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FOREWORD 

1. This symposium of ISP-Commission III, hosted by the Federal Republic of 
Germany during the period 1972 - 76, was held at the University of Stuttgart, 
from September 2nd to 5th, 1974. It was open, free of charge, to all indivi
duals with an interest in aerial trianaulation and mathematical methods in 
photogrammetry. Thete were 120 partici~ants, from 22 countries. 
During the opening session welcome, addresses were delivered by Prof. 
L i n k'w it z , o n b e h a lf o f th e re c t o r o f S t u t t q a r t U n i v e rs it y , by M i n . R a t 
Kn~ble, on behalf of the government and the su~vey administration of the 
state of Baden-WLlrttemberq, and by Prof. Konecny, on behalf of the German 
Society of Photogrammetry. 
Financial reasons prevented provision of translation of papers and communi
cations. Therefore it was decided that all presentations and discussions 
would be in english. The use of english as sole lanauaqe greatly contributed 
to the efficient performance of the symposium and caused no apparent diffi
culties. 
The social events were restricted to an eveninq reception and a one-day 
excursion to the Zeiss factory at Oberkochen. 

2. We received altogether 55 papers of which 35 were selected· for presentation. 
The technical programme comprised 9 half-day sessions (5 on aerial triangu
lation and accuracy, 1 on digital terrain models and contour interpolation, 
2 on geometry of remote sensing, 1 closing session). 
As each participant did receive in print one set of the papers most of the 
presentations could be kept withir 20 to 30 minutes. Nevertheless the time 
schedule was very tight, also because of extended and thorough discussions. 
The active and untiring enga gement of participants and speakers is hiqhly 
appreciated . It made it a working symposium indeed , meeting, it is felt, 
the purpose of effective exchange amongst experts of detailed technical 
information, ideas, and experience. 

3. During the opening session the board of Commission III proposed th dedicate 
the symposium to Prof. Dr. Willem Schermerhorn, in view of his soth birthday 
in 1974. The participants adopted the move unanimously, recognizing and 
appreciating the personal contribution, the enthusiastic support, and the 
effective stimulation by which Prof. Schermerhorn has promoted the develop
ment and application of aerial trian~ulation. The following cable was sent: 

"DEAR PROF SCHERMERHORN 
I HAVE THE HONOUR AND THE PLEASURE TO INFORM YOU THAT THE PARTICIPANTS 
UNANIMOUSLY AGREED TO DEDICATE THE SYMPOSIUM TO YOU AT THE OCCASION OF 
YOUR 80TH BIRTHDAY THIS YEAR IN APPRECIATION OF YOUR STIMULATION AND 
PROMOTION OF AERIAL TRIANGULATION" 

Prof. Schermerhorn thanked also by cable, expressing that he was "deeply 
touched by the generous gesture" and wishing aood success to the meeting. 

4. Hereafter the proceedings of the symposium are presented. The first part 
contains the papers, somewhat abbreviated, which were to be presented during 
the technical sessions . . The second part includes all other submitted papers 
which represent equally valuable contributions. In some cases of previously 
published papers only abstracts are qiven. · 

We thank all participants and speakers for their active contributions and 
engaged discussions which not only made the symposium a very pleasant , infor
mative and successful meeting but also reflected important and considerable 
technical development. 
We also thank all who helped prepare the symposium and carry it throuqh. 

F. Ackermann, President of Comm. III 

H. Bauer, Secretary of Comm. III 
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INTRODUCTION to the Symposium (condensed) 

F. Ackermann, Stuttgart 

1. Aerial trianqulation has been the traditional subject of ISP-Commission III. 
It included ;11 practical and theoretical aspects of what we prefer now to 
call photogrammetric determination of points. The redefinition of the 
Commissions at the xrrth International Conoress of ISP in Ottawa, 1972, has 
considerably extended the field of interest of Commission III. It is outlined 
as "Mathematical Analysis of Data", a formulation which I personally do not 
consider well chosen. Nevertheless, the clear intention has been that 
Commission III is to be concerned with all aspects of photogrammetry as far 
as mathematical and statistical methods, accuracy, processinq and assessment 
of photogrammetric and derived or related data are concerned. It takes into 
account the increased importance of mathematical methods, of data processinq, 
of digital technoloqy, and recoqnizes the increased and qeneral influence of 
such techniques on the performance and application of photogrammetry. 

I do not intend to speculate on the implications of the redefined tasks of 
Commission III. Certainly new problems of delineation aqainst other Commis
sions will arise. However, we can trust that the activities of Commission III 
will cover the extended field of interest and shift emphasis to the various 
subjects in due course. 

At present, we can clearly distinguish 4 different fields on which Commis
sion III has to concentrate: 

- Aerial triangulation, photogrammetric point determination, including theory 
(mathematical models), computation, software, accuracy, procedures, and 
application. It is still the main topic within the Commission. The bulk of 
the papers submitted to this symposium refer to it. 

- Digital mapping and diqital terrain models, including automatic contour 
interpolation. Commission III is concerned with the mathematical methods 
and digital techniques, whilst the applications will remain with Commission 
IV. The subject is related to the more qeneral areas of automation in 
cartography and of digital data banks. 

- Geometrical aspects of remote sensing, mathematical models of the qeometric 
performance of various sensors, related theory, restitution techniques and 
accuracy questions. As remote sensing covers a very large field and the 
organisations ~ealing with it are widely spread a working group has been 
established under the chairmanship of Prof. Konecny. It's task is to study 
and clarify the geometric performance of various sensors by theory and 
experiment. 
A considerable number of papers on remote sensing have been submitted to 
the symposium, to be dealt with in 2 technical sessions. 

- Digital image processing, including digital image correlation, and problems 
of pattern recognition. 
There are applications within the convention~l ranoe of aerial trianqu
lation, such as automatic point transfer. However, the developments are 
eventually directed towards automatic image restitution and photo-inter
pretation. 
This subject seems to be in a preliminary stage of development. As no 
papers have been submitted it will not be treated during this symposium. 

Ackermann 1 
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2. The majority of the submitted papers concern aerial triangulation, the 
traditional topic of Commission III. Accordingly, it will be the subject 
of 5 technical sessions. 
In the past decade there has been striking progress in aerial triangulation, 
mainly by the development of numerical methods of blockadjustment. Computer 
programs have been developed which have removed most previous limitations 
and have raised the aerial triangulation performance to a new level of 
effectiveness, accuracy and economy. Theoretical and empirical accuracy 
studies allow fair assessment of the accuracy capabilities of strip- and 
block-triangulation. Practical application has been considerably increased 
and has recovered new areas: Very larqe blocks with minimum control for 
small scale mapping, and high precision aerial triangulation for large 
scale mapping, cadastral application, and geodetic application (densification 
of networks). 

There is not doubt that the development has been highly successful. It also 
has, by the way, revived general interest in aerial triangulation matters. 
It is not surprising that the development has solved a number of problems, 
it has also opened the approach to many new problems. Reviewing the situation 
briefly the following statements may point to the present problem areas of 
aerial triangulation which deserve attention: 
- Little attention has been given to the data gathering phase of aerial 

triangulation, i.e. preparation and measurement. The relative merits of 
mono- and stereocomparators and of analogue precision instruments have not 
been sufficiently assessed. Investigations and better solutions are needed 
for point-marking and point-transfer, or rather for avoiding it. Analytical 
plotters may change the present practice of preparation and measurements of 
aerial triangulation. 

- Computer programs for block-adjustment should be extended to self-cali
bration; also extensions to auxiliary data are due, and to hybrid adjust
ment systems combining photogrammetric and terrestrial or other measure
ments. 

- Although the computational problems of block triangulation have been 
satisfactorily solved in a number of cases, there is still no general 
agreement on the best strategy of computation (en bloc or stepwise, 
approximate values), on the required degree of generality and of optimi
sation of a software package, and on the computer requirements (core size, 
speed). There are no rules for the assessment and comparison of the data
handling and data-editing qualities of computer programs. 

- The accuracy performance of the various computational methods of block
adjustment (bundle method, independent spatial units, polynomials) has 
not been sufficiently assessed, especially in view of systematic image 
errors. 

- Accuracy investigations should primarily assess systematic and correlated 
image errors, based on empirical data, and study their effects on adjusted 
strips and blocks. The intention is to establish refined mathematical 
models of the geometry of aerial photographs. The results are needed for 
designing self-calibrating methods of block-adjustment. 
Empirical and theoretical accuracy studies are also suggested for auxiliary 
camera orientation data, especially for those affecting height accuracy. 

- More fundamental research seems to be required concerning the mathematical 
and statistical problems of self-calibration. Related to it are fundamental 
problems of generalized least squares methods, including collocation and 
filtering techniques. 

- Theoretical and practical solutions are needed for automatic blunder 
detection in block-adjustment. Can one-line computations reduce the 
percentage of gross errors ? 

- Practical research and experimentation into the applicability of aerial 
triangulation for geodetic purposes (network densification) is suggested, 
besides the general promotion of aerial triangulation methods in every-day 
pracitce of photogrammetry. Extensions to special applications, such as 
architectural photogrammetry are highly recommended. 

Ackermann 2 
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The above list demonstrates that in aerial trianaulation the theoretical 
investigations and developments are at present concerned with the further 
refinement of the mathematical model of imaqe coordinates, with the relia
bility and predictability of accuracy results, and also with generalized 
methods of adjustment and data processing. The practical side of aerial 
triangulation is concerned with improving the preparation and measurina 
phase, with computers and computer software, and with extendinq the fields 
of application. 

The papers on aerial triangulation which have been submitted to this 
symposium do not cover the full ranqe of the problem areas as quoted above. 
There are some papers on practical application of block-trianqulation; 
one paper deals with the possibility of avoiding point transfer. Basic 
theoretical and methodical questions, and also computational problems 
receive some attention. A special hiqhlight is D. Brown's naper on the 
evolution of the alqorithmus to solve the computational problems of larqe 
and hybrid adjustment systems. Most papers, however, deal with accuracy 
investigations, amongst which the attention is focused on the comparison 
of adjustment methods, the analysis of systematic imaae errors, and the 
effectiveness of self-calibratinq adjustment procedures. 

The submitted papers reflect rather well the present research activities 
in aerial triangulation. In particular, the analysis and compensation of 
systematic image errors is obviously a major topic of investigation and 
development. It is a most demanding and rewarding field of research, of 
which great effects on practical aerial triangulation are exnected, con
cerning especially still considerably increased accuracy and extended 
application. 

Ackermann 3 
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ANALYTICAL BUNDLE TRIANGULATION WITH LARGE SCALE PHOTOGRAPHY: COMPARISONS WITH 
POLYNOMIAL ADJUSTMENTS AND EXPERIMtNTS USING AUUEU PARAMtTERS 

by James M. Anderson, George Erio and Clement Lee, Berkeley, California 

Abstract 

A bundle adjustment for .simultaneous triangulation and for camera calibration has 
been used to triangulate a 1 km x 2 km test field. Photography (approximate scale 
1 : 3000) was taken from an altitude of about 460 mover a test array containing 
88 premarked control points. Relief in the test area constitutes about 20 % of 
the flight altitude. Comparisons of the bundle and polynomial adjustments were 
made with photographic coordinates observed with a Zeiss PSK Stereo comparator 
and using 3 control point configurations. Evaluation of the effects of added pa
rameters was performed with photo coordinates measured on a Mann monocular compa
rator and using 20 and 60 % sidelap with two control point configurations. Re
sults indicate that no real advantage is achieved by using the block adjustment 
for small blocks of large scale photography when 11 control points are fixed in 
the 14 photo block. For sparse control (5 fixed points) configurations, RMSE in 
planimetry and elevation are reduced by about 30 % and 60 %, respectively, by use 
of the bundle method. Use of three combinations of added parameters in the bundle 
adjustments yielded an improvement in planimetric position and elevation of about 
30 ¼. 
This investigation represents a joint effort between the University of California 
Department of Civil Engineering in Berkeley, California and the California Divi
sion of Highways Surveying and Photogrammetry Department in Sacramento, Califor
nia. The Department of Civil Engineering recently completed development of a si
multaneous bundle adjustment program for analytical aerial triangulation and/or 
camera calibration. Research related to development of this program was supported 
by National Science Foundation Grant, NSF GK 24017, "Analytical Calibration of 
Terrestrial and Aerial Camera Systems". Although the primary emphasis in this 
program was on utilization of added parameters for camera calibration of terre
strial or aerial systems, it is equally adaptable to ordinary aerial triangula
tion. Aerial camera calibration and the effects of added parameters on accuracies 
attainable in block triangulation were of primary interest in the research at the 
University of California. 

The California Division of Highways Surveying and Photogrammetry Department has 
been using fully analytical, sequential control extensions since 1966 and was in
terested in studying the relative merits of the bundle adjustments for these 
tasks. 
Thus, the major objectives of this investigation were to: (1) compare fully ana
lytical sequential triangulation and adjustment by polynomials with simultaneous 
bundle adjustment of small blocks of large scale aerial photography; and (2) eva
luate the effects of using various combinations of added parameters on the accur
acies achievable in the triangulation of small blocks of large scale photography. 
Practical tests with real photography were employed to study these two problems. 

TRIANGULATION PROCEDURES 

Bundle adjustment 
The photogrammetric triangulation procedure developed at the University of Cali
fornia is a simultaneous bundle adjustment of photographs. The computational pro
cedure is based on the collinearity condition with parameters added for camera 
calibration where the calibration model is similar to the method developed by 
Brown Ill. The basic collinearity equations with added calibration parameters 

in which 

X,, 
J.J 

X - X 1 

p ij 
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lJ p lJ lJ lJ lJ lJ lJ 
2 -2 

p
2

(r .. + 2y .. ) 
lJ lJ 

X .. , y .. 
l J l J 

= imaqe coordinates of point 

= principal point coordinates; 

j on photograph 

xp ' Yp 

Anderson 1 

i ; 



- 13 -

xij , yij are functions of: camera focal length, f; coordinates of exposure sta
tions and orientation angles of exposure station i, (X Y Z, w ~ K)oi; object 
point coordinates of point j (X Y Z)j; and 

3 5 7 /::ir .. k r .. + k
1 

r .. + k
2

r .. + k3 r .. lJ 0 lJ lJ lJ lJ 
- 2 2 

x .. (x .. - X ) • y .. = (y .. - yp); r .. = (x .. + y .. ) 
lJ lJ p ' lJ lJ lJ lJ lJ 

p
1 

and p
2 

= decentering distortion coefficients. 

1/2 
( 2) 

( 3) 

Each adjustm.int problem involves forming the linearized frrm of Equations (1) for 
all images in the block to be solved. Redundant points are utilized and the me
thod of least squares is used to solve the resulting system of equations. All ex
posure station, ground point and calibration parameters can be considered as un
knowns in this adjustment. Any parameter can be treated as a fixed value or as a 
free parameter. 
Final results from adjustment computations are: 1) camera calibration data, if 
desired, including all or/and any combination of these parameters; 2) exterior 
orientation parameters for all photographs used in the adjustment, 3) object 
point coordinates for triangulation and check points; and 4) propagated varian
ces for all parameters specified as unknowns in the adjustment. 

fully Analytical Sequential Procedure with Polynomial Adjustment 

The Division of Highways Surveying and Photogrammetry Department sequential pro
cedure consists of: a) relative orientation using a three photograph basic unit; 
and b) a polynomial block adjustment. A modification of the three photograph pro
gram developed by the National Ocean Survey is used for relative orientation and 
is followed by the iterative block adjustment with polynomials as developed by 
G. H. Schut at the National Research Council of Canada l2IJ3!. 

CALIBRATION TEST SITE AND PHOTOGRAPHY 

The California Divison of Highways Surveying and Photogrammetry Department's pho
togrammetric test area is located east of Bishop, California /4/ and contains 33 
horizontal and vertical (H+V) and 55 vertical (V) premarked control points. Test 
photography consists of three strips of eight photographs taken with a Wild RC 8 
camera (Aviogon lens cone 15 Uag. 312, f = 153.01 mm, calibrated November 11, 66) 
from approximately 460 meters above terrain containing 90 meters of relief. 
Arrangements of photographs and control points in the test block are illustrated 
in Figure 1. 

-:-~ 
CD 0 @ G) @ 
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PHOTOGRAPHIC COORDINATE MEASUREMENT AND REFINEMENT 

Pnotographic coordinate measurements can be divided into two major groups, those 
made for 1) comparison of the bundle and polynomial adjustment; and 

2) evaluation of the effects of added parameters in the bundle adjust-
ment. 

Measurements for group 1) above were made with the Zeiss PSK stereocomparator in 
the Office of the Surveys and Photogrammetry Department of the Division of High
ways in Sacramento, California. Observed coordinates were corrected for: affine 
film deformation; atmospheric refraction and earth curvature; and radial and 
asymmetric lens distortion. 
Measurements for group 2) above were made on a Mann monocular comparator at the 
US Geological Survey in Menlo Park, California. Two sets of refined image coordi
nates were prepared for this group of measurements. Set 1 was for triangulation 
using added parameters and observed image coordinates were corrected for; a) af
fine film deformation; b) atmospheric refraction. Set 2 was for block triangula
tion adjustment, only, so that observed image coordinates were corrected for: 
(a) and (b) of set 1 plus (c) radial and asymmetric lens distortion. 

TEST CASES 

Test cases can be divided into two separate groups. Those made for: 1) comparison 
of bundle polynomial adjustments; and 2) evaluation of effects of added parame
ters. 
Bundle vs. Polynomial 
Bundle block adjustments were run with three control configurations I, II and III 
containing 5, 9 and 11 horizontal and vertical fixed control points, resp., as 
illustrated in Figure 2. Test cases with each of these configurations were run 
using 60 ~ and 20 % sidelap and are labeled A and B, respectively. 

" 
d 

A 

<I A 
<I "' 

d A .. 

LJ 
<I 

Id 

4 A 

d "' 

I TI. ID 
5 1--1~\/ 9 \-\t,\/ t\ \-\•:;. \j 

F1c,uRE '2.. 

GROUND CoNT?.OL- P..v.zHc,'<S". Bul-..tOLE ✓:s. P0:....'1Nc~1;-.L. 

The polynomial adjustments were 
also performed with each of these 
control configurations utilizing 
20 % sidelap, only (test cases IB 
IIB, IIIB). Plate coordinates of 
Group 1 were used for these tests. 

Estimated standard deviations of 
unit weight for bundle adjustments 
and root mean square errors (RMSE) 
of discrepancies in check points 
for bundle and polynomial adjust
ments are given in Table l. 

Percent changes resulting from use 
of bundle adjustments in the block 
are: 

Control 
Points 
20 % side
lap 

5 
9 

11 

% Change in RMSE by 
Use of Bundle Adj. 

XY Z 

- 33 - 60 % 
- 15 0 
+ 17 0 

On the basis of these results, use of the bundle adjustment would be justified in 
small blocks for cases where only the minimum number of control points is avai
lable. However, for moderately dense control points configurations, the polyno
mial adjustment requires less central processor unit time (by a factor of about 2) 
and provides comparable accuracies. 

Bundle Block Adjustments with Added Parameters 

A total of 12 adjustments using two control configurations and three different 
combinations of added parameters, with 20 and 60 % sidelap were run using photo
graphic coordinates of Group 2, Set 1. Four additional adjustments were performed 
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for triangulation only (no added parame
ters), using photo coordinates of Group 2 
Set 2). The two control configurations IV 
and V are illustrated in Figure 3. 

Combinations of added parameters utilized 
are: 

1 f' xp ' Yp ' kl ' k2 ' k3 ' P1 ' P2 
2 f' kl ' k2 k3 ' P1 ' P2 
3 kl ' k2 k3 ' P1 ' P2 
4 Triangulation only. 

Tests with 60 and 20 % sidelap are labe
led A+ B, respectively. Each test is de
signated by control configuration, para
meter set, and sidelap condition. For 
example Test V 3 A is an adjustment 
using 11 H/V, control points, added para
meters k1, k2, k3, Pl, P2 and 21 photo
graphs. These sixteen tests with numbers 
of control points, photographs, added pa
rameters and adjustment standard devia
tions of unit weight are given in Table 3. 
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Bartlett's test was applied to the adjustment unit variances. When the 16 cases 
were tested simultaneously a significant difference was indicated at the 90 % 
level. Bartlett's test applied to the four triangulation runs (IV 4 A+B, V 4 A+B) 
and the twelve calibration runs (IV+ V 1, 2, 3 - A+B) separately, showed no sig
nificant differences. On the basis of these analyses it was obvious that the la
boratory and in flight calibrations were providing significantly different cor
rections for systematic errors in the camera system. In order to deduce which 
method was providing the more accurate results, the root mean square errors 
(RMSE) in check points were analized, and radial symmetric lens distortion cur
ves were plotted vs. the laboratory calibration curve. 

