figure 6. Effect of local high-precision terrain “Mosaic” 
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Figure 7. Effect of RS image overlaying on the updated terrain 

 
In addition, we tested the execution efficiency of our method, as 
is shown in Table 1, the sampling precision of original terrain 
mesh is 90m, the local elevation data’s is 30m and 5m, we 
compared our method with exiting GPU algorithm[3] and CPU 
algorithm, the results show that efficiency of our algorithm is 
better than that of the exiting methods. 
 
Precision Quantity CPU GPU Our 

30m 500MB 82.23s 45.23s 28.15s 

30m 800MB 130.57s 75.42s 33.27s 

5m 600MB 160.23s 87.15s 36.35s 

5m 1000MB 262.11s 110.35s 44.84s 

 
Table 1. Time consuming of dynamic data loading 

 
5. CONCLUSION 

 
Aiming at the dynamic updating of local terrain data, from the 
accuracy and execution efficiency, this paper proposed a rapid 
updating method for local terrain “mosaic” based on GPU real-

time tessellation. Access to the coverage of updated data, 
tessellation coefficients is calculated and mesh tessellation is 
completed in GPU. Experiment results show that, the accuracy 
and efficiency of our algorithm are both superior to the existing 
algorithms. 
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