I B U N D L E p 0 L Y N 0 M I A L -----~ --- X 

Test I No Side RMSE,xm. RMSE, m 

easel cont. lap m Deg. Adj. lter-

pts. % µm XY z H VL VT at ions XY z 

I B s 20 6- . 042 . 110 2 1 1 s .064 ,274 

I A s 60 6- .040 .046 

II B 9 20 6+ .046 .036 2 2 1 s .040 .046 

11 A 9 60 6- .034 . 040 

111 B 11 20 6+ ,030 . 040 2 2 2 s .036 . 040 

111 A 11 60 6- . 027 . 040 

___,,..._ .. -~~-------..... -- --~ ·-· ~ ----~- ,.,,......,. ~,- ·------·... ~-,.__~··-=-~,.-......... ..- ... ,. .. ,. __ 

x)RMSE in discrepancies Longitudinal correction 

TABLE 1 

VT= Transverse correction 

Test Case Discrepancies in Check points Bundle vs. Polynomial 
Block Adjustment 
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Test No.Control Pts No Parameters Added m 

Number H&V V Photos f X y I kl k2 k3 P1 P2 µm 
p p I 

IV 1 A 33 21 X X X X X X X X 4,5 
IV 1 B 33 14 X X X X X X X X 4,5 
IV 2 A 33 21 X X X X X X 4,7 
IV 2 B 33 14 X X X X X X 4,7 
IV 3 A 33 21 X X X X X 4,8 
IV 3 B 33 14 X X X X X 4,7 
IV 4 A 33 21 Triangulation only 5,9 
IV 4 B 33 14 Triangulation only 6 ,3 I 
V 1 A 11 21 X X X X X X X X 41 Q I 

V 1 B 11 14 X X X X X X X X 3, 7 I 
V 2 A 11 21 X X X X X X 4, 1 
V 2 B 11 14 X X X X X X 3,9 
V 3 A 11 21 X X X X X 4, 1 I 
V 3 B 11 14 X X X X X 3 I 9 I 
V 4 A 11 21 Triangulation only 5, 3 I 
V 4 B 11 14 

I 
Triangulation only 6,2 

I I I I I 

TABLE 3 Test Case Designations Added Parameters 

Tests IV 1 A+B - - - - IV 4 A+B permitted evaluation of the effects of added pa
rameters on elevation (all H points were used in the adjustment). RMSE's in dis
crepancies of elevation and% change by use of added parameters are given for 
each test case in Table 4. 

TABLE 4 

RMSE in Discrepan
cies in Elevation 
Added Parameters 
vs. Triangulation 
only 

Test 

Case 

IV 4 A 

IV 1 A 

IV 2 A 

IV 3 A 

IV 1, B 

IV 1 B 

IV 2 B 

IV 3 B 

RMSE 
z 
m 

I 

21 Photographs 

.042 

,037 

,037 

,037 

14 Photographs 

.048 

.048 
,048 

,038 

% Change by Use of Parameters 

Added Parameters Added 

60 % A 11 Around Overlap 

Trianoulation only 

- 11 % Al 1 parameters 

- 11 % f I kl I k2' k3, P1, P2 

- 11 % k 1, k2, k3, pl' P2 

20 - 25 % Sidelap 

Triangulation only 

All parameters 

f, k11 k2, k3, P11 P2 
- 21 % k1, k2, k3, P11 P2 

When 60 % sidelap is present the RMSE in elevation decreases 11 % for each para
meter set. For 20 % sidelap, parameter sets 1 and 2 yield no decrease while set 3 
results in a 21 % decrease in the RMSE. 
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Tests V 1 A+B - - - - V 4 A+B allow evaluation of the effects of the various com
binations of added parameters on accuracies of position and elevation using 11 
fixed control points. RMS errors and percent changes i~ RMSE's are also listed 
in Table 5. When 60 % (21 photos) all around overlap is present the reduction in 
the RMSE of check points is approximately 30 % for both planimetric position and 
elevations. When 20 % sidelap (14 photographs) is present the RMSE in planime
tric position decreases 14 to 28 % and increases 28 % in elevation. Note that re
sults achieved by triangulation only (V 4 A vs. V 4 B) using 20 % sidelap show 
RMSE values about 30 % less than when the 60 % sidelap was present. Thi-s result 
verifies conclusions reached by Kenefick that accuracies are not increased in 
small blocks by use of 60 % sidelap 151. 

TABLE 5 

RMSE in Discre
pancies-Position 
and Elevation 

Test 

Case 

V 4 A 

V 1 A 

V 2 A 

V 3 A 

V L1 B 

V 1 B 

V 2 B 

V 3 B 

21 

14 

RMSE, m 

XY z 
I 

Photographs, 60 % 

,032 .058 

.021 .040 

.022 .038 

.023 .038 

Photographs, 20 % 

.021 . 0113 

.016 .055 

.018 . 055 

.018 ,055 

% Change by Added 
Pa r-ame ter s Pa rame te rs ·--xv_j z Jl,dded 

Al 1 Around Overlap 

Triang. only 

- 34 - 31 Al 1 parameters 

- 31 - 34 f, k1 ,k2,k3, 

- 28 - 34 k1,k2, 
P 1, P2 

k3 ,P1 ,P2 

Sidelap 

Triang. only 

- 24 + 28 All parameters 

- 14 + 28 f' k1,k2, k3, 

P1 • P2 

- 14 + 28 k1,k2,k3, 

p 1' P2 

-

Radial symmetric lens distortion curves for Test Cases IV 1 A, IV 3 A, V 1 A, 
V 3 A and the laboratory calibration curve are plotted in Figure 4. 

l;-- - --0 :.': ~ i~\. 

t.-- --{\ :::: ::, f', 

FIGURE 4 Radial Symmetric Lens Distortion Curves 
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Note that the four in-flight calibration curves fall within a - 7 µm band, the 
center of which fails to coincide with the laboratory curve with a RMSE in dis
crepancies of 2 µm. The consistency of these curves in conjunction with the RMS 
errors in discrepancies of check points, indicates that for this camera and 
flight, the in-flight calibration using added parameters is providing the bet
ter results. 

CONCLUSIONS 

Small blocks of photographs as typified by the test area and photography of this 
study (1 km x 2 km, 1 : 3000 scale) are more effectively adjusted by the bundle 
method when fixed ground control points are sparsely distributed (figure 2, 1). 
RMS errors in planimetry and elevation were reduced 30 and 60 % respectively by 
applying the bundle adjustment. With control arrays of moderate density (figure 2 
II and III) the polynomial adjustment yielded accuracies in planimetric position 
and elevation equal to and in one case surpassing that achieved by the bundle me
thod. Thus, an organization having a substantial number of small blocks to ad
just, would have difficulty justifying development costs for a bundle adjustment 
on the basis of improved accuracies for the average job. If a bundle adjustment 
is operational then the problem becomes one of applying the procedure which is 
more appropriate in view of the available control point distribution. 

Use of additional parameters for in-flight camera calibration yielded accuracies 
in planimetric positions and elevations improved by about 30 % when compared to 
triangulation with no added parameters and using coordinates refined with labo
ratory camera calibration data. No significant differences existed among accura
cies in check points attained using three different combinations of added para
meters. Symmetric radial lens distortion curves from 4 in-flight calibrations are 
quite consistent but deviate from the laboratory curve with an RMSE of 2 µm. As a 
consequence one can conclude that laboratory calibration data for lens distor
tions are somewhat in error for this particular camera. 

In general one can say that for small blocks containing 60 % sidelap use of added 
parameters with the bundle adjustment is an effective procedure to compensate for 
residual systematic errors mt corrected in the coordinate refinement procedure. 
This effectiveness would be especially pertinent for older cameras in which labo
ratory calibration data would be more likely to be erroneous. 
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E X P E R I i~ E N TA L R E S U L T S F ROM B L O C K TR I A N GU L AT I O N B Y B U N D L E S , P A I R S A N D T R I P L E T S 

by E. M. Mikhail and G.W. Marks, West Lafayette, In. 

ABSTRACT 

Block triangulation by bundles is known to theoretically yield the best accuracy. 
Recent results, however, imply that in the presence of residual correlated random 
(systematic) components, block triangulation by pairs may be as accurate as, and 
sometimes more accurate than, by bundles. 

In order to gain more experience in block triangulation by independent units, the 
ISP simulated block was used to test three block triangulation techniques. In ad
dition to bundles and oairs used so far, the method of independent triplets is 
also included. Tests are performed using data with both uncorrelated and correla
ted random errors. The results obtained are compared and characterized relative 
to the expended effort. This may aid in the selection of technique suitable for 
meeting the accuracy required within the available effort level. 

INTRODUCTION 

Numerical block triangulation schemes have reached a stage such that their appli
cation in practice is now a reality. It is generally recognized that there are 
basically three procedures of block triangulation: (1) the so-c[lled fully analy
tical method which is also referred to as triangulation by bundles; (2) the in
dependent model method; and (3) the polynomial method (Schut's program). This pa
per is concerned with the first two procedures only. 

There has been several efforts to determine the relative accuracy of the three 
techniques of block triangulation. Some of these efforts relied on theoretical 
derivation llll2ll3ll4I others made use of simulated test data l5I, and yet 
others applied actual photography of test fields l6I. On the basis of theory al
one (which usually assumes uncorrelated random components) it has been stated 
that analytical block triangulation by bundles should give the best accuracy re
sults. This is mentioned in reference l41 where it is said that "fully analytical 
blocks evidentally are more accurate than blocks with independent models". The 
same reference l41 cites preliminary results of unpublished work by Krack where 
ax and ay for bundle triangulation are said to be better by a factor of 1.6 over 
the independent model method. The cases investigated considered a 200 model block 
with 20 % and 60 % sidelaps and dense perimeter control. For az the bundle adjus~ 
ment is said to show factors of improvement ranging from 1.1 to 1.8. 

On the basis of test results with actual photography, Ackermann l6I gives the 
following conclusions with respect to the Oberschwaben test block of OEEPE : 
"The independent model results show consistently better accuracy than the results 
from bundle adjustments which is quite contrary to general expectation and to 
theoretical studies." He goes further to point out, however, that "the results of 
the bundle adjustments as such differ very considerably from theoretical expecta
tion, in terms of multiples of the standard error of unit weight." 

It is apparent from the above statements that theoretical predictions on the ba
sis of uncorrelated random variables are not quite adequate when dealing with ac
tual photography which seems to include residual correlated random (or systematitj 
effects. However, the indications arrived at so far are on the basis of limited 
amounts of data from the statistical standpoint. Cons2quently, as more test re
sults become available, more reliable statistical inferences can be made. 

While the tendency is, at present, to seek extended mathematical models to accom
modate correlated components in the case of bundle triangulation, the method of 
independent models appears to have established itself as a viable alternative. It 
is not unrealistic to assume that extended mathematical models will similarly be 
investigated for the independent model method in order to increase its potential. 
With this aim in mind, it is deemed worthy of consideration to use bas'.c cnits 
other than the single stereopair. It is the purpose of this paper to look into 
the use of one such unit, the triplet, and to compare results from its utiliza
tion to those from other methods, notably the single bundle, and the stereopair. 
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BLOCK TRIANGULATION BY TRIPLETS 

The idea of the triplet was introduced over a decade ago 171 within the prevai
ling practice at that time of sequential triangulation, where separate units are 
relatively oriented, assembled in strips, then in blocks. Many researchers since 
then have analyzed the use of triplets as regards any attendant advantages, part
icularly in the context of strip triangulation. In this respect, the scheme is to 
proceed from one triplet to another such that they overlap by two photographs. 
This practice becomes unnecessary when the triplet is to be used as a basic unit 
in block triangulation. Here, an overlap by one photograph between triplets is 
all that is required. 

For the purpose of the tests reported in this paper, both pairs and triplets were 
formed using a general program called URELO (Unit Relative Orientation) available 
at Purdue University. This program is capable of performing relative orientation 
of units of variable size (up to a maximum of 8 photographs each) and assembling 
the units into one integral strip with a variable number of photographs as over
lap between successive units. URELO was utilized to form both pairs and triplets 
(overlapping by one photograph) and only the separate unit coordinates were used, 
and not the assembled strip coordinates. Consequently all units, for both pairs 
and frTplets, were independent and could therefore be used in a program for block 
triangulation by independent models (units). 

Before proceeding to the actual results, it is perhaps pertinent to discuss why 
one should be interested in using the triplet as a unit in block triangulation. 
The obvious reason is the reduction in the number of units, and hence the number 
of parameters. For instance, if n is the number of photographs in each of s strips 
forming a block, and assuming that no additional parameters are used, then: 
number of parameters in the bundle method 6ns 
number of parameters in the method of pairs 7(n-l)s 
number of parameters in the method of triplets 3.5 (n-l)s for n odd 

3.5 ns for n even 

Therefore, for a block of s = 20 strips, each of n = 30 photographs, the bundle 
method would involve 3600 camera parameters; the method of independent pairs 4060 
parameters; and the method of independent triplets 2100 parameters. 

There is clearly a significant reduction in the number of parameters in the case 
of triplets. Such a reduction may be viewed either as for increasing the maximum 
size of the block to be handled by a given computer system. 

Having pointed out what appears to be an advantage in using the triplets, it is 
important to discuss any possible disadvantages. After all, one cannot usually 
get something for nothing. In fact, when the idea of its use came to mind, it was 
not so much a question of whether it is better or more accurate, but of whether 
any gain in the use of triplets outweighs whatever reduction in accuracy that may 
occur. The first point concerns the internal accuracy of the triplet versus that 
of a stereopair. From the results of URELO, and limiting the number of iterations 
per unit to a maximum of 5, the difference in the value of the reference variance 
between pairs and triplets was not excessive. The actual values will be given in 
the section on test results. The second, and perhaps more important, point is how 
well the triplets as units would adiust amongst themselves in the block. Since it 
has been surmised that the reason for block triangulation by pairs yielding better results than 
by bundles is due to the increase in number of parameters, one would expect triangulation by 
triplets to be inferior. The question is not whether or not this could occur, but rather how 
much inferior. Test results given in a later section will concern this point. 

The International Society of Photogrammetry (ISP) through the commission III Wor
king Group, has recognized that a simulated block of photographs is a suitable 
means for comparative studies, since it is standardized for use by all particip
ants. A very brief summary of the ISP test block therefore follows. 

ISP SIMULATED TEST BLOCK 

As reported in detail by Anderson 151, the test block was generated by the Topo
graphic Center of the Defense Mapping Agency. It consisted of 9 strips of 20 pho
tographs each, with 60 % forward- and side-lap taken at a nominal altitude of 
11 000 m. Camera focal length is 152 mm and the format is 23 x 23 cm. The prin
cipal point was offset +10 µminx and -10 µm in y. A regular array of 5 x 5 im
age points was generated for each photograph. The image coordinates were pertur-
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bed in a random manner in oneset (with a standard deviation of 6 µm) and random 
plus systematic in another. 
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FIGURE 1 
Ground Control Configuration 
ISP Test Case B 

0 Horizontal and Vertical Control 

◊ Horizontal Control Point 
0 Vertical Control Point 

For the purpose of the present study, 
one case of control distribution (of the 
three used in the Commission's report) 
was selected. It is depicted in Figure l 
As in the other tests, only nine points 
per photograph were taken, and five 
strips were selected to simulate the 
usual 20 % sidelap. This made the block 
size 100 photographs. For the sake of 
completeness, Table 1 is adapted from 
reference j 5 j to show the results re
ported by the Commission for the part
icular case presented in this paper. 

TEST RESULTS 

Both the random and random plus 
systematic cases were used in block 
triangulation by bundles, by pairs, and 
by triplets. The bundle triangulation 
was performed by a program called SAPG0 
at the Aerospace Center of the Defense 
Mapping Agency. The assistance of 
Dr. R. Helmering and Mr. G. Elphingstone 
are gratefully acknowledged. The pairs 
and triplets, formed by the UREL0 pro
gram at Purdue, were adjusted as blocks 
through the program PAT-M-43 at the 
Photogrammetric Institute in Stuttgart. 
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Bundle Triangulation 

The program SAPGO used for the bundle method applied the following a priori stan
dard deviations: 0.01 min X, Y and Z for the control points; 100 min X, Y and Z 
for pass points and exposure station positions; and 10° in w, ¢ and K for each 
camera station. The a priori standard deviation in x and y image coordinates was 
taken equal to the 6 µm value used in generating the data. These values were app
lied for both the random as well as the random plus systematic cases. The a post
eriori reference standard deviation obtained was 4.2 µm for the random case, and 
6.6 µm for the case of random plus systematic components. 

Triangulation By Pairs and Triplets 

The average reference standard deviation for all the pairs, obtained from relati
ve orientation, was a little less than 7 µm for both random and random plus syst
ematic cases. For the triplet relative orientation the corresponding values were 
about 7 µm for the random and about 10 µm for the random plus systematic cases. 

After block triangulation, one reference standard deviation is obtained for posi
tion and another for elevation from the program PAT-M-43. The values in meters 
a re: 

Random Random + Systematic 
Position Elevation Position Elevation 

Pairs 0.608 1.104 1.001 2.029 
Triplets 0.653 1.108 1. 06 7 1.983 

The results on the check points are summarized in Table 2. The value mxy was 
evaluated from 

which is the same expression used in the ISP results given in Table 1. The reason 
for the difference in values for the base of pairs between Table 2 and Table 1 
(participant number 8) is due to the fact that a different number of check points 
was used in each of the tests. 

TABLE 2 m m m m 
X y xy z 

Random 
Test Results RMS ( in meters) 
Discrepancies in Planimetry Bundles .521 .456 .692 1. 576 
and Elevations 
Points 

of Check Pairs .775 ,809 1.120 2,663 

Triplets ,867 .817 1.191 2,561 

Random + Systematic 

Bundles 1. 074 1. 139 1.566 2.078 

Pairs .922 1.590 1.837 2.612 

Triplets .993 1. 274 1.615 2.518 

Several remarks may be made on the basis of the results given in Table 2. 
( 1 ) At least for this particular experiment, the results from bundle triangula-

tion are for the most part better than those from triangulation by pairs and 
triplets. This is true for both the random as well as the random plus system-
atic cases. 

(2) For the case of random perturbations only, the check standard deviation value 
for triangulation by triplets is .only slightly different from that for trian
gulation by pairs. It is marginally higher in the X and Y, and lower in the Z 
to the extent that one may assume that the difference is insignificant. 

(3) It is somewhat surprising that in the case of random plus systematic compo
nents, both mxy and m2 were lower for the triplets than for pairs. Realisti
cally speaking, the difference should still not be considered significant. 
Even if there were no differences, it is rather encouraging to see that re
ducing the number of parameters by almost 50 % when· using triplets did not 
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seem to affect the accuracy of block triangulation. One must emphasize, how
ever, that this is only one test and much more experimentation is needed. 

(4) If one refers to the total results from sequential triangulation in Table 1, 
it is worth noting that the results from triangulation by independent trip
lets is better than almost all of the sequential methods. 

CONCLUSIONS 

Although only one experiment with simulated data was performed, the results from 
the triplet method were rather encouraging. Instead of obtaining significantly 
inferior results, the numbers indicated insignificant differences at least for 
this test. This is particularly interesting for the base of residual systematic 
components because it contradicts the hypotheses that the increased number of 
parameters better accommodates such components. For triplets, the number of pa
rameters was actually reduced drastically. 

On the basis of these preliminary results, it is recommended that comparison 
block triangulations by triplets and pairs be performed on other sets of test 
data, not only simulated, but also actual project data such as those from Ober
schwaben [6 [. 
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Investigation on the applicability of block adjustment 
in Austria +) 

G. Otepka, Vienna. 

1. Introduction 

The performed investigation is limited to two problems of the Austrian Federal 

Bureau of Standards and Surveying (BAfEuV) and conditions which are present in 

this organisation and in Austria. The two problems mentioned are : 

a) to produce control points for the plotting of Austria in the topographic map 

"Osterreichische Karte (OK) 1: SO 000" 

b) to intercalate points between the existing Fifth-Order Trigonometric-Network. 

These points are called "Einschaltpunkte (EP)". 

For years the BAfEuV has used photogrammetric methods for both problems.Previous

ly the advantages of block adjustment never had been used though general computer 

programs are available and a suitable computer exists. 

In the first part of this investigation two typical routine projects of the 

B.-UEu\" are used for block adjustment to show its efficiency. In the second part, 

the costs of different methods for solving the two above mentioned problems are 

compared, methods which are used by the BAfEuV on one hand and block adjustment 

on the other. The results of these computations and comparisons are reported. 

2. Block adjustment 

.-\11 the blocks have been adjusted by a CDC 6600 computer using the well known 

program for aerial triangulation with independent models - PAT-M 43 - developed 

by ACKERMANN, EBNER and KLEIN /2/. 

2 .1 Block OK 161 

The Austrian map (OK) 1 :SO 000 consists of 213 map sheets. Sheet number OK 161 

Kas choosen for this test. The block adjustment was performed using the same 

photogrammetric measurements which were the base for the strip adjustment of the 

BAfEuV. These measurements were carried out on a Wild A 7. All control and tie 

points are non signalized natural points. The most important technical data of 

this project are: 6 strips with a total of 55 models, wide angle camera, negative 

scale 1:20 100 - 31 800, end lap 60 %, side lap 8 - 37 %, block area 530 km 2 , 

terrain heights 600 - 2 200 m. 

The block was adjusted twice: Version a 1 using all existing control points,which 

have been determined by the BAfEuV for their strip adjustment. This version has 

no importance for production. It was carried out merely to check the 

data. Version b 1 uses only 4 planimetric and 16 vertical perimeter control 

points. This control point pattern is a very economic aerial-triangulation possi

bility. The weight of the terrestrial and photogrammetric coordinates was assumed 

to be equal and to be "1" for the adjustment of both versions. 

+) outline of a paper /1/ presented to the I.S.P.Commission III, 
Symposium in Stuttgart, 1974. 
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2.2 Block EP Rev.Altenfelden 

The density of the Austrian Fifth-Order Triangulation-Network is one point on 

each square kilometer. It is provided by law, that any kind of cadastrial sur

veying has to use the State Coordinate System. The distances between the triangu

lation stations normally would be too large,therefore a densification of the tri

gonometric net is necessary. The result of this intercalation is a density of 8 

to 10 points on each square kilometer. The control and tie points were targetted 

before the flight. The photogrammetric measurements were carried out using a 

Wild STK-1 stereocomparator. To get a dense perimeter controlled block, the ori

ginal project EP Rev.Altenfelden was enlarged by 8 models of 2 neighbouring EP 

projects. The most important technical details of this block are: an irregular 

flight pattern caused by the single model orientation method of the BAfEuV, 105 

models, wide angle camera, negative scale 1:6 200 - 10 500, block size 9 x 8 kmi 

terrain heights 335 - 620 m. 

The block adjustment was repeated several times with 2 different weights and 4 

different control assumptions. The weight assumption of Version b 1 is equal to 

that of the OK blocks (2.1). This weight relation enables a detection of any 

existing inhomogenity in the survey controlled stations. Such an assumption is 

impossible for practical EP projects. Once determined, the coordinates of the 

trigonometric points and EP's must remain constant. Therefore the weight of the 

terrain coordinates has to be infinite for the control points. The Versions b 2, 

c 2, d 2 and e 2 use this mentioned weight. 

The different control point density for the adjustment versions is indicated by 

the letters b,c,d and e. Version b 1 and b 2 use all existing control points. 

Version c 2 uses all trigonometric points plus a dense terrestrial EP perimeter 

control. Version d 2 uses all triangulation points plus 8 terrestrial determined 

EP's at the "open" places of the block perimeter for control purposes. In 

Version e 2 the triangulation points only are applied for control within the 

block adjustment. This version is computed only as a necessity for Version e 2, 

which has been derived from e 2 in such a way that the 49 perimeter models were 

cancelled after the adjustment. 

3. Results of the block adjustment 

Table 1 shows the results of the different block adjustments of the two projects. 

4. Comparison of economy 

The comparison of costs shows that block triangulation is about 30 % cheaper 

than strip adjustment for the OK-project of the same size (for further infor

mations see /1/). 

At the moment the BAfEuV uses the following 3 methods for the determination of 

EP's : 

a. trigonometric intersection method 

b. radiation method 

c. single model orientation method. 
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~ 
'O 
X' 
Ol 

w 

B 1 o c k <:lK 161 E p R e v . A 1 t e n f e 1 d e n 

V e r s i o n a 1 b 1 b 1 b 2 C 2 d 2 e 2 e 2 

planimetric number of measurements 1148 954 3078 3078 2996 2924 2896 
adjustment number of unknowns 652 602 1468 1468 1460 1436 1424 

redundancy 496 352 1610 1610 1536 1488 1472 

vertical number of measurements 877 786 1970 1970 1929 1893 1893 bO 
"0: 

adjustment number of unknowns 530 506 1055 1055 1051 1039 1033 ....... ,,..., 
redundancy 347 280 915 915 878 854 846 .-< 

"'" +.>U 
number of planimetric control-points 76 4 127 127 89 65 57 .-< 0: 

::>"" number of vertical control-points 83 16 126 126 88 64 56 "'u 
" ,.. :,.. 

QMV MPX} r.m.s.value of residuals at 0, 176 m 0,163 m 0,023 m 0,027 m 0,026 m 0,024 m 0,023 m ..0 

" QMV MPY tie points o, 217 0,193 0,027 0,031 0,029 0,028 0,028 .C:N 

QMV MPZ 0,240 0,232 0,044 0,050 0,048 0,047 0,047 
.., 

" 
QMV PZX} r.m.s.value of residuals at 0,503 m 0,444 m 0, 108 m 0, 109 m 

.., 0:"' 
0, 107 m 0, 110 m 0,111 m 0: 0.-< 

QMV PZY projection centres 0,632 0,612 0,081 0,081 0,081 0,079 0,079 
(!)•.-I(!.) 

" "''O QMV PZZ 0,258 0,242 0,032 0,022 0,023 0,022 0,023 .., ,.. 0 

"'"" ::>> 
QMV PPX} r.m.s.value of residuals 0, 182 m 0,077 m 0,026 m - - - -

.,.... ,.. 
'O " " QMV PPY at control points o, 236 o, 112 0,023 - - - - "'0.., ,.. " QMV PPZ (terrain coordinates) 0, 190 0,130 0,036 - - - - ,.. "" " 
" .... 
Oa'O ,.. 

QMV PPP X} r.m.s.value of residuals 0, 193 m 0,077 m 0,023 m 0,035 m 0,036 m 0,033 m 0,030 m 0 "" ,.. > Pa 
QMV PPP Y at control points (model 0,213 0, 112 0,028 0,038 0,036 0,035 0,035 Pa·.-< 

QMV PPP Z coordinates 0,220 0,204 0,043 0,061 0,059 0,056 0,056 ,.. " 
0 O>.C: 
0:'0+-' 

"o of the planimetric adjustment 0,304 m 0,293 m 0,035 m 0,038 m 0,037 m 0,037 m 0,036 m 
(referred to photo scale) 12 µm 11 µm 4 µm 4 µm 4 µm 4 µm 4 µrn 

er of the vertical adjustment 0,396 m 0,404 m 0,064 m 0,070 m 0,069 m 0,069 m 0,069 m 
~in%oof flying altitude above ground) 0 ,07 %0 0,07 %0 0,05 %0 0,05 %0 0,05 %0 0,05 %0 0,05 %0 

number of planimetric check-points - 72 - - 37 61 69 34 
number of vertical check-points - 67 - - 37 61 69 34 

~x} - 1,180 m - - 0,041 m 0,054 m 0,095 m 0,044 m 
!!ly ~ er check - 0,984 +) - - 0,042 0,055 0,079 0,045 
mz - 1,104 - - 0,072 0,091 0, 105 0,082 

~max.X} maximum residuals at - 3,313 m - - 0,098 m 0, 188 m 0,426 m 0, 102 m 
!!lmax.Y the check-points - 1,302 +) - - o, 149 0,142 0,401 o, 138 
mmax.Z - 3,318 m - - 0,221 m 0,228 m 0,296 m 0,222 m 

~X /cro - 4,0 - - 1,1 1 ,5 2,6 1, 2 ++) 
!!.IY /cro - 3,3 +) - - 1, 1 1 ,5 2,2 1,3 ++) 
mz /cro - 2,7 - - 1,0 1,3 1 ,5 1 ,2 

Table 

+) = flight direction, ++) = with o0 of Version e 2,o
0 of unit weight= accuracy of model coordinates. 

standard error 

Table 1: Results of the different spatial block adjustments. 
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Figure 1 shows the total costs which are necessary to determine one EP by the 3 

methods of the BAfEuV and by block adjustment with two possible photo scales. 

total costs for one EP (in o.S.) 
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Fig. 1: Total costs of one EP 

Summary 

(X) 
X 
(X) 

U) 

X 
U) 

..... 
0 
X ..... 
0 

radiation method 

trigonometric 
intersection method 

photogrammetric single model 
orientation (method of the 
Austrian Federal Bureau of 
Standarts and Surveying) 

block adjustment 
(photo scale 1:8000) 
block adjustment 
(photo scale 1:10000) 

project area in km2 

Two problems of the Austrian Federal Bureau of Standards and Surveying are used 

to investigate the applicability of photogrammetric block adjustment. Using this 

method different versions of two typical routine projects of this organisation 

have been adjusted, The results were reported. The last part of the paper shows 

the expenditure of competitive methods and the superiority of block adjustment 

for the two investigated problems. 

Zusammenfassung : 

An Hand zweier Vermessungsaufgaben des Bundesamtes filr Eich- und Vermessungswesen 

(BAfEuV) wird die Einsatzmoglichkeit der photogrammetrischen Blockausgleichung in 
otenka 4 
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Osterreich untersucht. Dazu wurden 2 typische Routineoperate dieser Organisation 

mit verschiedenen Gewichts- und Pa~punktannahmen als Blocke berechnet und ihre 

Ergebnisse angegeben. Ein Kostenvergleich mit den konkurrenzierenden Verfahren 

liefert konkrete Werte filr die Oberlegenheit der Blockausgleichung. 
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ON THE INFLUENCE OF A MINIMUM METRICAL PRECISION THRESHOLD ON ABSOLUTE ACCURACY 
IN ANALYTICAL AERIAL TRIANGULATION 

by H. S. Williams, Johannesburg, South-Africa 

ABSTRACT 

Metrical requirements of analytical photo9rammetry are examined in relation to 
currently attainable standards of absolute accuracy of digital aerial triangula
tion. A series of controlled experiments is used in the study involving three 
test areas and five comparators in different precision classes. 

INTRODUCTION 

Little has been done in the past to map a minimum precision threshold for analyt
ical photogrammetry. Random and unrelated experiments by T. J. Blachut (1963), 
P. R. J. Boniface (1967), H. Salmenpera (1970) and H. S. Williams (1973a, 1973b) 
have shown that single-micron measuring precision of photo coordinates is not 
essential for accurate point fixation in the terrain by digital aerial triangula
tion. These experiments, however, shed no light on any minimum metrical criteria~ 
In the present study a series of controlled experiments has been used in an 
endeavour to find an approximation to this important quantity. 

THE CONTROLLED EXPERIMENTS 

For present purposes, a "minimum metrical prec1s1on threshold" is defined as the 
lowest measuring precision that can be mapped empirically using a number of comp
arator apparatuses of different accuracy capabilities for the measurement, or 
determination, of plate coordinates adequate for digital aerial triangulation to 
currently attainable standards of absolute accuracy. 

Five categories of comparators were used in the controlled investigation. These 
were: 

1) a standard comparator, which for all practical purposes could be assumed to 
be free of the errors normally associated with cartesian comparators; 

2) a comparison comparator, of similar metrical accuracy to that of the standard 
comparator, which was used to compare the relative accuracies of stereoscopic 
and non-stereoscopic measurements; 

3) __p__l_Q__!ter-monocomparators of moderate accuracy - stereoplotters which could be 
used efficiently as monocomparators; 

4) a crude trilaterative comparator, which was capable of a metrical accuracy 
nomTnally lower than that of the class (3) instruments, and 

5) a plotter-monocomparator of low accuracy, a stereoplotter with a lower 
measuring accuracy than any of the other comparators. 

The Trilateration Microscope (TM), H. S. Williams (1971), was used as the stand
ard comparator. This instrument had a ax y (standard deviation of a photo-point 
coordinate) of 0.96 micron. A magnificat{on of 60 times was used with the TM. 

A Wild STK 1 stereocomparator was used as the comparison comparator and was con
fined to an air-conditioned room at all times. The standard deviation of photo
point coordinate for this instrument was 2.8 microns. The STK 1 was fitted with 
x 20 eyepieces. 

Two Wild A7 Autographs, both equipped with x 10 eyepieces, served as the plotter
monocomparators of moderate accuracy. 

The TM main scale was used alone as the crude trilaterative comparator. It was 
fitted with x 10 magnification readers which enabled it to have a measuring 
accuracy of approximately 30 microns in distances of up to 320 mm. 
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A Wild AB Autograph, fitted with x 6 eyepieces, was used as the plotter-mono
comparator of low accuracy. Neither of the Wild A7's nor the Wild A8 were used in 
a humidity and temperature controlled environment. 

The test areas used in the controlled experiments were: 

- the AOC Test Area (H. S. Williams, 1971, 1974); 
- the St. Faith's Test Area (Urban 1966), and 
- the Durban Test Area (H. S. Williams 1974). 

A schedule of the measurements made of the diapositives of the various test areas 
is given in Table I below. 

Table I : Schedule of Measurements made of the Test Areas which were used 
in the Controlled Experiments 

Comparator 

TM 

STK 1 

A 7 U ( i ) 

A 7U (ii) 
A7R 
A8P 
TMMS 
A7U+CR 

Diapositives 

AOC Models 

3058/3059 309/310 

X X 

X X 

X 

X 

X 

glass/7* 

X 

X 

glass/10 

1/ 2 

xl 
x2 
X 

film/4 

xl - measured in controlled environment 
x2 - measured in uncontrolled environment 
x3 - premarked points and/or transfer points 

St. Faith's 
Test Area 

x3 
x5 
X 

X 

X 

X 

X 

X 

X 

glass/11 

Durban 
Test Area 

x4 
x5 
X 

X 

X 

gl ass/3 

x4 - PUG marked transfer points, on the basis of 9 points per diapositive 
x5 - points of natural detail used as transfer points 

TMMS - TM main scale only 
CR - camera reseau 
* age of diapositive plates in years 

Measurement with the three plotter comparators was carried out in single pro
jection planes, that is, once a suitable photo-plane to projection-plane en
largement had been decided on, and pre-set, the foot-disc was taped or otherwise 
immobilized. No Z-drum readinqs, therefore, were ever recorded. All rotation and 
translation orientation elements of the plotter projections were zeroed before 
any measurements were made. Three mathematical models were used for deriving 
plate coordinates from the projection plane measurements, namely, (1) central pe~ 
spective transformation, (2) two-dimensional similarity transformation, and (3) 
use of the projection plane coordinates themselves, treating the projection plane 
as a pseudo-photo-plane. In the tables of aerial triangulation results that 
appear later in the paper, the use of these models is shown by (1), (2) and (3), 
respectively, after the plotter name, for example, Wild A7U (3), where Wild A7U 
is the Wild A7 of the University of the Witwatersrand, Johannesburg, and (3) is 
the third transformation model. Abbreviations used for the other plotters which 
feature in the investigations are Wild A7R - the Wild A7 of the Roads Department, 
Pretoria and Wild A8P - a Wild A8 of Photosurveys (Pty) Ltd., Johannesburg. 
Essentially, models (2) and (3) lead to the same result. By using model (3) the 
similarity transformation between projection-plane and photo-plane is avoided. 
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All model restitutions, aerial triangulations and adjustments were carried ou~ 
with the IBM System 360/50 and 370/145 computers of the University of the Wit
watersrand, Johannesburg using the photogrammetric programme set developed by the 
writer. The Wild STK 1 measured plate coordinates were also processed with the 
IBM 1140 computer of Aircraft Operating Company (Pty) Ltd. Johannesburg, by 
courtesy of that Company. 

ESTIMATES OF THE INTERNAL ACCURACY CAPABILITIES OF THE COMPARATOR APPARATUSES 

Calibration of the five classes of comparators was carried out by means of measu
rements made of high precision grid plates. Results of the respective calibra
tions are tabulated in Table II below. These results contain the errors of the 
reSeau plates themselves. 

Examples of the internal accuracy capabilities of the TM, TM main scale alone, 
Wild A7U and Wild A8P are given for the measurement of glass diapositives in 
Table III below. Estimates of the internal accuracies of the TM measurements of 
film diapositives in an uncontrolled environment are also included in the Table. 
The internal accuracies of the TM measurements of film diapositives in a control
led environment compare with those obtainable with glass diapositives in an un
controlled environment. 

Table II : Standard Deviations of Observations of Unit Weight, of Plate Point 
Position and Maximum Residuals in Plate x and y coordinates (in 
microns) from Grid Plate Calibrations of the Comparator Apparatuses 

Instrument 00 op vx(max) vy(max) 

TM 1. 14 1. 36 2. 1 
STKI 2.8 4.0 6 
A7U 5.0 7.0 31. 5 
A7R 9.6 13.5 24.7 
A8P 10.6 15.0 22.3 
TMMS 8.2 8.4 18.2 

(n-r) - number of degrees of freedom of the adjustment 
A - method of computation and adjustment 

1. 9 
8 

17.8 
20. 1 
24.6 
16.5 

n-r A 

21 1 
26 2 

238 2 
14 2 

128 2 
21 1 

1 - trilateration adjustment using a defect free solution+ a linear con
formal two-dimensional transformation 

2 - linear conformal transformation between projection plane and photo-plane 

Table III: Precision Estimators for Co-ordination of Photo-Details Using 
Unconventional Comparator Apparatuses (in microns) 

Instrument 00 op vx(max) vy(max) Diapositive 

TM 2.6 3. 1 3.2 2.8 glass 
TM~ 4.6 5.1 8.8 7.2 film 
TMMS* 7. 2 11. 5 17.2 19.6 glass 
Wild A7U ( 1 ) 4.3 6.1 9.2 9.3 glass 
Wild A7U ( 2) 8.3 11. 7 15.7 16.2 glass 

Wild A7U(2)+CR 11. 3 16.0 13.2 13.3 g l ass 
Wild A8P* 12.4 17.5 22.5 25.0 glass 

* precision estimators based on transformations to TM determined plate 
coordinates 

In Tables II and III the following symbols are used: 

The standard deviation of the observation of unit weight 
standard deviations in x and y plate coordinates, respectively 
standard deviation in point position, 

W i 11 i ams 3 

o = o2 + o2 
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vx(max), vy(max) - maximum residuals in x and y coordinates, respectively. 

The results summarized in Table III for the Wild A7U are interesting but in them
selves are no indication whatsoever of the accuracy that can be achieved in block 
aerial triangulation using the transformation models (1) and (2). For example, 
plate coordinates derived via a perspective transformation, that is transform
ation (1), of the projection plane coordinates will not produce point positions 
in the terrain that will be twice as accurate as could be obtained with plate co
ordinates derived through a linear conformal transformation. It will be seen from 
an examination of the tables of aerial triangulation results for the St. Faith's 
and Durban Test Areas, namely Tables V and VI, that the three transformation 
models do, in fact, lead to the same results in the terrain for all practical 
purposes. 

ACCURACIES OBTAINED IN THE DIGITAL AERIAL TRIANGULATION EXPERIMENTS 
WITH SINGLE MODELS AND BLOCKS 

In Table IV, results are given for the sin~le model tests which involve the three 
models of the AOC test Area. In these tests it was always assumed that the weight 
matrix reduced to a unit matrix of like order. 

Table IV : Results from Tests with Models of the AOC Test Area 

Model 3058/3059 
Comparator TM TM STKI TM Main TM Main 

Scale Scale 
Computation Method A B A A B 

Opy(µm) 3.4 4.5 7.2 
Cfl/ (µm) 15.2 13.5 11. 3 14. 1 15.9 
a H (o/OOH) 0.10 0.09 0.07 0.09 0. 10 
ax (µm) 9.0 9.7 9.8 10. 1 11. 6 
cry (µm) 11. 0 8.8 9.7 10. 7 10. 4 
crp (µm) 14.6 13. 1 14.0 14.7 15.6 
CJ 0 (µm) 3.4 9.3 4.5 7.2 10.6 

Mo de 1 309/310 
Comparator TM STKI TMMS Wild A7U(3) 
Computation Method A A A A 

crpy(µm) 7.2 8.6 5.9 3.4 
crH (µm) 20. 7 23.2 16.8 16.8 
OH (o/OOH) 0. 13 0.15 0.11 0.11 
ax (µm) 9.4 11. 6 11. 0 10.4 
cry ~~~~ 13.6 14.6 12.9 9.3 
op 16.5 18.6 16.9 14.0 
CJ 0 (µm) 7.2 8.6 5.9 3.4 

A - relative and absolute orientations 
B - Schmid's Bundle adjustment 

TMMS - TM Main Scale 

Wild 
A7U(3) 

A 
6.2 

10.4 
0.07 
10.2 
9.8 

14.1 
6.2 

TMxl 
A 

6.2 
21. 0 
0.13 

8.2 
8.2 

11. 6 
6.2 

TMxl - measured with the TM in a controlled environment 
TMx2 - measured with the TM in an uncontrolled environment 

Wild W i l d 
A8P(3) A8P(2) 

A A 
4.7 4.7 

13.2 13.2 
0.09 0.09 

9.8 9.8 
10. 2 10.2 
14.2 14.2 
4.7 4.7 

1/ 2 
TMx2 STKixl 

A A 
4.7 4.5 

19.7 18.3 
0. 13 0. 12 
10.3 13.1 
8.5 9.2 

13.4 16.6 
4.7 4.5 

STKixl- measured with the Wild STKI Stereocomparator in a controlled environment 

The results of the experimental aerial triangulations which involved the 
St. Faith's Test Area, and other relevant information, are shown in Table V. 
Those for the Durban Test Area are shown in Table VI. 
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Table V 

xl 

x2 

C/T /P 
1 
2 
3 
p /Z 
A 
B 
C 
LD&R 
PM 
ND 
CR 
( 1 ) 

( 2) 

( 3) 
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Summary of Experimental Aerial Triangulation Results 
after Block Adjustment for the St. Faith's Test Area 

Comparntor Adjustment 
\\'eiehts 

Pl:>n. '!ki:-.Jit a0 

1-------+-------t C/TJi' C/TiP 

TM 

TM 

TM 

TM 

TM 
STKI 

STKI 

TM Scale 
Only 
Wild A7U 
(2J+ CR 
\\'ild A7U 
(3) 

\\'ild A7R 
(2) 

\\'ild A7U 
(2) 

\\'ild ASP 
(3) 

TM 

TM 
TM 

Amer (X,Y & Z 
separate) 
Amer (X,Y & Z 
separate) 
Amer (X,Y & Z 
separate) 
Amer (X,Y,Z 
simultaneous) 
Bllndlc 

ANBLOCK xi 

ANBLOCK ~2 
ANBLOCK (Plan 
Only) 
Amer (X,Y & Z 
separate) 
Bundle 

Amer (X,Y &Z 
separate) 
Amcr(X,Y&Z 
separate) 
Amer (X,Y & Z 
separate) 
Amer (X,Y & Z 
separate) 
Amer (X,Y & Z 
separate) 
Amer (X,Y & Z 
separate) 
Bundle 

ANIJLOCKx2 

1/1/0 1/1/1 4.6 

1/1/0 4/2/1 4.6 

3/1/0 3/3/1 5.0 

4/2/0 4/2/J 7.2 

\Y a J 6.8 

1/1/1 I /1/1 4.9 

1/1/l 1/1/l 4.9 
l /1/- -/-/- 8.8 

1/1/0 4/2/1 7.6 

w = l 9.9 

1/1/0 4/2/1 3.6 

1/1/0 4/2/1 4.8 

1/1/0 4/2/J 4.7 

1/1/0 4/2/1 5.0 

1/1/0 4/2/J 5.7 

'./1/0 4/2/1 6.2 

Y! = l 7 .5 

l/l/l ll/1/1 6.5 

_P_iz_, _,_Pl_
2
z_,_r}!::_~_0--::=T :t---c-+-A--:-/-~--c---l ~~'. ~~~ 

20 6/:? ! 79/9 5.9 ! b.4 9.8 5.8 7 .8 8.8 P~! Ye·:; 

50 6/12 7.5/12 6.4 6.4 12.3 4.4 7.8 13.4 PM Yes 

50 6/12 75/12 5.0 7.0 13.4 6.2 7.4 13.4 PM Yes 

50 6/11 66/6 5 0 10.0 12.6 9.7 6.6 18.8 PM Yes 

1 

1/3 
1/3 

I 

6/12 '."5/1.1 10.4 14.2 I 1.2 - 23.:l PM Yes 

6j!2 75/12 6.4 6.9 15.4 10.0 12.0 20.7 P~I Yes 

6/12 75/12 6.4 6.9 13.3 I 0.0 11.0 26.0 P~I Yes 
111/- -/- 4.2 12.3 - - - - P~I Yes 

+S 
50 6/12 75/10 9.8 I 0.6 13.1 3.2 8.4 16.6 P:,I Yes 

+S 
I 6/12 79/12 12.2 - 15.7 10.2 - 28.4 P~l No 

20 6/12 67/9 5.1 7.4 10.2 11.0 13.0 32.5 P~! No 

20 6/12 67 /9 6.8 8.8 I 3.3 I 1.0 15.0 13.6 PM No 

20 6/12 85/12 5.7 7.4 15.7 9.3 11.7 17.1 PM No 

20 6/!2 67/9 6.2 7.9 14.2 10.4 14.2 IS.I PM No 

20 6/12 67/9 5.9 9.7 14.1 9.8 13.2 16.2 P~l No 

15 6/11 75/8 8.7 9.8 15.3 6.8 10.2 20.4 !m No 

2 6/11 75/8 13.4 - 15.7 19.0 - 23.6 ND No 

l /I 6/11 75/8 9.2 7.9 16.9 9.8 12.4 24.2 ND No 

- ANBLOCK adjustment with three-dimensional transformation after each 
iteration of the height adjustment phase 

- ANBLOCK adjustment without three-dimensional transformation after each 
iteration of the height adjustment phase 

- control points/tie points/perspective centres 
- number of iterations used in the adjustment 
- number of control points 
- number of check points 
- planimetry/height 
- control points 
- tie points 
- check points 
- Was lens distortion and refraction corrected for? 
- pre-marked points used as model pass points 
- natural points of detail used as model pass points 
- camera reseau 
- perspective transformation carried out between plotter projection plane 

measurement and photo-plane 
- two-dimensional linear conformal transformation carried out between 

projection plane and photo-plane 
- projection plane measurements used as pseudo-photo-plane coordinates 
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Table VI 

PM+S 
AT 

AT+S 

- 34 -

Summary of Experimental Aerial Triangulation Results 
after Block Adjustment for the Durban Test Area 

i -- ---, \l.'eirhts 

~--A··-
Op o~ 

Corn pan tor Adjustment Plan. Jki;~htj cr I . 2 3 
,_ 

C(lJl>- lcrP r I 0 

P/Z pt·, P/Z !! C ;\ ll ,,_ 
--1--····-- --- --· 

HI Arner (X. Y & Z 11/1/0 lfl/1 7.6 30 11/14 26/23 10.7 11.8 23.0 3.6 7.8 
separate) 

TM Arner (X, Y & Z 1/1 /0 4/2/1 8.0 so 36/36 -/- 12.0 12.0 - 9.1 15.8 
separate) 

TM Amer(X,Y&Z 1/1/0 3/3il 6.2 20 10/J3 26/23 8.7 3.7 19.3 5.0 13.8 
separate 

TM Bundle VJ = ! 8.4 I I0/13 26/23 10.5 - 22.8 13.8 --
n, ANBLOCK x2 1/1/1 1/1/1 6.7 1/1 10/1 '.< ::_.-,:n 9.4 6.4 19.8 8.4 16.9 

sn:1 Arner (X, Y & Z 2/1/0 3/1/1 4.5 50 6/34 15/36 5.0 6.3 23.7 5.0 7.1 
sep:uJtc) 

Wed A7 Arner (X,Y &Z 1/1/0 4/2/1 7.3 30 11/14 26/22 10.3 11.0 24.7 3.5 12.0 
t;(3) separate) 
Wild A7 Amer (X,Y & Z 1/1/0 4/2/1 7.1 20 11/14 25/22 8.5 9.9 20.3 5.4 9.6 
U(2)+CR separate) 
Wild A7 Amer (X,Y &Z 1/1/0 4/2/1 7.1 30 11/14 26/22 9.8 11.2 23.6 4.2 11.0 
U(l) separate) n, Amer(X,Y&Z 1/1/0 4/2/1 7.2 ·10 10/13 27/24 JO.I 8.3 14.4 4.0 8.3 

separate) 

TM Bundle 'Ii= ! 6.7 1 10/13 27/24 9.9 16.9 16.6 

TM ANBLOCK x2 1/1/1 J 1/1/1 7.5 1/1 10/13 27/24 10.6 6.3 19.0 8.8 9.7 

----
Pass LD 
Pis. & I( 

C 
·-

23.8 AT Yes 

-· AT Yes 

27.5 AT Yes 

21.3 AT Yes 
26.3 AT Yes 

17.5 AT Yes 
+S 

20.0 AT No 

28.0 AT No 

18.7 AT No 

25.1 ND No 

29.8 ND :-;o 

21.8 ND No 

- pre-marked points used as model pass points + stereo-measurement 
- artificial marks used as model pass points, that is, artificial trans-

fer points were marked on every diapositive 
- pass points between models PUG-marked for stereo-measurement 
See footnotes to Table Vas well. 

The following precision criteria, expressed in microns in the photo-plane, are 
used to describe the results obtained in the various single model tests: 

Notation Meaning 

Standard deviation in y-parallax calculated with (n-5) degrees 
of freedom, where n is the number of points used in the adjust
ment solution of the model's relative orientation 

Standard deviation in height claculated with (n-3) degrees of 
freedom following the absolute orientation of the model, where 
n is the number of points known in Z used in the absolute 
orientation 

Standard deviation in X and Y, respectively, each determined 
with (n-2) degrees of freedom, where n is the number of points 
with X, Y coordinates used in the absolute orientation 

Standard deviation in planimetry calculated from a 2 p =a 2 x+a 2 y 

The following precision criteria, expressed in microns in the photo-plane, are 
used to describe the results obtained in the aerial triangulation experiments of 
the St. Faith's and Durban Test Areas: 

Notation 

a 
0 

Op(tie) 
oz(tie) 

Meaning 

Standard deviation of the observation of unit weight, for 
example, that for an x or y plate coordinate in the Schmid 
Bundle Adjustment 

Standard deviations in planimetry and height, respectively, 
calculated at tie points. Estimators which apply to the Amer 
and ANBLOCK adjustment procedures 

W i 11 i ams 6 



Notation 

crp(control) 
cr 2 (control) 

crp(check) 
cr 2(check) 
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Meaning 

Standard deviations in planimetry and height, respectively, 
calculated at control points only. This estimator is applicable 
to all block adjustment procedures 

Standard deviations in planimetry and height, respectively, 
calculated with (n-1) degrees of freedom at check points only, 
that is, at points not used in the block adjustment as control. 

The estimator cr 0 used in the triangulation adjustment processes is the reference 
standard deviation and is generally different for each adjustment method. It may, 
for example, be the standard deviation of a y-parallax, a model coordinate or a 
plate coordinate depending on which of these quantities was considered to be the 
observation at the parametric adjustment stage. cr 0 used exclusively as an accuracy 
criterion for judging the performances of different block adjustment methods 
would therefore be unsatisfactory. 

SOME COMPARISONS WITH PREVIOUS EXPERIMENTS WITH UNCONVENTIONAL COMPARATOR 
APPARATUSES 

Before any conclusions are drawn from the experiments of the present study it is 
appropriate that some of the significant findings of previous investigations 
should be emphasised. 

Comparison between the results of experiments 4 and 6 of Table VI and experiment 
10 of the same Table shows that, for all practical purposes, aerial triangulation 
using mono-measurement and artificial transfer points or small points of natural 
detail as transfer points produces the same order of absolute accuracy in the 
terrain as aerial triangulation based on stereo-measurement. These experiments 
extend the conclusions of T. J. Blachut (1963) for single models to blocks. 

Experiments 11 to 14, inclusive, of Table V and experiments 7 and 9 of Table VI 
show that aerial triangulation absolute accuracies after block adjustment using 
the Wild A7 as a monocomparator compare very well with the absolute accuracies 
obtainable with single-micron reading mono- or stereocomparators. These experi
ments extend the results obtained by H. Salmenpera (1970). 

It is apparent from the writer's experiment Wild A8P(3) that the precision plot
ter is quite capable of attaining the absolute accuracy performance of the single 
micron reading comparators in block adjusted digital aerial triangulation. The 
uncertainty raised by Boniface's (1967), experiment with the St. Faith's Test 
Area using a Thompson Watts (Model 2) plotter with "reseau plate holders" as a 
stereo-comparator is now removed. 

Experiments 11 and 16 in Table V confirm the 5 microns of difference between the 
check standard deviations in planimetry obtained by Boniface (1967) and Eden 
(1967), in their experiments with the St. Faith's Test Area. In passing, the 
10.2 micron result of experiment 11 which was based on a sample of 67 check 
points confirms Boniface's small sample result and supports F. Ackermann's 
contention concerning the minimum number of check points needed for obtaining 
a reliable estimate of absolute accuracy from block adjustment (Ackermann 1973). 

The experiments summarized in Tables V and VI confirm that the stereocomparator 
enjoys no accuracy advantage over the monocomparator when premarked or points of 
natural detail are used as transfer points. Even when artificial transfer points 
are used the absolute accuracies in the terrain are comparable for all practical 
purposes. 
Some small improvement in the absolute accuracies in planimetry was possible 
using the camera reseau (as distinct from the overlaid reseau) in conjunction 
with the Wild A7 of the University of the Witwatersrand, Johannesburg, for both 
the St. Faith's and Durban Test Areas. However, some deterioration in absolute 
accuracy in height was experienced. 

It is significant that even with the two small blocks that have featured in the 
tests summarized in this paper that check standard deviations in both planimetry 
and height using the Bundle adjustment have been inferior to those obtained with 
the iterative Amer adjustment. Ackermann (1973) comments on this interesting 
phenomenas well. Williams 7 
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Previous attempts to introduce the universal and precision stereoplotters into 
analytical aerial triangulation practice as stereocomparators (cf. Boniface 1967) 
have not been very successful, primarily because these instruments are too tedi
ous to use in this way, or even more so if they are used with the overlaid resea~ 
It has become evident during the writer's investigations that the stereoplotter 
is best used as a monocomparator in analytical aerial triangulation. When used in 
this way the diapositive through-put rate is very high, operators without any 
previous photogrammetric experience can be used and, as has been demonstrated 
by the results of this integrated series of experiments there is no loss of 
absolute accuracy. 

CONCLUSIONS 

In the previous Section of this paper while making a number of comments on past 
experience with unconventional comparator apparatuses in analytical aerial trian
gulation it has been opportune to record many of the conclusions that can be 
drawn from the writer's studies. No attempt has been made to draw all possible 
conclusions from these studies however. 

Since it is shown in Tables IV, V and VI that aerial triangulations using the 
five classes of comparator apparatuses all lead to the same orders of absolute 
accuracy for the three test areas involved the worst precision estimator recorded 
in Table II is, in fact, an adequate estimate of "a minimum metrical precision 
threshold" for analytical aerial triangulation purposes. This conclusion may be 
summarized as follows: Any comparator apparatus which is capable of determining x 
and y plate coordinates with a standard deviation of 11 microns and maximum 
residuals in x and y of approximately 25 microns may be used with confidence in 
analytical aerial triangulation. The standard deviation of 11 microns corresponds 
to one of approximately 15 microns in point position. 

Using the TM main scale alone as a crude comparator it is possible to produce 
plate coordinates with a standard deviation of 8 microns and maximum residuals 
in x and y of the order of 15 microns. 

There appears to be no practical advantage to be gained by using a central per
spective transformation between the projection and photo-planes of the plotter
comparators as the absolute accuracies of the Wild A7U(l) and Wild A7U(3) tests 
with the Durban Test Area agree almost exactly. This is a very important con
clusion because if it is not necessary to use the central perspective trans
formation mapping of the plotter perspective centres ceases to be of much inter
est. 

Finally, it is possible that had a sixth class of comparators been used in the 
writer's investigations, which had a measuring accuracy lower than that of the 
class (5) comparator, it might still have been feasible to match the absolute 
accuracy performance of the TM in digital aerial triangulation. 

Williams 8 
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SYSTEMATIC COMPARATOR ERRORS - MATHEMATICAL DESCRIPTION AND INFLUENCE 
ON BLOCK TRIANGULATION 

by R.-P. Mark, Jena, GDR 

SYSTEMATIC COMPARATOR ERRORS 

Systematic errors influencing the results of block triangulations also include 
the systematic errors of the comparators which provide the basic data for the 
calculations, the image coordinates. 

Measuring instruments of any types are physical implementations of a theoretical 
principle, but in no case can the mechanical, optical and electrical components 
contained in the measuring instruments be produced completely free of errors. The 
sum of their errors falsifies the measuring result both accidentally and system
atically. This depends on the constructional principle as well as the function, 
a component has in the practical realization of the theoretical principle. 

In toe p~actice of instrument manufacture experience has shown that for the in
vestigation of systematic errors of comparators it will suffice to concentrate 
upon the scale errors of the spindles, glass scales and the like and the 
positional errors of guides (orthogonality, parallelism). Generally, these 
errors are smaller than 2.5 • 10-5. This means that for a length of 200 mm a 
scale error of no more than 5 µm and an error of orthogonality of 15cc will 
occur. Any other systematic errors can be neglected due to their small amounts. 

A prerequisite for the investigation of the influence of systematic comparator 
errors is the derivation of a mathematical functional model for each instrument 
type. 
The way of procedure shall be exemplified for the Stecometer from Jena. In its 
design the Stecometer is based on the Pulfrich comparator principle, i.e. coor
dinates and parallaxes are measured. The necessary movements are performed by the 
photo carriers (x', Px and p~) and the optics (y"), Fig. 1. With a coordinate 
system parallel to they guiBe the following positional errors on guides are 
possible: 

left x guide (ax'), right x guide (ax"), Px guide (apx), py guide (apy). 

11 
"' ·11 
!___I - -------~ 

Fig.1: coordinate system 
of Stecometer 

l...---,1----+--------t-----+---' 
p -y x- y- px- carriages 

Motion equations are derived for the moveable carriages in the Stecometer. The 
coincidence of the measuring marks with the homologous image points (measuring 
procedure) is described as coincidence of the carriage motions in the different 
directions. The transfer of the carriage motion to the spindles and the consider
ation of their errors lead to the measured image coordinates as a function of the 
introduced instrument errors. 

Mark 1 
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For the Stecometer the application of this principle led to the following 
equations: 

x' = m x' - x'dm 
X 

- Pyapy 
105ax' + 515 ax 11 

y" = y" - y"dm + x' - pxapx m y 620 

Pxm = Px - pxdmpx - Pyapy 

Pym = Py - Pydmpy+ x' 
470(ax,- a X 11) 

+ Pxapx 
620 

In these relations quadratic terms with maximum values of 0.4 µm were neglected. 

If image coordinates are used in the triangulation technique, then also the in
fluence of the measuring procedure has additionally to be considered, because on 
the Stecometer measurements are exclusively made with "common area inward". This 
fact involves the great advantage, that the same mathematical model applies for 
all photographs of a strip, except for the first and the last. 

CORRECTION OF IMAGE ERRORS 

It is common practice in analytical restitutions to make corrections of image 
errors in order to eliminate systematic errors of the photographic material. The 
mathematical statement always includes also terms which at the same time cover 
the instrumental errors. Good results of a correction of image errors can be ex
pected when using at least 8 fiducial marks. Even more favourable preconditions 
for the correction of image errors are offered by the marginal glass scales (ex
ternal reseau) provided in the photogrammetric cameras from Jena. With these 
glass scales systematic image errors can be determined just as well as with a 
complete reseau, with the added advantage of avoiding all drawbacks of the 
reseau. 
From an affine transformation 

x~k = x' + m al + ax' + 2 m a y' + 3 m a x'y' 4 m m 

y~k = y' + bl + bx' + by' + b x'y' m 2 m 3 m 4 m m 

(neglecting those terms which do not exceed a maximum amount of 0.5 µm) it 
follows for the Stecometer that only terms depending on Px are not covered by 
the given polynomial. However, these terms are constant practically over the en
tire image and thus give rise only to an error of the origin. 

SYSTEMATIC ERRORS IN BLOCK TRIANGULATION 

The influence of the systematic comparator errors was investigated both theoreti
cally and by practical examples. For the theoretical investigation the bundle 
method was used in the form of the block triangulation with single photographs 
suggested by ALBERTZ. For practical work the convergence properties of this 
iterative procedure are not particularly favourable. It is, however, very well 
suited for a theoretical investigation, because it results in an alternating com
putation of space resections and space intersections. The normal equation systems 
for these two tasks can easily be solved. In view of the minuteness of the 
systematic errors a sufficiently clear picture of the effects of the systematic 
errors can be obtained by an iteration. For a side overlap of less than 50 % and 
an ideal position of points there exist, as is apparent from Fig. 2 and 3, three 
types of resections and 20 types of intersections caused by the fact that each 
point is imaged in a different number of photographs, for which apply different 
types of resection. 
The following conclusions may be drawn from the investigations: 

A) GENERAL 
- Plane coordinate errors are proportional to the base, height errors to the 

flying height. 
- Errors are caused by affinity errors (dmx-dmy, dmpx-dmy) and errors of ortho

gonality or parallelism. The amount of the scale errors has no influence on the 
size of the point coordinate errors. 

Mark 2 
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Fig. 2: images on block triangulation 

B) PLANE COORDINATE ERRORS 

Fig. 3: intersections on 
block triangulation 

- The systematic Stecometer errors practically affect only the block edges. 
- In they-direction a periodicity of the x and y errors is found at the block 

edge, which is attributed to the number of the rays taking part in the inter
section (4 rays in the area of the side overlap, 2 rays outside this area). 

C) HEIGHT ERRORS 

- The affinity errors of the comparators have consequences within the whole block 
the errors of orthogonality and parallelism only at the block edges. 

The following two paragraphs merely refer to the height errors caused by 
affinity errors: 
- In they-direction a periodicity of the height errors is found, which is 

attributed to the number of the rays taking part in the intersection (4 or 6 
rays in the area of side overlap, 2 or 3 rays outside this area). 
In the x-direction a warping is found at the block edge, which is attributed 
to the rays taking part in resection (6 rays in the outer photos, 9 in the 
inner photos). 

To corroborate the conclusive force of the theoretical investigations a practical 
example was calculated, for comparison, on the basis of the same block triangu
lation technique. The block was calculated without control points (Fig. 6), with 
4 control points (Fig. 7) and with 8 control points (Fig. 8). 

It becomes apparent that the effect of the systematic errors is correctly 
described in their typical behaviour. The amount deviates by about 30 % especial
ly at the block edge, which is attributable to the iterative character of the 
technique. 

From the error illustrations with 4 and 8 control points we can see without ex
ception that the control points have predominantly a local effect. In all re
maining points the errors are only slightly affected, partly reduced but partly 
also increased. Thus, even when there is a great density of control points at the 
block edges it cannot be expected that the errors in the block interior will dis
appear. 

Mark 3 
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The investigations have shown that the bundle adjustment is not in the position 
to suppress the influence of systematic comparator errors. One has of course to 
bear in mind that only small amounts are concerned in the case of the systematic 
errors of the Stecometer, whose influence is scarcely traceable in practice. On 
the other hand, however, it cannot be expected that other systematic errors will 
basically behave differently than the discussed comparator errors. Therefore, it 
is justified to draw the conclusion that for the bundle adjustment systematic 
errors can only be eliminated, when proper measures are taken against them at 
their places of origin (e.g. by adjustment with additional parameters). 
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Fig. 7: Influence of systematical Stecometer errors on point coordinates 
by use of 4 pass points 
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Fig. 8: Influence of systematical Stecometer errors on point coordinates 
by use of 8 pass points Mark 5 



- 43 -

PHOTOGRAMMETRIC DENSIFICATION OF TRIGONOMETRIC NETWORKS 
THE PROJECT APPENWEIER 

by F. Ackermann, Stuttgart, Fed.Rep, ~erroany 

1. Introduction 

Photogrammetric point determination has reached a level of accuracy, which makes 
practical application to geodetic problems feasible. In particular photogrammet
ric determination of low order trigonometric nets or of traverse nets seems pos
sible, meeting accuracy and economy requirements. 

Theoretical basis is the property of aerial triangulation, repeatedly confirmed, 
that fairly well controlled blocks of moderate size reach planimetric coordinate 
accuracies of around 10 µm or better, referred to photo-scale, provided the 
points are well signalized. This accuracy-figure is valid for photo scales up to 
about 1 : 2000, and is very little dependent on block-size. Thus, the accuracy of 
points, referred to the terrain, depends mainly on photo-scale and on the signal
isation of points. It depends, to a lesser degree, also on distribution and dens
ity of planimetric ground control. 
The inherent accuracy of conventional photogrammetric block triangulation has 
been sufficiently established. It is beingconsiderably increased by the applica
tion of additional parameters for systematic image- or model-deformation. Never
theless, it is advisable, to confirm by controlled tests, that the high accuracy 
requirements of geodesists can be met in practice. Such tests give, in addition, 
experience about circumstantial conditions, such as signalisation, photo-scales, 
and ground control. 

2. The pilot project "Appenweier" 

2.1 The state survey authorities of the state of Baden-WUrttemberg have decided 
in 1973 to try the applicability of the photogrammetric method for the densifica
tion of an existing trigonometric net of 3rd order into 4th order. The photogram
metric part of the test was handled by the Photogrammetric Institute of Stuttgart 
University. The test area Appenweier (in Badenia) covers 9.1 x 10.4 km2. In it 24 
targetted trigonometric points of 3rd and 2nd order are given (some of them tar
getted excentrically by subsidiary points), see fig. 1. 85 rather evenly distri
buted points were to be determined. They are check points for the test, their 
known terrestrial coordinates being withheld. The accuracy of the terrestrial co
ordinates is supposed to be about 1 cm, direct confirmation is lacking, however. 
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The planning of the project aimed at a resultant planimetric coordinate accuracy 
of 3 cm in the terrain, which implies a photo-scale of about 1 : 3000 to 1 : 4000 
equivalent to a required accuracy of 10 µm to 7.5 µmat photo-scale. 

Because of expected difficulties with point transfer in very large photo-scales, 
the photo-scale of 1 : 7800 was applied, instead, with 4-fold flying, in 4 direc
tions, see fig. 1. 4-fold photo-overlap, with simultaneous block-adjustment, is 
expected to improve accuracy by at least a factor of 2, compared with single cov
erage at the same scale. The 4-fold overlap of 1 : 7800 scale gave altogether 448 
models, which is about the same number of models as the single coverage of photo
scale 1 : 4000 would have implied. 
All 24 control- and 85 check-points were targetted, by 20 cm x 20 cm size signal~ 
35 of them by excentric subsidiary points. Each of the points had attached 2 or 4 
auxiliary points, also targetted, forming a straight line or a cross, according 
to fig. 2. They are to ascertain (and adjust) the position of the signals by 
straight-line and distance conditions. In addition, for special test purposes, 
all standard tie-points (6 per model) were targetted with triple signals each. 
It was to be investigated how transfer of natural and/or artificial tie-points 
would compare with ideally targetted points. 
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FIGURE 2 
Auxiliary signals, for 
straight line- and 
dist~nce-conditions 

The Appenweier test has been set up to investigate the accuracy performance of 
the photogrammetric method. According to experience the accuracy and the economy 
of a method cannot be tested jointly. Therefore, optimization of economy will ha
ve to be studied seperately, once the accuracy capability is established. 
Aerial photography was taken in two missions on April 24th and May 12th, 1973, 
with the Zeiss RMK A 15/23 wide-angle camera, by Rheinische Braunkohle AG. The 
first flight mission was discontinued due to turbulence. Due to bad weather con
ditions the targets in the field had to be maintained for about 2 months, which 
caused some difficulties. 

2.2 The film-diapositives of the aerial photographs were measured with the Zeiss 
Stereocomparator PSK. Each photograph was measured twice. Some photographs showed 
noticeably blurred signals due to image movement. The standard measuring accuracy 
of the mean of the double plate-coordinate-measurements, was established from all 
recordings to be about 1.5 µm. The total measuring time amounted to about 600 h 
(for 448 models, double measurements of about 20 points/model and 4 fiducials per 
plate). 

The machine coordinates were transformed into the image coordinates via the fidu
cial marks by applying similarity transformation 1 ). After correction of image 
coordinates for lens distortion 2 ), earth curvature, and refraction independent 
models were computed by analytical relative orientation. The average residual 
y-parallax of about 4.5 µm confirms the good overall quality of the material. 

1 ) A first attempt with affine transformation was abandoned. Presumably due to 
disagreement between calibrated and actual fiducial marks the resulting block 
still showed overall affinity. Block-accuracy results turned out to be slight
ly inferior to the ones based on similarity transformation. 

2 ) According to the procedure of double linear sector interpolation, described 
by K. Kraus and E. Stark in "Flachenhafte Verzeichnungskorrektur in der nume
rischen Photogrammetrie", Bildmessung und Luftbildwesen 2/1973, 50 ... 56. 
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The computed model-coordinates formed the input for the block-adjustment by the 
method of independent models. 

3. Block-Adjustments 

3.1 The data allowed several investigations with regard to different points of 
view. Several series of adjustments were performed. Here only the results concer
ning planimetry are reported. The adjustments can be classified according to 
3 main features : 
- Control: Version 1, utilizing all given control points (perimeter point+ 8 

points inside the block); Version 2, dense perimeter-control (omitting the con
trol points inside the block and adding a few perimeter points in order to 
avoid large spacings). 

- Combined adjustment of the 4-fold block; adjustment of the 2 double blocks of 
crossing flight directions; separate adjustment of the 4 single blocks, labeled 
according to their flight directions (EW - WE - NS - SN, see Fig. 1). 

- Post treatment of the adjusted blocks by the method of least squares inter-
polation. 

Remark: The adjustments used up to 30 control points, as some of the 24 given 
points had subsidiary signals close by which were also treated as control points. 
Some additional investigations have not been completed, as yet, concerning height 
accuracy, point transfer, adjustment of auxiliary points (by the additional con
ditions implied), bundle adjustment, systematic errors, and adjustment with add
itional parameters. 

3.2 Presentation of results 
The test results of the various block-adjustments are summarized in tables 1 + 2. 
The accuracy figures are given in cm and in µm. They refer to the 3 main series 
of computation: (1) single, double and 4-fold overlap; (2) area-distributed con
trol and perimeter control ; (3) standard block-adjustment and additional least 
squares interpolation 1 ). 

4. Evaluation of the results comments 

4.1 Four-fold overlap 
The first comment should refer to the actual case on test, the 4-fold block, with 
the given control, table 1. 
The resulting planimetric coordinate accuracy figures are 

µxy 3,5 cm 4,5 µm after block adjustment 
µxy = 2,7 cm = 3,4 µm after least squares interpolation. 

Such results are, generally speaking, highly satisfactory and meet the planning 
specifications. of 3 cm. 
The vector diagrams of residual errors at the check points are not presented in 
this paper. They show the familiar trend effects within local areas. 4 such areas 
of high correlation of residuals can be distinguished, each extending over about 
1/4 of the block area. By the least squares interpolation the local systematic 
trends have been considerably reduced. They are, however, still discernible. Thus 
there are still some systematic error effects left uncompensated. 
The magnitudes of the maximum residual coordinate errors of 10.6 cm and 9.4 cm, 
respectively, are in general agreement with expectation. The large errors have 
some relationship with the trendfields of the vectors. Nevertheless, they occur 
in first instance independently, sometimes rather close to control points. Most 
likely they are caused by disturbed signals. It remains to be seen whether the 
additional adjustment of the auxiliary signals by straight-line and distance-con
ditions will be able te reduce the magnitudes of the maximum residual errors. 

1 ) Empirical determination of the covariance function was effective only with 
the 4-fold block. In all other cases a priori covariance functions had to 
be used. 
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A??~NWEIER, Planimetric resvl·;s of blocl(-adjustrr.ent wit,, independent models (wide angle, photoscale 1:7800) 
All given control point5 used (peri11ete1· + points inside) 1) 

cfte" '>lock-adjustment lma, I after lea,t squares interpo,~tion 

(jo µx _I-'~/'"!_ ~max I 5
o f :_ ~~ f-1:!_ ~ /.1. y !_Y ~xy __ lmax I /-' x ~;fnxy _ •max 

S1riJ1e tl1~c~s ( 112 models, 27 control points, 77 check points 

tn Ii 
II 

3.5 4.(1 5.3 4.7 12 .8 4.5 5.1 6.8 6.0 16. 4 3.2 4.7 4.0 13.3 4.1 6.0 5.1 li'.1 
5.3 4.9 16.3 5.8 6.8 6.3 t:0.9 -,.;~ 

1: 
3.8 5.4 6.5 ~.c 19.1 4.9 6.9 8.3 7.6 24 5 4.5 

,,e 3.4 4.7 3.5 4.1 12.8 4.4 c.o 4.5 5.3 i5.4 4.0 3.i 3.6 9.9 5. 1 4.0 4.6 12.7 ,, 
1! S\ ,, 3.8 6.0 6.1 6.1 20.3 4.9 7.7 7.8 7.8 26.0 5.1 4.2 4.7 19.7 6,5 5.4 6.0 25.3 
I' 

1' 

:--ea11 3.6 5.1 5.5 5.3 20,3 4.7 6.5 7.1 6,8 26.0 4.3 4.4 4.4 19.7 5.5 5.fi 5.6 25.3 

~~sb1e b~ocks (224 models, 30 control points, 82 ci1eck i:o·:nts) 

, ·-" S II 3.8 3.8 4.1 4.0 12.6 4 I.I 4.9 5.3 5.1 
16.2 ~ 3.1 3.3 3.2 1~.1 I 4.0 4.2 4.1 16.8 ,,:; , h 

::·,·,'/S'i li 3.7 4.2 5. :. 1., 14.3 4.7 5.4 6.5 6.0 HU 3.6 3.7 3.7 12.2~4.7 4.7 H·.G 
_____J 
~.€a1 I! 3,8 4.0 4.6 4.3 14.3 4.9 5 .1 'i.9 5.5 18,3 3.4 3.5 3.5 13.1 4.3 4.5 4.4 16.8 

4 -~:1:: b 'ock (\•:E/EW/hS1 SN 4t,8 ,00de 1 s, 3J control ptints, 83 check points) 

!! 2.3 3.4 3.6 , a 10.6 I 4.9 4.4 ,1,6 ·1. 5 13.6 I 2.7 2.5 ll 9.4 

I 
3.5 3.3 ~ 12.1 j --

. \ ii 3. 3 3.3 3,2 3.3 10.6 4.9 4.2 4. l 4.2 lJ.6 2.6 2.l 2.5 9.2 3.3 3.i 3.~ 11. 8 ·, 

iµ,,_,,Li.yc ,·.ir.s. vabes flf residua·, i!irJrs at th~ck points ; f",y•l't:1,;Jfi..'-m = rr.a~. residu~l coordinate error 
· 1 ax of check points 

1) 8 additional p~rir.1e~e-,. control points, 73 r.heck points 

4.2 Comparison of 1-, 2- and 4-fold blocks 
The 4 single blocks represent conventional blocks of 20 % lateral overlap, photo 
scale 1 7800. Their summarized accuracy figures are : 

a = 3.6 cm = 4.7 µm (range 4.4 - 4.9 µm) 
0 

µxy = 5.3 cm = 6.8 µm (range 6.0 - 7.8 µm) after block adjustment 
µxy = 4.4 cm = 5.6 µm (range 4.6 - 6.3 µm) after least squares interpol. 

\Jx/a
0 

= 1.5 and 1.2, respectively 

Such figures qualify the block-results of the independent model method as most 
satisfactory. They confirm the high level of accuracy which the photogrammetric 
system is capable of. 

Compared with the single blocks the improvement of accuracy by double and 4-fold 
overlap does not reach expectation. The rations of the r.m.s. values µxy of sing
le, double, and 4-fold blocks are : 

1 

1 

0.81 

0.80 

0.66 (1 

0.61 (1 

1 
1.23 

1 

1. 25 

~) after block adjustment 

- 1-) after interpolation 
1. 6 3 

The theoretical ratio, on the basis·of random errors only, is expected to be ab
out a factor 1.5 (> ✓2) per step. Thus, only little more than half the expected 
improvement has been realized. The previous statement about the satisfactory 
overall results of the 4-fold block (see 4.1) can now be specified more precise
ly: The resulting accuracy is due to the high initial quality of the separate in
put blocks in first instance, whilst their combined adjustment was not as effec
tive as expected. 

The general explication of such results must refer to the presence of uncompensa
ted systematic image errors which have been known to disturb unfavourably theore
tical expectations which are based on random errors only. Nevertheless such ex-
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planation still leaves some questions open. It had been anticipated, originally, 
that the 4-fold block would compensate systematic errors very well. Evidently 
such effects did not come about. Strange to say, the least squares interpolation, 
supposed to remove remaining systematic error effects, has been more effective 
with the 4-fold block than with the single or double blocks (1 : 1/1.30 against 
1 : 1/1.22 and 1 : 1/1.23}. 

4.3 Least squares interpolation 
The conclusion just drawn about the presence of systematic image errors is con
firmed by the general effectiveness of the least squares interpolation after the 
block-adjustments. The accuracy improvement for single, double, and 4-fold blocks 
amount to 18 %, 19 %, and 23 %, respectively (1:0.82; 1:0.81; 1:0.77). It means 
that treatment of systematic errors one way or another is essential. 
The maximum residual errors have been hardly reduced by least squares interpola
tion, which confirms their independent, local causes as stated in section 4.1. 

4.4 Comparison with,perimeter control 
The results of table 2 refer to dense perimeter control. The control points in
side the block have been r~moved, and a few points have been added at the peri
meter. The resulting average spacing between control points along the perimeter 
is 2 base lengths. 
Comparison of table 2 with table 1 shows that the accuracy results of both con
trol versions are virtually identical. Therefore, the evaluation of the results 
and the comments, as given in sections 4.1 - 4.3, apply equally to adjustments 
based on perimeter control. Once more the practicability of planimetric perimeter 
control has been confirmed. 

Table 2 APPENWEID, Planimetri: results of block-adj•;st~nt with indep'!ndent. models (wide angle, photos ca le 1:7800) 
Dense p8rimeter control --------

Block I after block adjustment after least squares interpolation 

CJ fx f-'y 1-'-xy f:max 60 h /.l.y /J-xy !max flx /'y f.J.xy lmax 

I 
f'-y. /J-y /J-xy Ema,< 

I 
0 

-cm- ,um - cm - -/m 

Single blocks (112 modcL, 25 control points, ·79 check points) 

EW 3.5 3.9 4.8 4.4 12.5 4 .. 5 5.0 6.2 5.C 16.0 3,4 4.4 3.9 12.0 4.4 5.6 5.(l 15.-l 
WE :.r 5.9 6.1 6.0 21. 7' 4.9 7.6 7,P, 7.7 27.8 5.7 4.8 5.3 20. 3 7.3 6.2 6.8 26.0 
NS 3.~ 4.2 3.8 4.0 11.6 4.4 5.4 4.9 5.2 14.9 3.6 3.3 3.5 10.1 4.6 4 .. ? 4.4 12. :~ 
SN 3.9 6,0 5.2 5.6 19 .3 5.0 7.7 6.7 7.2 24.7 5.1 4.1 4.6 18.4 6.5 5.3 5.9 23.6 

mean 3.7 5.1 5.0 5.1 21. 7 4. i 6.5 6.4 6.5 27.8 4.6 4.2 4.4 20.3 5.9 ,.4 - ., J .. 26.0 

Double blo~k~. (224 m0dels, 28 control points, 84 check ;ioints 

WE/NS . 3.8 3.3 4.0 3.7 12.5 4.9 4.2 5. l 4. 7 16.0 3,3 3.2 3.3 13.0 4.2 4.1 4.2 lf.7 
HI/SN 3.7 4.2 4.3 4.3 14.0 4.7 5.4 5.5 5.5 17.9 2.6 3.3 3 < ,J 12.4 4.6 4.2 4.4 15.9 

mean 3.3 3.8 4.2 4.0 14.0 4,9 4,9 5.4 5.2 17.9 I 3.5 3. 3. 3.4 13.0 4 5 4.2 4.4 16.7 

4-fold block
0 

(WE/F.\1/NS/SN ; 448 ir.odels, 28 control points, 85 c:1eck points 

11 3.8 3.1 3.3 3.2 10.4 4.9 4.0 4.2 4. ~ 13.3 I 2.G 2.11 2 ,. .o 7.7 I 3.3 3.1 3.2 9.9 
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5. Summary and conclusion 

First of all the test has confirmed the high accuracy level of photogrammetric 
point determination, indicated by the mean planimetric coordinate accuracy of 
single blocks of 4.4 cm or 5.6 µm, from the photo-scale 1 : 7800. 

With double and 4-fold overlap the accuracies improved to r.m.s. values of planf
metric coordinate errors of 3.5 cm(= 4.4 µm) and 2.7 cm (= 3.4µm). Such results 
are highly satisfactory in absolute terms. Nevertheless the double and 4-fold 
coverage has not been as effective as expected. 

The results indicate the presence of systematic image errors. Research into their 
more effective compensation is continued and further improvement of accuracy is 
expected. 
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DENSIFICATION OF TRIGONOMETRIC NETS 
Practical experiences with bundle-adjustment 

by Jonna Hvidegaard, Kobenhavn, Denmark 

ABSTRACT 

Fixed-points for cadastral measurements have been coordinated by use of the bund
le adjustment method. The coordination was done by densification of an existing 
2 km net of triangulated points down to a density of approx. 400 m. The photo 
scale was 1 : 8000 - 1 : 10 000 and the overlap 60/30. 
The accuracy of 8 blocks, covering an area of 448 km 2 , has been tested in the 
fiel~ by measuring distances between coordinated points. More than 700 points 
were checked and gave a standard error of 5 cm on a photogrammetric coordinated 
point. 
The investigation was done as a cooperation between the Cadastral Service and the 
Royal Veterinary and Agricultural University. 

BACKGROUND 

Photogrammetry has already for some years been used for cadastral purposes in 
Denmark. To a certain degree photogrammetric plans have formed the basis of new 
cadastral maps. Perhaps more interesting in this connection is the fact that pho
togrammetrically coordinated fixed-points are being used for cadastral measure
ments. 
The Geodetic Institute of Denmark is responsible for the triangulation of higher 
order. The Institute establishes points down to a density of approx. 2 km. Fur
ther densification is left to the Cadastral Service and the private surveyors. 
According to official regulations the surveyors have to tie new cadastral measu
rements to fixed-points when these are located within a distance of 200 m (for 
measuring of roads the limit is 500 m). This means in practice that unless you 
have a net of points with a density of approx. 400 m problems may arise especial
ly in the developing areas of larger towns. 
Also the local authorities have a professional interest in the developing areas 
of the towns. One of the main jobs for the photogrammetric firms is to produce 
technical plans in the scale of 1 : 1000 to the municipalities. The need for 
ground control for the compiling of these plans corresponds very well with the 
earlier mentioned 400 m net. The net is furthermore useful for the local techni
cal administration for map revision and setting out purposes. 

The jobs that will be presented in this paper are all the result of a cooperation 
between a state authority, namely the Cadastral Service, a private photogrammet
ric firm, the local municipality, and the local private surveyor. Such a cooper
ation implies of course both advantages and difficulties. 

THE PHOTOGRAMMETRIC TRIANGULATION 

Up to 1970 the only photogrammetric triangulation method used for the described 
kind of jobs was the Anblock with models measured in analogue instruments such as 
A8, A7 and Simplex III. This method is still in use for smaller blocks and gives 
sufficiently good results with a photo scale of 1 : 4000 or 1 : 5000. 
In 1970 the first test block in Denmark using "bundle adjustment" was made. The 
measuring and the calculations were done in Finland at the Technical University 
of Hels1nki. The results were promising, and since then some 40 jobs covering 
approx. 1400 km2 have been performed mainly in Finland but lately also in Den
mark. 
All the jobs mentioned in this report were carried out in Finland. The pictures 
were measured on Zeiss PSK comparator using glass-diapositives and the calcula
tions were made with the Finnish triangulation programme. 
Prior to the adjustment the pictures were corrected for 
1 - film distortion (using affine transformation on the fiducial marks), 
2 lens distortion (radial), 
3 refraction, and 
4 earth curvature. 
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Criteria had to be estatlished for the practical execution. Up till now only very 
little has been published about bundle adjustment used on practical jobs where 
the results have been tested in the field. Most papers seem to deal with simulat
ed blocks or test blocks. 
The intention was to end up with a standard point error ( ✓ m 2 + m2) of 5 cm on 
the ground, and after many considerations the following x Y 
lines of direction were proposed 

1) - Photoscale between 1 : 8000 and 1 : 10 000. The predicted accuracies of the 
bundle adjustment were 4 - 6 µ in photo scale. 

2) - The cameras had to be the ordinary wide-angle cameras of the photogrammetric 
firms (c = 15 cm) and the film: pancromatic, which is the film normally used in 
Denmark. 

3) - Overlap 60/30 was chosen. Certainly 60/60 would form a stronger block ( Ill 
and 3. ) , but as the improvement is mainly on the Z-coordinate, and considering 
the increase in number of photographs in a block, 60/30 was agreed upon. In some 
cases 80 ~ forward overlap was photographed. Not all the pictures were used in 
the block, but selections were done in order to "get down" into streets, to get 
pictures in a good position in one strip compared to the next strip, or to forti
fy the block in weak areas by including extra pictures. 

4) - The distribution of ground control points was chosen after the scheme 
Planimetric control along the perimeter of the block with a mutual distance of 
4 x base. 
Height control as a net covering the whole block, the density being 2 x base. 
These figures are recommended by Dr. KilpelK from the Technical University of 
Finland in his investigation using simulated blocks 121. 
Remembering the 2 km net of triangulated points already existing in Denmark the 
figures outlined the prospect of never having to measure anything but vertical 
control points in the field. These expectations have only been fulfilled to a 
certain extent. In a block of for instance 100 pictures it will normally be nec
essary to measure 2 - 3 horizontal control points. As to the vertical controls 
these all have to be measured and in spite of the fact that the Z-coordinate is 
only of minor interest, at least from a cadastral point of view, it was agreed 
to use the recommended net. 

5) - The accuracy of the triangulated points was stated by the Geodetic Institute 
in the following way: The maximum error on a distance between two neighbouring 
points is 10 cm. As to the accuracy of the vertical control points the standard 
error was predicted to be 2 - 3 cm. 

6) - For targets were chosen white plates 40 x 40 cm, and a black contrast of at 
least 15 cm around the signal was recommended. All ground control points should 
have extra signals (fig. 1) first of all to ensure the identification in the pic
tures. 

7) - Artificial points 
(marked in the emulsion) 
were abandoned mainly 
because of unfavorable 
experiences from Anblock
jobs. Where extra pass
points were needed either 
signals were set out in 
advance in the predicted 
side-lap and perimeter, 
or natural points were 
measured in the compara
tor. 

measured distances 

extra 
signal 

control 
point 

measured distance 

control 
point 

extra 
signal 

extra 
signal 

FIGURE 1 

direction to 
known point 

~oadly speaking these lines have been followed in the reported jobs. 
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TEST 

Having made a number of blocks with the new method it seemed natural to check 
whether the results were in accordance with the expectations. During the last 
year the possibility of reaching the goal of 5 cm in standard error had been 
q u e s t i o n e d . I n o rd e r t o c e r t i f y a n a c c u r a c y o f 5 c m a v e r y e x a c t g e o d e t i c m e a s u re·· 
ment is required. 
At the same time the test should be fairly easy to carry out since a secondary 
aim of the investigation was to see whether a test could be done in a way that 
would make it reasonable to include it as a permanent part of future densifica
tion jobs. 
As the standard error of a distance can be shown to be equal to the standard 
error of a point, under the assumption of independence between the coordinates, 
measurement of distances would give the wanted result directly. Furthermore, the 
very simple geodetic "net" would give no error-propagation, and by using electro
nic distance measuring equipment (EDM) the measurement could be of high accuracy. 
The standard error you get by using distances is the relative one, but that is 
precisely the error of major interest here, as the coordinated points are going 
to be used for cadastral measurements in the classical way. 
Having decided to use distances the next problem was how to plan the field work. 
To allow the use of the normal distribution the elements (here being the differ
ence between the measured distance and the same distance calculated from the pho
togrammetric coordinates) must be independent. If you use EDM the easiest way to 
get many controls would be to measure several distances from the same station, 
but then the elements are not independent. However, measuring only one distance 
from each point would increase the control work and the costs considerably. 
The actual work was done as a compromise between these two extremes, and calcul
ations afterwards showed that the correlation was hardly ever significant. 
In all the jobs but one, the measured distances have been regarded as error-free. 
This is of course a point where you have to be careful. In the start of the col
lection of controls we also intended to use distances measured by the local sur
veyors during their normal work. It appeared later that the standard error here 
(based on the remeasurement of 118 distances) was approx. 5 cm, which is the same 
as the expected error to be controlled. Out of 40 double measurements (never from 
the same station) the standard error on a distance mP.asured by the testing group 
is computed to be just under 1 cm. 
It has to be mentioned that quite a few of the distances were in fact measured 
with steel-tape but as it appears from table 2 they were all under 10 m. These 
short distances date from double-signalized points where both the point itself 
and the extra signal have been coordinated. 

RESULTS 

The results are presented in tables 1 and 2, the first one dealing with the act
ual flight mission and the calculations, the second with the control measurement. 
As can be seen from table 1 the side-lap and the photo scale vary to some extent. 
If a contract is set up for a flying a variation of+ 10 % is usually allowed in 
the side-lap. Nevertheless the last block on the list seems to have been photo
graphed in rough weather. As to the photo scale it has to be mentioned that one 
of the photogrammetric firms right from the start wanted to use 1 : 8000 instead 
of 1 : 10 000. The same firm uses 1 : 4000 for low ·flying where the others prefer 
1 : 5000. Therefore, the figures in the table should not solely be expounded as a 
growing confidence in the method. 
The table does not tell anything about the distribution of the ground control 
points. An investigation showed that compared with the recommended distribution, 
there were more horizontal controls (mainly points insjde the blocks) but less 
vertical controls (the net being closer to 3 x base than to 2 x base). 
In table 2 it has to be noticed that the standard error of the last test includes 
a standard error on the control measurement of 2.5 cm. If that is deducted it 
leaves 5.2 cm for the photogrammetry. 

In all blocks but one the aim of a standard point error of 5 cm seems to have 
been reached. As to the Jersie-block a closer study revealed errors in the ground 
control. At the time of writing the recomputing is just about to start and it is 
hoped that the results will be ready for the symposium. 
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TABLE 1 Photogrammetric information 

,; 
number of 

0 

Block km2 number of coordinated end-lap side-lap photo-scale in the photo nn the 
pictures points ,,. % ground 

.,,.w cm 

Aarhus (B) 1971 20 27 570 60 20 1,8000 6,2 5,0 

Aalborg 1971 104 85 1289 60 JO 1:8000 6.1 4.8 

Jersie 1971 20 22 185 60 JO 1:8000 6.1 1,. 9 

Aarhus 1?72 85 s:. 7J8 60 JO l:8000 5,9 4.7 

Aalborg 1972 36 59 736 60 40 1:10000 6.8 6.8 
Gi .:- tr,_1p ost 

Aarh'..13 1?73 50 73 1450 60 20-JO 118500 5,4 4.6 

Aalborg l o73 55 40 550 60 25 1:10000 5,0 5,0 
Ajs-::z-ap 

ifcje-TAstrup :97) h5 111 }72 60 10-40 1:9°00 5,9 5,6 

In two of the blocks the geodetic control also included measurement of angles. 
This gave the possibility of computing ground coordinates, and a transformation 
(Helmert) on the photogrammetric coordinates gave the standard point error shown 
in the table. Although this: error theoretically should be of the same size as the 
standard error computed from the distances it turned out to be larger. The error 
propagation when building a geodetic net certainly has to be taken into consider
ation. 

TABLE 2 Control-measurement 

control- number number qvotient mean stan-

Block 
jnstru- of of dard 
«...?nt points distances error 

p d P/d (cm) (cm) 

Aarhus (B) 1971 DI lO 
(1974) 

54 62 0,87 -1.9 J,9 

DI 10 61 64 0,95 -0,7 4.9 
(1971) 

Aalborg 1971 DI 10 72 67 1.07 -0, 6 4.1 

Jersie 1971 DI 10 58 49 1.18 -0,2 6.2 

Aarhus 1972 steel- 191 100 1.91 o.o 4.2 
tane 

Aalborg 1972 DI 10 J4 28 1.21 -1.'.l 4.7 
Gistrup 0st T16 

Aarhus 1973 DI 10 22 21 1.05 +O, 4 3.7 

s tee 1- 155 78 1.99 -0. J 4.2 
tane 

Aalborg 197'.l DI 10 36 JO 1.20 +0,1 4.9 
A Lstrun 

x) 
Hoje-TAstrup 197) AGA 700 68 115 0,59 +0.2 5,8 

x) 2.5 cm standard error on control included 

Hvidegaard 4 

-
max. di sere- min.-max noint error 

nan~ies distance sto.nda.rd nHml1~: 
rms + + error of 
(cm) (cm) (cm) (m) (cm) points 

4.3 -10 +6 42-786 /1. 9 50 

4,9 -13 +11 Jl-&55 

4.1 -10 +12 17-480 

6.2 -17 +18 64-610 

4,2 -1J +12 ~ 10 

4.8 -10 +7 48-508 

3,7 -10 +7 12J-1l10'.) 1, • .2 ?.7 

4.2 -15 +19 !:. 10 

4.8 -10 + tlJ 48-470 
·• ·---x) 

.5. 8 -14 +14 2-1075 
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Finally I have set up a small table to compare cr 0 of the adjustment with RMS from 
the test. The quotient RMS/cr 0 stays fairly steady on 0.9 . The two blocks that 
vary most from this value are: 1. Jersie which has already been mentioned above, 
and 2. Aalborg 1972. The last one should be noticed for another reason also: 
ao is unexpectedly large. The block is in fact the one half of a job where the 
other half was rejected due to bad photographing. Certainly there have been pro
blems during the photo-flight of the accepted part too. 

When judging the quotient RMS/a 0 you of course have to remember that the blocks 
were performed after the same scheme, but bearing that in mind a

0 
gives a good 

idea of the size of the standard error to be expected in the field. 

TABLE 3 
acljus t"m11 t ,~on t t·o.l 

lllock <5. l"lllH r111"'/'¼ remarki,; 
cm cm 

Aarhu~ 1n1 ',.O 4,!i o. ~>:? 

Ao I boq: 1<171 4.H 1,., o.Rt; 

"-ft..•rttin 1 '!71 ,,.<, 6.2 1.:n grur-;s crros in 
ground control 

Aarhus 11172 4.7 Ji .. :! O,H•> 

Aa I hnl'CT ]'172 b,H 11,H 0.71 prohlnni-H cJu.t•itti; 
photo-l'l.i1:ht, 
lack of VtlCll1Ull1 

AurhuM l<l?J 11.(> 1,.1 O.H•I 

Attlborc I <l?J 5.0 l1.H o. ~1h 

Mo Jc-Tnar, trup 
1'.ITJ 5, ,, ·;. 2 o.•1·3 

tnP-an: 

O,'I'} 

CONCLUSION 

As a whole the testing has been succesful. The results correspond very well with 
the expectations; and the test have been quite easy to carry out. It was for in
stance possible to check 3 blocks (Aalborg) in one week. 

For the Cadastral Service as the supervising authority the field work gave in ad~ 
ition valuable information about the quality of the work done by the private sur
veyors, e.g.the marking of the points and the identification in the pictures. 
It is, therefore, the intention to make similar tests in future densification 
jobs. 
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BUNDLE ADJUSTMENT WITH STRIP- AND BLOCK-INVARIANT PARAMETERS 

by D. C. Brown, Melbourne, Florida 

INTRODUCTION 

At the 1974 Symposium of Commission III at Stuttgart I presented a fairly lengthy 
review paper entitled: "E~olution, Application and Potential of the Bundle Method 
of Photogrammetric Triangulation" (Brown 1974). The present paper has been ex
tracted from this review and is concerned with methods for taking effective ad
vantage of the potential availability of the border of the banded-bordered system 
of normal equations associated with certain formulations of the bundle adjustment 
Several examples will be provided showing how through judicious use of the border 
one can develop simple solutions to problems that would otherwise be computation
ally awkward or difficult. 

BACKGROUND 

As was shown in the earlier sections of my review paper, the general system of 
normal equations for the basic bundle adjustment are of the form 

( 1 ) 

in which 8 and·6 represent the vectors of unknown elements of orientaiion and un
known coordinates of ground points, ,respectively. The matrices N and N consist of 
block-diagonal matrices of 6x5 and 3x3 submatrices. When decomposed into conform
able 6x3 submatrices Nij• the matrix N generated_by a typical aerial block is al
so sparse (though not block-diagonal), for each Nij is a null matrix except when 
the jth point appears on the itn photo. The elimination of o from (1) yields the 
reduced system 

( 2) c , in which 

• • . - •• .. -1 •••• 
c = c - w E - N ( N + w) ( c· - w E ) 

When Wand W (the a priori weight matrices for elements of orientation and coor
dinate~ of control, respectively) are regarded a block diagonal conformably with 
~ and N, it turns out that with suitable ordering of the photos the coefficient 
matrix S of the reduced system of normal equations can be made to assume a banded 
form. This is a direct consequence of the sparseness of the matrix N associated 
with the typical aerial block. Such banded systems can be solved efficiently by 
a method referred to as "recursive partitioning" (Gyer 1967). Recursive parti
tioning is equally applicable to banded systems that are accompanied by a border 
as indicated in Figure 1. The number of arithmetic operations required in the re
duction of a banded-bordered system of bandwidth p and borderwidth q is approx. 
proportional to (p+q) 2 N (for p>>q) as compared with a number proportional to N3 

for a conventional reduction. It follows that when a problem can be so structured 
that (p+q) <<N, great computational savings can be realized through the exercise 
of recursive partitioning. 

The first applications of recursive partitioning to the bundle adjustment were 
effected in 1967 in the programs COMBAT and SURBAT developed by DBA Systems 
(Gyer 1967; Gyer, Lewis, Saliba 1967; Brown 1968a; Callancer, Brown, Gyer 1969; 
Gyer, Kenefick 1969). In these early programs only banded systems of normal equa
tions were generated. In the more recent developments to be discussed in this .pa
per, the potential availability of the border has been extensively exploited in 
order to accomodate parameters that may be common to significantly large subsets 
of observational equations. 
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FIGURE 1 Illustrating form 
of NxN banded-bordered coeffi
cient matrix with bandwidth p 
and borderwidth q 
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GENERAL ADJUSTMENT WITH BLOCK-INVARIANT PARAMETERS 

The general formulation of the process of self-calibration within the bundle ad
justment was originally stated in the broadest possible terms in Brown, Davis, 
Johnson (1964). Here, the problem was addressed from the point of view of the 
possible existence of an unspecified number of biased "auxiliary sensors" that 
were considered to generate observations relating to any conceivable combination 
of the parameters involved in the bundle adjustment. Examples of such sensors 
could include: statoscopes, inertial navigational systems, aircraft tracking syst
ems, horizon cameras, solar periscopes, auxiliary stellar cameras (as in the Apol
lo mapping system), laser or radar altimeters, any surveying instruments serving 
to interrelate positions of ground points etc. I would hasten to point out that 
the general bundle adjustment as had been developed earlier (Brown 1958+1959) was 
already fully capable of coping with virtually any combination of auxiliary sen
sors provided only that they were considered to generate sensibly unbiased obser
vations. Pertinent information from such sensors could, in principle, be introdu
ced through the imposition of a priori statistical constraints in combination, 
where needed, with the method of dummy observations. Several examples of this 
process are to be found in Brown (1959). When the auxiliary sensors are consider
ed to be affected by a significant degree of systematic error, however, this ear
lier r.evelopment is no longer strictly valid. 

To overcome the problem of biased auxiliary sensors, I turned to a reduction that 
I had developed several years earlier to solve the problem of determining accura
te rocket trajectories from optical and electronic tracking observations that we
re considered to be significantly biased. This reduction was named EMBET, short 
for Error Model Best Estimate of Trajectory, and it depended on the presumption 
that the systematic errors affecting any given observational channel could be re
presented accurately by a specified mathematical error model involvi,ng a set of 
parameters (the error model coefficients) that were subject to specified a priori 
statistical constraints (this, of course, did not preclude the possibility that 
some or all of the parameters might be totally unknown). The EMBET reduction it
self consisted of a least squares adjustment in which the coordinates of all ob
served trajectory points were recovered simultaneously along with the error model 
coefficients of all participating tracking systems. The structure of the general 
normal equations turned out t.o be of precisely the same form as in the bundle ad
justment (equation (1)) witn the N portion of the matrix corresponding to error 
model coefficients and the N portion corresponding to coordinates of trajectory 
points. With the exercise of appropriate geometry and observational redundancy, 
an EMBET reduction was found capable of generating estimates of the error coef
ficients sufficiently accurate to suppress the effects of systematic errors in 
the observations to a level significantly below that of the purely random errors. 
Because no absolute control of any sort is required in the reduction, EMBET is 
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said to constitute a process of self-calibration. Details concerning EMBET and 
its application to rocket and satellite tracking are to be found in Brown, Bush, 
Sibel (1963) (1964) and in Brown (1964) (1966). The multilaterative comparator 
described in Brown (1967) was based entirely on principles of sel.f-calibration 
made possible by EMBET. 

The application of the principles of EMBET to the bundle adjustment requires that 
an appropriate error model be specified for each type of observation considered 
subject to a significant degree of systematic error. An example cited in Brown, 
Davis, Johnson (1964) is provided by the following equation applying to the sta
tos~opic observation h?j of the flying height at the ;th exposure along the jth 
strip: 

( 5) 
(true a It itude) (measured 

altitude) 

+ 

(residual) (equ:::ition defining departure of isobaric 
surface from reference spheroid along i th 

fliglit line) 

In this equations .. denotes the distance of ,the ; th exposure on the j th flight 
line from the init~~l exposure on that line (s;j = 0) and the a's are the approp
riate unknown error model coefficients needed to account for the slowly varying 
separation between the isobaric surface being utilized and the adopted reference 
spheroid. 
Stated in the most general possible terms (as in the above reference an arbitrary 
set of biased auxiliary sensors will introduce into the bundle adjustment a set 
of observational equations of the following functional form : 

. . . .. .. .. 
(6) f:, (8 11 62 , ... ,eP; U1 ,U2 , ... ,U

60
; U1 ,U2 , ••• ,U3 n; Ui,U2 , ... ,U,) == 0 

in which k, the number of equations, can be indefinitely large and 

e1 ,e 2 , ... ,e? 
u, , u2 , ••• , u 6 = 
·01, u2, ... , u3, ... ... . .. 

= quantities observed by the sensors; 
= elements of orientation of them exposure stations; 
= coordinates of then control points; 
= error coefficients and any other parameters 

associated with the auxiliary sensors. 

In the event that the plate coordinates themselves are considered to be subject 
to systematic errors governed by specified error models, the above system of 
equations can, of course, be interpreted to be sufficiently broad to embrace the 
projective equations as well (i.e., the camera loses its,..special status and be
comes merely another biased sensor with a subset of the U's serving as error co
efficients). 
The strictly formal introduction of the general observational equations (6) into 
the bundle adjustment is a straightforward chore that was carried out in the above 
reference. In principle, it leads to the complete generalization of the bundle 
adjustment to embrace any conceivable set of (possibly) biased observations that 
in any way may be pertinent to the adjustment. In practice, of course, for any 
particular circumstance the computational feasibility of the bundle adjustment as 
thus extended will depend on the specific structure of the resulting system of 
normal equations. Fortunately, it turns out that in most concrete situations of 
practical interest, the specialization of the foregoing general theory leads dir
ectly to a banded-bordered system of normal equations wherein the border acommo
dates the coefficients of the error models along with any other block-invariant 
parameters. Hence, the development of recursive partitioning in its more general 
form provided the sought-after key to the practical implementation (in most in
stances) of the generalized theory of bundle adjustment with block-invariant par~ 
meters. 

BUNDLE ADJUSTMENT FOR ORBITAL PHOTOGRAMMETRY 

At the time of the discovery of recursive partitioning, DBA was well along in a 
contract with RADC to perform the analysis and computer programming appropriate 
to the reduction of photographs taken by the Lunar Orbiter satellite. This led 
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ultimately to the development of the programs LOSAT and LOBAT (Lunar Orbiter 
Strip Analytical Triangulation and Lunar Orbiter Block Analytical Triangulation). 
Both of these reductions consisted of rigorous bundle adjustments subject, how
ever, to the imposition of orbital constraints governing the locations of the ex
posure stations. In both LOSAT and LOBAT the reduced system of normal equations 
(2) was solved directly by Gauss Elimination; the finer, barded-bordered struc
ture was not exploited. This, of course, placed significant limitations on the 
capacities of the programs. The detailed development of LOSAT and LOBAT is given 
by Davis and Riding (1970). 

By the time recursive partitioning had been discovered and fully implemented in 
COMBAT and SURBAT, the development of LOSAT/LOBAT was too far advanced to admit 
alteration. However, a new opportunity presented itself with the anticipated 
Apollo photographic missions. Here, an obvious need existed for a more advanced 
version of LOSAT/LDBAT that would rigorously accomodate data from auxiliary sen
sors (a laser altimeter and a pair of stellar cameras synchronized with the map
ping camera) and would, in addition, have the capacity for the adjustment of 
blocks embracing many hundreds of photos. Accordingly, in mid 1969 we submitted 
an unsolicited proposal to the U.S.Army Engineer Topographic Laboratories (ETL) 
to develop an advanced program for orbital photogrammetry (NASA, not having a 
sufficient photogrammetric capability of its own, had delegated a major part of 
the responsibility for the photogrammetric reduction of Apollo observations to 
the U.S.Army). The key to our proposed approach lay in the exploitation of the 
banded-bordered form of recursive partitioning to solve the normal equations (at 
that time we still regarded the more general form of recursive partitioning to be 
a proprietary development). The border would not only accommodate the orbital 
parameters for the various strips comprising the block, but it would also accom
modate additional parameters including: (a) coefficients of radial and decenter
ing distortion, (b) elements of interior orientation xp, Yp, c , (c) biases in 
precalibrated interlock angles between stellar cameras and mapping camera, (d) se
lenodetic datum shifts. In addition, by virtue of the implementation of a still 
newer concept called "augmented bordering" (which will be discussed in a later 
section), we proposed to solve the problem of introducing various possible geo
detic constraints (distances, azimuths, height differentials) between ground 
points without disturbing the bandwidth of the reduced normal equations no matter 
what the spacing or ordering of such interrelated points. 

In late 1969 we received a contract from ETL to implement our proposal. The re
sulting computer program for the reduction was named PLODS (Photogrammetric Lunar 
Orbital Data Processing System). By late 1971 PLODS had been developed and check
ed out on DBA's Sigma 5 computer and by June 1972 it had been installed on the 
Univac 1108 systems at both TOPOCOM and ACIC. On these latter systems PLODS was 
designed to accommodate blocks of up to 500 photos in as many as 30 different or
bital strips. Any surface point could be measured in up to 30 different photos. 
Provisions were made for the inclusion of up to 100 parameters in the border of 
the normal equations (in addition to the 180 parameters reserved for the orbital 
parameters of up to 30 strips). Because different cameras would be used on dif
ferent Apollo Missions, the process of self-calibration of camera parameters ad
mitted participation of up to six independent camera systems in the overall block 
The analysis underlying the reduction was published in August 1972 in a report 
entitled: "Analysis for the Photographic Lunar Orbital Data Processing System" 
(Haag, Hodge 1972). 

PLODS provides a good example of a bundle adjustment with block-invariant para
meters. Such parameters are distinguished by being common to a sufficiently lar
ge subset of observational equations to make their assignment to the border of 
the normal equations computationaly worthwhile. Within the purview of block-in
variant parameters we include parameters that are common only to photos within 
a given strip (e.g., orbital parameters) and which may be referred to as strip
invariant parameters. 

IMPLEMENTATION OF SELF CALIBRATION IN COMBAT 

With the delivery of SURBAT in November 1967, it was clear that the next logical 
step in the development of the general bundle method would consist of the practi
cal implementation of the process of self calibration as made feasible by the 
more general form of recursive partitioning. I expressed this view in two sepa
rate papers delivered in March 1968 (Brown 1968a, 1968b). In the latter paper 
which was concerned with an astrometric application of the bundle adjustment 
(i.e., the adjustment of a block of plates uniformly covering the celestial 
sphere) I stated : 
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"The border in a banded-bordered system allows one to accomodate unknowns that 
may be common to many plates - parameters for distortion, for example (perhaps 
with temperature dependent coefficients). Another possibility is to employ the 
border for the coefficients of a tentative, empirical error model intended to 
account for unknown systematic errors that are regarded as common to all plates 
or to large subsets of plates. For example, one might postulate that systematic 
errors common to all plates can be described empirically by selected terms of 
general polynomials such as : 

r I • 

t:.x = L L :_t all k xi-J y'!-k zk 

I= 2 J=O k::O 

where x,y denote plate coordinates and z denotes either image diameter of stellar 
magnitude. The unknown coefficients aijk• bijk would be determined within the ad
justment (note: zero and first order terms are not included in the above expres
sion because they would ordinarily be equivalent to the parameters in the banded 
portion of the matrix). When all plates contribute to a common empirical model, 
the result is far more deterministic than when independent empirical models are 
postulated for each plate. For this reason, one can accommodate rather extensive 
empirical models in the border without serious risk of inducing ill-conditioning. 
The border can also serve as a convenient place to assign occasional portion of 
the matrix. Thus one sometimes finds that a logical ordering scheme leads to a 
very narrow bandwidth except for a few outlying blocks requiring a significantly 
wider bandwidth for their accommodation. One easily overcomes this problem by re
ordering the offending parameters so that they become relegated to the border." 

As is our usual practice with what we consider to be marketable innovations, we 
attempted through unsolicited proposals put forward repeatedly in 1968 through 
1972 to gain sponsorship for the extension of SURBAT to incorporate self-calibra
tion. In this we were consistently unsuccessful for a variety of reasons: govern
mental research budgets were declining; SURBAT appeared to be sufficient as it 
was to satisfy current and anticipated governmental requirements (it was, after 
all, considered to be a major advance); available resources and research interest 
were increasingly gravitating towards more glamorous extra-terrestrial applica
tions (Apollo, Mariner). As I have already mentioned, we did meet with success by 
late 1969 in proposing to implement recursive partitioning and self-calibration 
(along with other special features) in LOSAT/LOBAT, thereby generating PLODS. Al
though PLODS could be "tricked" into correctly processing conventional blocks of 
aerial photos (by simply treating each photo as an individual orbital strip and 
constraining the velocity components of the associated state vector to zero), 
this would be an inefficient utilization of the program. 

Having failed over an undue period of time to gain outside sponsorship for the 
implementation of self-calibration in a conventional .bundle adjustment, we pro
ceeded in early 1972 with a company-sponsored project to extend our program COM
BAT to embrace self-calibration. The error models adopted for the plate coordina
tes involve a combination of physically interpretable expressions along with 
strictly empirical expressions. Specifically the models involve a total of 29 
parameters and are of the form: 

( 7) 

( 8) 

A" :: ~--
+ ~ (e1x2 + e2xy + e3 y2 + e_cx3 + e::;x2 y + c.axy2 + e7y3) 

r -

+x (K1r2 + K2 r·1 + K3 r6) + P1 (y2 + 3x2 ) + 2P" xy +Ox;,+(~) Be 

b1x + b2 y + b3 x2 + b4xy + b,;y2 + b0 x2 y + b7xy2 

+l (e x2 +e xy+•e,.,y2 +e .. x3 +e5 x2 y+c.axy2 +C7}/l) r l 2 ~ .,, 

+ y (K1r2 + Kzr
4 + K3 r) + 2P1 xy + P2 (x

2 + 3y2) -ByP + (f) Be. 
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The various coefficients are subject to the following interpretation: 

(a) a 1' a 2' ... ' a? = 
coefficients defining mean uncompensated 

bl' b 2' ... ' b7 film deformation; 

( b) C 1' c2' ... ' C7 = coefficients defining curvature of camera platen; 

( C) Kl' K2, K3 = coefficients of radial distortion; 

( d) p 1' p2 = coefficients of decentering distortion; 

( e) o X, oy, oc = biases in enforced elements of interior orientation. 

The terms in groups (a) and (b), being strictly empirical in nature, may also be 
regarded together as accounting (in part at least) for anomalous distortion as 
well for any other persistent source of otherwise unmodeled systematic error. All 
error coefficients are, of course, ~bject to the imposition of appropriate a pri
ori statistical constraints. 
COMBAT II has been designed so that the error model can readily be altered or ex
tended. As it is, we have found several coefficients in the above model to be su
perfluous because of strong coupling effects. When any two coefficients are high
ly correlated, both tend to perform the same function in the model; hence one or 
the other can be suppressed without ill effect. Some of the more strongly coupled 
coefficients are (a1, b2), (a 2 , b1), (a 3 , c4), (a 6 , c7), (c 3 , P2). 
Of course, with vertical photos over relatively flat terrain the elements of inter
ior orientation are almost perfectly coupled with the coordinates of the exposure 
stations. Accordingly, they are carried in the reduction (with appropriately 
tight constraints) mainly for purposes of error propagation. This makes them 
available also for potential special situations where they might be needed (e.g., 
operations over very rugged terrain, operations with convergent photography). 

THE METHOD OF AUGMENTED BORDERING 

Before proceeding with further examples of the practical use of the border of 
banded-bordered systems, we shall next consider a useful technique for preserv
ing the bandwidth of an already banded system when potentially disruptive fresh 
information is brought to bear on an adjustment. Our starting point is the arbi
trary system of normal equations. 

(9) No = c 
which is assumed to be of banded-bordered form. We now assume that new and inde
pendent information is to be brought to bear on the adjustment. This new inform
ation is represented by the system of s observational equations given by the ma
trix expression 

N N 

(10) Av+ Bo= E. 

The covariance ~atrix of the new observational vector is denoted by K. The coef
ficient matrix B is assumed to have been appropriately augmented with zeros in 
the event that the new information interrelates only a subvector of the vector o 
appearing in (9). The system of normal equations resulting from the independent 
adjustment of the observations giving rise to (10) is given by 

~ ~,~~ _l-~ -~ ~~~ , 
(11) [B'(AAA•) B]6 = Br(AAN)-·€, 

Because the observations generating (10) are independent of those generating (9), 
it follows immediately that the normal equations resulting from the simultaneous 
adjustment of both sets of observations are to be obtained by simply adding the 
two systems together to get 

~ ,~~~ -l~ ~ ~~~ l 
(12) [N+BT(A1\...~1

) B]o = c+BT(AA.t•.,T)-1. 

But the difficulty with this system is that, in general, it can be expected to 
destroy the postulated banded-bordered character of the matrix N from original 
system (9). To get around this difficulty we employ the following artifice. We 
form the new system of equations 

( 13) 

Brown 6 



- 60 -

in which 6 is a presently unspecified vector of parameters equal in number to s, 
the number of equations generated by the new observations, From the structure of 
(13) it is apparent that the elimination of the vector o will lead precisely to 
the system (12). Hence the vector o obtained from the solution of (13) will be 
identical with the o obtained from the solution of (12). But by virtue of our as
sumption that N is of banded-bordered form, it follows that the new system (13) 
is also of such form with the borderwidth of N being augmented bys new elements. 
It follows that by introducing the new information by means of (13) rather than 
(12), one preserves the original system totally in tact and merely adds to its 
border. Hence, the name, the "method of augmented bordering". 

SIMULTANEOUS ADJUSTMENT OF PHOTOGRAMMETRIC AND GEODETIC OBSERVATIONS 

The extension of recursive partitioning to accommodate banded-bordered systems 
served not only to make the bundle adjustment with block-invariant parameters 
computationally feasible, but, as we shall now see, it also opened a new avenue 
for the solution of other problems. A good example is provided by the problem of 
executing the adjustment of the photogrammetric observations simultaneously with 
the adjustment of the geodetic observations defining the survey of the control 
net. In principle, this is taken care of immediately in the general normal equa
tions (1) by virtue gf the,j,mposition of a priori statistical constraints impli
cit in the matric~s Wand WE. The practical difficulty with this is that, in the 
problem at hand, Wis not a block diagonal matrix of 3x3 submatrices as in the 
development following (1). Instead W represents the zero-augmented coefficient 
matrix of the system of normal equations arising from the separate adjustment of 
the geodetic observations of the control points (the zero augmentation makes the 
matrix suitably conformable with the total vector o). Thus the inversion of N+W 
is no longer a simple matter, for nonzero submatrices are scattered throughout 
the matrix. 
In addressing this problem in the development of their program SAPGO (Simultane
ous Adjustment of Photogrammetric and Geodetic Observations) Wong and Elphing
stone (1971) adopted the following approach (slightly paraphrased here). The 
total set of control points was reordered so thct those points that were inter
related by geodetic observations were numbered first. This caused the general 
system of normal equations to assume the form 

N+W I\ Nr r~ C -wi 
NT .. .. .. 

( 14) N +W 0 = 
.. -w S s i; ! cg ~ E: s 

N: .. .. 
-wr (r 0 Nr +Wr I 6 Cr L r 

in which 
.. 
og 
.. 
0 r 
wg 

wr 

= 

= 
= 

= 

3gxl vector corresponding to subset of g points interrelated by geo
detic observations; 
3(n-g)xl vector corresponding to all remaining points; 
3gx3g coefficient matrix of normal equations from the independent geo
detic adjustment (a filled matrix); 
block diagonal 3(n-g)x3(n-g) weight matrix of points not geodetically 
observed; 

and in which the remaining quantities are essentially self-explanatory. The 
system of reduced normal equations (2) resulting from the elimination of ~g and 
6r then became 

( 15) 
. . - . . . . -~ - ... - . . .. _,. - . 

[ N+W - N: (N~ +W,) N ' - Nr (N, + W, ) N/ J 6 

= C - \A/ E: - Ng (Ng + w~) _l (er - wt ~g) 

.. -1 .. 
- Nr (Nr + 1/vr) (~r - Wr ·er) · 
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Because Nr + Wr is a block diagonal matrix of 3x3 submatrices its inversion pre
sents no problems. Hence, the largest intermediate matrix to be inver.ted in the 
process of forming the reduced normal equations is the 3gx3g matrix N

9 
+ w

9 
This .. aRproach does get around the difficulty of having to invert the 3nx3n mat
rix N+W. However, it also engenders some alternative difficulties when the solu
tion of the reduced normal equations by recursive partitioning is considered. 
These are recognized by Wong and Elphingstone. They state : 

"The present version of SAPG0 does not take advantage of the potential banded
structure of the N matrix of equation (30). It is recognized that if no restric
tion were placed on the locations of the geodetic measurements in the block, the 
banded structure would be destroyed and the N matrix must be treated as a compact 
matrix. In order to maintain maximum flexibility in our research experimentation~ 
the present version of SAPG0 does not impose restriction on the locations of the 
geodetic measurements. However, the banded structure can easily be restored by 
stipulating that no geodetic measurement should span across more than two strips. 
A second version of SAPG0 is being prepared to include this feature." 

From this it is clear that SAPG0 and recursive partitioning are incompatiblB un
less rather severe geometric limitations are imposed on the geodetic survey. 
The difficulties raised by Wong and Elphingstone's approach disappear when the 
banded-Rordered form of recursive partitioning is applied. Thus when only the 
vector or is eliminated from (14), one has 

( 16) 

in which 
• • 'I -

( 17) 
s N + W - N, (N, + V✓r)-· N,T 

. .. .. '( .. 
C ~ - V/ ( - Nr (Nr +WC)-·· (;._;, - wr E, ). 

But for a properly ordered aerial block, Sis, as we have seen, a banded matrix. 
Hence by leaving (16) as it is, one has a banded-bordered system (with border
width 3g) that is amenable to an efficient reduction by the more general form of 
recursive partitioning. This, in turn, obviates the need for any geometric re
strictions on the geodetic observations. 
Still another approach to the use of the border for solving the above problem 
results from the application of the method of augmented bordering and proceeds 
as follows. The geodetic observation equations may be written 

(18) v
9 

+ B
9
o = £

9 
. 

By zero augmentation this can be enlarged to include the vector 6 of projective 
parameters : [

6
] 

( 19 ) V ~ + (0 B 1 ) .6 = ( ~ • 

The general normal equations for the bundle adjustment (1) with augmented border
ing to accommodate geodetic observations then become 

r 

~-J+'i✓ N 0 6 ~ - v1:: 
.. 

( 20) N' N+\V BT 6 C - \·/ ,: 
1 

0 B. -A 6 €, 
~ 
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The matrix Was carried in this particular system is considered to be block dia
gonal and indep~ndent of any geodetic information implicit in equation (18). The 
elimination of o from this system yields 

( 21) 

The upper right hand portion of this matrix represents the banded system one 
would obtain independently of the geodetic observations. Hence the introduction 
of geodetic observations by the method just indicated leaves the photogrammetric 
system of normal equations unaltered and simply adds a border to that system. 

Either of the two banded-bordered systems (16) and (21) provides a practical 
means for the simultaneous a~justment of photogrammetric and geodetic observa
tions. Neither entails a compromise of the bandwidth of the photogrammetric 
system and neither requires the imposition of special geometric restrictions on 
the geodetic net. The one to be preferred depends mainly on considerations of 
borderwidth. In equation (86) the borderwidth is equal to the number of geodetic 
observational equations that are to be used. Accordingly, this form is particu
larly advantageous when incomplete or relatively limited sets of geodetic obser
vations are to be introduced - miscellaneous distances between various pairs of 
control points, for example. When the number of geodetic observations becomes 
sufficient for the complete determination (or overdetermination) of a set of con
trol points, the advantage swings to the use of equation (16). A synthesis of the 
two approaches may be appropriate in a mixed situation involving some points that 
are completely determinable from the geodetic observations alone and other geo
detically observed points that are not (typicallyi these would consist of isola
ted pairs of points). Here, one would include in Ng in (14) only points of the 
first type; the method of augmented bordering would then be used in (14) to in
troduce the remaining geodetic information pertinent to points of the second 
type. Elimination of 6 from this system would then lead to a system of the form 
(16) with an additional border similar to that in (21) (but with a block of zeros 
interposed in positions (2,3) and (3,2) of the matrix). This hybrid approach 
would admit the rigorous processing of the geodetic observations in such a man
ner as to produce the minimum possible borderwidth. 

BUNDLE ADJUSTMENT WITH EQUAL-ELEVATION CONSTRAINTS 

As a further (and final) example of the flexibility afforded by the appropriate 
utilization of the banded-bordered form of recursive partitioning, I shall 
briefly touch on one of a number of possible ways that the border can be ex
ploited to impose equal-elevation constraints on measured points on the shore
lines of lakes of unknown elevation. 

For those particular points falling on the shores of the kth lake, the linearized 
projective equations assume the form 

(22) 
··J "t ... ... 
B !~J 6 ! ! + B !! (\ 

(:::, ~) (:2, 1) (::, :) (1, l) 

in which 6tj now refers to the corrections o~ij' OAij to the geographic coordina
tes of the point and ~k is the correction ohk to the approximation used for the 
unknown height of the kth lake. 

T~e general system of normal equations ar1s1ng from consideration of these equa
tions is in combination with the regular system of observational equations can be 
shown to assume the form 
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0 0 

N+W N N-t H 6 C -WE 

f=,6=) (3", 3n) (3, ,2;,) (6::,,;) (6n,:) 

NT 
.. .... 

N+W 0 0 6 ~ -WE 

(23) 
(3" , 5 n) (.1n,3n) (3:,. I 2 !) ) {31:,q) (3 n, l) 

= 
NT ~\ __ +if\ 

.. . . .. 
0 H ot c,,-W.E_, 

-t V {, V 

(2;,,s=) (2p , 3n) (2-,,2c) (2-;,, q) (:::? , l) 

0 ... -· HT 0 HT N+W 6 C -W£ 

(~ , 6 = ) (; , 3 n) (~ , ::? ? ) ( c; I,) ( l 1 1) 

wherein m, n, p, q denote respectively, the number of photos, the number of 
points not on shorelines, the number of points on shorelines, and the number of 
lakes. The elimination of 8 and 6i from these equations leads to the reduced 
system 

s p 0 -
C 

(cn,u::) (a", 'l ) (c:11,1) (,:;" ,l) 
(24) 

PT Q 6 C ,l 

(q I 6 t: ) (;, q) (, , J.) <~ , 'l) 
in which 

s = 

p = 

(25) 
Q = 

c = 

C .f., = 

N+\V - [N (N+\·11( N7 + N t (Nt +v✓ -t) _i N~ J, 

H - N ( N. + \V. )-1 H , 
-t {, {, 

•.• ... - •• •• -i-
N + W - H' ( N, + 'N. ) H, .. ..., { .. 

~ -0:: - N(t~+v:;)-
1 

(~ -v:1
~)- Nlv(N-l+~\)-

1

(~Jv -V✓J.., ~i.f.,), 
••• - •• •• _l •• • ••• 

;· - v,(i.. - H' ( N . + w ) ( c - 'vV. E, ) • 
)v {, '{, -{,•t, 

Once again, with a properly ordered aerial block, the matrix Swill be of banded 
form. Thus the reduced system (24) is of banded-bordered form with borderwidth 
equal to q, the number of lakes being used. 
In the approach just outlined, lakes may stretch across several strips and 
across several models within strips without damaging consequences to the band
width of the normal equations, for the bandwidth is unaffected by such consider
ations. This is in contrast with the method proposed by Ackermann, Ebner and 
Klein (1972) in their extension of the PAT-M 43 program to accommodate equal
elevation constraints. In order to avoid undue widening of the bandwidth, they 
adopted an approach wherein large lakes spanning several models were broken up 
into a number of "sublakes", each being assigned an independent unknown height. 
Such restrictions, of course, severely vitiate the desired stabilizing effects 
of lakes. As the above development shown, with the proper exercise of the border 
such restrictions become unnecessary. 

CONCLUSIONS 

The feasibility of the bundle adjustment for large blocks of aerial photographs 
depends on the fact that the reduced normal equations can be made to assume a ba~ 
ded form amenable to an efficient reduction by recursive partitioning. The more 
general form of recursive partitioning accommodating banded-bordered systems makes 
practical the extension of the basic bundle adjustment to embrace a variety of ad-
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vances including: self-calibration of the camera system itself along with any 
biased auxiliary sensors, utilization of orbital constraints, simultaneous ad
justment of photogrammetric and geodetic observations, utilization of equal-ele
vation constraints. Doubtless other applications will emerge as the photogrammet
ric community becomes more widely aware of techniques for exploiting the border 
of banded-bordered systems. 
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EFFICIENCY OF THE EXTENDED MATHEMATICAL MODEL IN BUNDLE ADJUSTMENT 

by H. Salmenpera, J. M. Anderson, A. Savolainen, Otaniemi, Finland 

ABSTRACT 

A bundle block adjustment containing up to 7 added parameters is used to triangu
late a block of 48, 1 : 4000 scale photographs taken with a Zeiss RMK A 15/23 ca
mera. Three sets of photographic coordinates are employed: refined; partially re
fined (affine transformation); and unrefined. The effects of the added parameters 
are positive. However, results indicate that photographic coordinates can be re
fined using laboratory calibration data so that the added parameters would have 
minimal effects. The critical phase in this refinement is the fiducial transform
ation with four fiducial marks. 

EFFICIENCY OF THE EXTENDED MATHEMATICAL MODEL IN BUNDLE ADJUSTMENT 

Proper application of analytical photogrammetry to practical mapping problems re
quires that all known systematic differences between the geometrical central pro
jection and the actual projection be taken into account by correction of the ima
ge coordinates. Corrections normally applied to these image coordinates: are those 
which compensate for: refraction and earth curvature; radial lens distortion; and 
film deformation. The remaining part of the systematic error together with the 
random error affects the final results of the adjustment. 

The most efficient way to achieve bette~ results in analytical photogrammetry is 
to obtain more information concerning the characteristics of these systematic er
rors. Laboratory calibration has long been the primary source of this information 
However, during the past six years, in flight calibration using a test field has 
gained some favour as method for providing not only camera calibration parameters 
but also improved triangulation results. One should recognize that in flight cali
bration provides at best only an estimate of the true systematic errors for the 
specific set of conditions, which affected the flight. In practice, if the geomet
ric and environmental conditions are similar to the test field calibration, the 
results should be the same. In any event one part of the systematic error changes 
from flight to flight, and photograph to photograph. 

Recent experiments for increasing the accuracy of photogrammetric adjustments have 
been performed usin9 an extended mathematical model in the solution of the aerial 
triangulation Ill, 121 . In these procedures, additional parameters, which are 
common to all photographs, have been added to the observation equations used in 
the triangulation adjustment. From a theoretical standpoint, it would be equally 
logical to introduce separate parameters for each photograph. However, in such a 
case the computational burden of the adjustment would be increased by an impracti
cal amount. 
In this investigation the effects of common additional parameters on the final 
accuracy achieved in bundle adjustment of a 48 photograph block are studied. Tes~ 
ing is performed with large scale photography (1 : 4000) of an accurately survey
ed array of premarked object points. Triangulation using only six exterior orien
tation parameters for each picture and coordinate unlnowns for ground points is 
used as a basis for comparison. The accuracy of final calculated ground coordina
tes when compared with known geodetic positions is used as the most reasonable 
criterion in judging the effectiveness of various combinations of added parame
ters. 

TEST FIELD AND PHOTOGRAPHY 131 

The Jamijarvi test field, located about 200 km northwest of Helsinki, was estab
lished by the National Board of Survey in Finland. The test site covers an area 
2 km x 2 km provided with signalized ground points of known positions. A set of 
136 points has been used for the present study. The adjustment of geodetic net
work shows a standard coordinate error of less than+ 5 mm. Elevations have been 
determined with an internal precision of± 0.6 mm/km~ 

Photography consists of 7 strips of photography taken with a Zeiss Pleogon RMK 
A 15/23 (f = 152.36 mm) form about 600 mover average terrain which contains ab
out 60 m of relief. The resulting photography has an approximate scale of 1:4000. 
All strips are flown in the same direction with 80 % forward overlap and 60 % si
delap. 
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Leaving out every other photograph a total of 48 photographs containing a m1n1mum 
of 8, a maximum of 30 and an average of -15 points per photograph make up the 
block triangulated. Every other strip can be removed to yield a 28 photograph 
block with ~25 % sidelap. Contact diapositives were printed on 6 mm Ilford dia
positive plates. 

COMPARATOR OBSERVATIONS AND CORRECTIONS TO COORDINATES 

Image coordinates were measured on a Zeiss PSK Stereocomparator. Five observatiora 
were made to the 4 fiducials on the sides of the photographs and three observa
tions to images of ground points. 

Three sets of coordinates were prepared according to the procedure outlined by 
Kilpela and Savolainen 131. Corrections applied in these sets were: 

1 - Atmospheric refraction and earth curvature, radial symmetric lens distortion 
using camera calibration data and affine film deformation with 

x = a 
O 

+ a 1 x ' + a 2y ' ( 1 ) 
y = b

0 
+ b1x• + b2y• 

2 - Affine film deformation with equations (1). 

3 - Comparator coordinates are transformed to the fiducial system using the 
Helmert transformation 

x = a o + a 1 x ' - a 2Y' 
y = b

0 
+ a2x• + a1y' 

( 2) 

These three sets of coordinates are designated: refined, partially refined, and 
unrefined coordinates, respectively. 

EXTENDED MATHEMATICAL MODEL 

The triangulation procedure utilized is a bundle adjustment in which the 

collinearity equation is the qeometric condition to be satisfied. The basic 

collinearity eouation for an image of object point j as seen from exposure 

station is 

x .. = fl-U/Hl .. 
lJ ., lJ ( 1) 

yij f[V/H]ij 

in which U, V, W are functions of f(X, Y, Z, w, ¢, K): (XYZ) .j, the ex-
- ~ J 

posure station coordinates and elements of orientation and object point 
coordinates; and f is the estimated camera focal lenqth. Eouations (1) 

with parameters added are: 

where 

(x + xp + dx 1 + dx 2 + dx 3)ij 

(y + YP + dyl + dy2 + dy3)ij 

= f [U/1-1] ij 
= f 1-V /~U- .. 

- lJ 

Xij • Yij 
xp, Yp 

image coordinates of point j on photo 

= estimated principal point coordinates 

dx 1 and dy1 errors due to radial symmetric distortion 

by 

dx 1 · · lJ = xij ( 1 - ro/r)i;(a1 
u 

+ a3r2 + asr4 + a7r6) 

dy 1 ij = 5i . . ( 1 - r 0 /r) .. (a 1 + a r 2 + a r 4 + a 7r6) 
lJ lJ 3 5 
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in which r = radial distance to image of j 

ro = a given constant 
x .. = x .. - X 

p' 
y .. = V •• - V lJ lJ lJ • lJ - p 

al a7 = unknown coefficients, 
dx2 and dy2 are errors due to 1 ens decentering 

dx 2 = P1(r2 + 2x2) + p2 2xy 

dy2 = P12xy + p2(r2 + 2y2) 

in which p1 and p2 are unknown parameters, and dx 3 and dy 3 are af

fine corrections 
dx

3 
0 

dy 3 = m
1
y + m

2
x 

in which m1 unknown parameter for scale difference between x and y axis 
m2 un k novm parameter for 1 ack of orthogona 1 i ty. 

All parameters are common to all photographs. Linearized equations (2) are solved 
in a bundle adjustment program developed by Haljala at the National Board of Sur
vey in Finland 141. In this procedure, solution of the system of equations is by 
the method of conjugate gradients. All observations are assumed of equal weight 
and any combination of the eleven added parameters can be enforced in the solu
tion. Ground control points are considered errorless. 

TEST ADJUSTMENT 

A total of 26 test cases were performed using the three sets of photographic co
ordinates, various combinations of added parameters, and 60 and 25 % sidelap. 
Test case designations and characteristics are listed in Table 1. 

• 
♦ 

• 

... 

• • 

• 

• 

• 

♦ 

• 

♦ 

• ... 

• • . . 
• ♦ 

• 

... . 
• 

Fixed ground control point configur
ation for the tests is illustrated 
in Figure 1. The numbers. of fixed 
control points, check points, un
knowns, and observations for the 
60 % and 25 % sidelap tests are 
as shown here : 

FIGURE 1 

Test block control configuration 

.4 COMBINED PlAN!M[TR.!C ANO HflGHT CONTWL 

♦ PlANIMETRtC CONUOl 

• Hf!GHT CONTROL 

e CHECK l'OINT 

60 %/60 % 
Control Number 
X,Y,Z 4 

X,Y 4 

z 12 

Check 
X,Y,Z 100 
X,Y 12 
z 4 

Unknowns 757+added parameters 
0bser-
vations 1672 

60 %/25 % 
Number 

4 

4 

12 

98 
12 
4 

613+added 
parameters 

922 
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An additional 47 natural points outside the ground control perimeter are taken 
into the adjustment as normal triangulation points. 

-·-- ----

TEST 
DESIG-
NATION 
A l 
A 2 

A 3 

A 4 

A 5 

A 6 

A 7 

A 8 

A 9 

A l 0 
A 11 

A 12 

A 13 

A 14 

B l 
B 2 

B 3 

B 4 

C l 

C 2 

C 3 

C 4 

C 5 

C 6 

D l 

D 2 

PHOTO 
COORDIN- ADDED PARAMETERS 

ATES 
Without added par. 

4-
a3 

Vl as C 
ft) 

>- a7 I-
QJ 

a3 as C ·~ 
4- a3 as a7 4-
<( 

Vl P1 P2 C 
0 

a 3 as P1 P2 ·~ 
.µ 
>-
0 - .µ 

~ Vl - ·~ 
0 

-0 
QJ ~ 
C ft) -~ -~ f 4- -0 
QJ ft) 

er: er: 
a3 as a7 
a3 as P1 P2 

6 N -~ a3 as a7 - .µ 
ft) 

-0 QJ E a3 as P1 P2 CJ) C >-
C -~ 0 ·~ 4- 4- a3 as a7 pl p2 4- 4- Vl 
QJ <( C 
>- ft) a3 as a7 C 

,_ 
::::, f-· 

Without added par. 
C - 0 a3 as (VJ -~ - .µ .µ 

>- ft) 

-0 QJ E 
QJ E >-
C ~ 0 ·~ QJ 4-
4- ::i:: Vl 
(]J C a3 as a7 >- ft) 

C >-
::::, I- a3 as a7 P1 P2 

Re- Without added par. 
fined 

TABLE 1 

Test Designations 
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m 1 

ml 

ml 
ml 

ml 
ml 

ml 

ml 
m 1 

m 1 

SIDE 
LAP 

m2 
m2 

m2 
m2 ~ 

0 
\D 

m2 
m2 

m2 
m2 
m ,I/ 

2 

m2 
25% 
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TESTS RESULTS 

Estimated standard errors of unit weight for the adjustments, and root mean 
square (RMS) values of discrepancies at check points at photo scale and on the 
terrain are listed in Table 2. 

ADJUST- STD. 

MENT ERROR 
µm 
mo 

A 1 5.40 

A 2 5.40 

A 3 5.40 

A 4 5.40 

A 5 5.39 

A 6 5.37 

A 7 5.25 

A 8 5.25 
A 9 5.39 
A 10 5.28 
A 11 5.28 
A 12 5.40 
A 13 5.25 
A 14 5. 14 

B 1 5.23 
B 2 5.32 
B 3 5.20 
B 4 5.34 

C 1 6.82 
C 2 6.67 

C 3 5.67 

C 4 6.81 
C 5 5.23 
C 6 5.16 

D l 5.85 
D 2 5.74 

••--··~~~--
RMS VALUES OF DISCREPANCIES AT THE CHECK POINTS 
at photo scale (µm) 
m 

X 

4.3 

4.3 

4.4 

4.3 

4.3 

4.3 

3.9 

3.9 

4. 1 

3.4 

3.4 

4.4 

3.5 

3.3 

3.5 

3.2 
3.8 

4.2 

9.5 

9.5 

4.6 

l O. 1 
5.2 

4.9 

6.2 

6.0 

m m m 
y z xy 

4.7 8.2 6.4 
4.7 8.1 6.4 
4.7 8.2 6.4 
4.7 8.3 6.4 
4.8 8.1 6.4 
4.7 7.9 6.4 
4.7 8.2 6.1 
4.7 8. l 6.1 
4.8 8. 1 6.3 
3.4 8.0 4.9 
3.4 7.9 4.8 
4.7 8.2 6.4 
3.3 7.6 4.8 
3.4 7.8 4.7 

3.3 7.5 4.8 
3.5 8.1 4.7 
4.5 8.0 5.9 

4.6 8.0 6.3 

11. 9 10. 7 15.2 

11. 7 8.2 15. 1 

3.8 10 .4 6.0 
11. 5 10.6 15. 3 
3.2 7.3 6. 1 
3.2 7,3 5.9 

4.2 14.5 7.5 
4.4 14. 1 7.4 

TABLE 2 

Test Results 
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on the terrain (mm) 
m m m m 

X y z xy 

17 19 33 26 

17 19 32 26 

18 19 33 26 

17 19 33 26 

17 19 32 26 

17 19 32 26 

16 19 33 25 

16 19 32 24 

17 19 33 25 
14 14 32 20 
14 14 32 19 

18 19 33 26 
14 13 30 19 
13 14 31 19 

14 13 30 19 
13 14 33 19 
15 18 32 24 

17 18 32 25 

38 47 43 61 
38 47 33 60 
18 15 42 24 
41 46 42 61 
21 13 29 24 
20 13 29 23 

25 17 58 30 
24 18 56 30 
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SAMPLE NO.OF AD- POOLED RESULTS OF 

GROUP JUSTMENTS mo BARTLETTS TEST 

IN GROUP µm CO"IMENTS 

ABCD 26 5.53 Significant f)iff. 

ABC 24 5.52 Significant [)iff. 

AB 18 5.32 No Sign.Diff. 99.9% 
Conf.Interval 

A 14 5.33 No Sign.Diff. 99.9% 
Conf.Interval 

B 4 5.27 No Sign.Oiff. 99.9% 
Conf. Interval 

C 6 6. l 0 Significant f)iff. 

ABO 20 5.33 No Sign.Diff. 99.9% 
Conf.Interval 

ABO 22 5.32 No Sign.Diff. 99.9% 
(C5,C6) I Conf.Interval 

I 

TABLE 3 
Results of Significance Tests 

In order to check the homogeneity of the data, Bartlett's test was applied to 
eight sample groups of the results. Sample groups and results of the Bartlett 
tests are shown in Table 3. Note that when tests of Group C (unrefined coordi
nates, Helmert Transformation) are included, a significant diffErence is indica
ted by applying the Bartlett test. However, individual Groups A, Band D and 
sample groups in which tests Cl, C2, C3, C4 are eliminated show no significant 
differences. On the basis of these tests one can conclude that the data are homo
geneous and a significant amount of uncorrected systematic error is present in 
tests Cl, C2, C3 and C4. This result indicates that in block triangulation a cor
rection of film deformation is necessary either before the adjustment or in con
nection with adjustment with additional parameters. 

E 
::t 

C 

.J 
~ 
0 
0 

'o 
0 

"" 
.~ 
<i 
E 
E 
>-

V, 

25 

20 

15 

10 

5 

0 

-5 

-10 

-15 

-20 

-25 

(A5) o
3

, o
5 

(AB) o3, o5, P1, P2 

FIGURE 2. RESIDUAL RADIAL SYMMETRIC DISTORTION 

Tesls A5, A6, AB, A 13, A 14 
Refined Coordinates 
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RMK A 15/23 21103 Pleogon 

1962 Laboratory Calibration 

". 
50 

Radial Distance mm. 

FIGURE 3. RADIAL SYMMETRIC DISTORTION 

Tests 8 1, 82, 83, 84 
Unrefined Coordinates 
Affine Transformation 

Tests C 2, C 5, C 6 
Helmert Transformation 

The basis for evaluating the effects of various combinations of added parameters 
is a comparison of all tests with Test A 1 (refined coordinates with affine 
transformation and no added parameters) and analysis of the adjustment radial 
distortion curves. The per cent changes in RMSE at check points for all tests, 
when compared with Test A 1, are listed in Table 4. Radial symmetric distortion 
curves for Tests A5, AB, Al3, Al4 and Tests Bl, B2, B3, B4, C2, C5, C6 are il
lustrated in Figures 2 and 3 respectively. The effects of the parameters for sca
le difference between x- and y-axes and for lack of orthogonality are shown in 
Table 5. 
Examination of tests in Group A permit an evaluation of the goodness of the labo~ 
atory calibration data and effects of added parameters used with refined coordin
ates. The most effective individual added parameter is m2 (correction for lack of 
orthogonality) which yields reductions in the RMSE in position and elevation of 
23 and 03 percent, respectively. The most effective combinations of added para
meters are those of Tests Al3 and Al4 which resulted in reductions of the RMSE in 
position and elevation of 25 and 08 percent and 27 and 05 percent, respectively. 
Figure 2 which is a plot of the uncorrected radial symmetric distortion, still in 
the system, shows that these residuals are indeed quite small. 

Tests of Group B permit evaluation of the utility of substituting in a flight ca
libration for application of laboratory calibration lens distortion data in the 
coordinate refinement. Maximum reductions in RMSE in position and elevation are 
25 and 9 %, respectively, when a3, a5, a7, m1, m2 are added. Note that when m1 
and m2 are not included with the added parameters the reductions in RMSE are re
latively insignificant. 

Tests of Group Callow evaluating the effects of trying to compensate for film 
deformation when no affine correction is made and only a first degree conformal 
transformation is used. Here the most effective single parameter is m1, scale 
difference in x- and y-coordinate axes which yields a reduction of 7 % but an in
crease of 27 % in the RMSE of elevation and position, respectively. Addition of 
term m2 has no effect. The most effective combination of added parameters is a3, 
a5, a7, Pl, P2, m1, m2 yielding decreases in RMSE of position and elevation of 11 
and 9 percent, respectively. However, note that in this test the RMSE in X is in
creased by 14 %. 
Examination of distortion curves in Figure 3 for Test Groups Band C shows that 
the 7th order polynomial curves are remarkably consistent and compare well with 
the laboratory calibration curve. The 5th order polynomial obviously is not suit
able to approximate the lens distortion for this lens. 
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TEST 

A 2 
A 3 
A 4 
A 5 
A 6 
A 7 
A 8 
A 9 
A 10 
A 11 
A 12 
A 13 
A 14 

B l 
B 2 
B 3 
B 4 

C l 
C 2 
C 3 
C 4 
C 5 
C 6 

D l 
D 2 

- 73 -

% CHANGE IN RMS ERRORS 
AT CHECK POINTS ADDED PARAMETERS 

m m m m 
X y z xy 

+01 0 - 02 0 a3 
+01 +01 - 01 0 as 
+01 +01 + 01 0 a7 

0 +01 - 02 0 C: 
0 a3 as ·~ 

-01 +01 - 04 0 
.µ 
n:l a3 as a7 E 

-08 -01 0 -04 
!,... 
0 P1 P2 4-

-09 -01 - 02 -05 
1,/) 

C: a3 as P1 P2 n:l 

-04 +02 - 01 -01 
!,... 
.µ ml 

-18 -27 - 03 -23 
a, 
C: m2 ·~ 

21 -28 - 04 -25 
4-
4- ml m2 <:( 

+01 +01 - 01 0 ~ f "Cl 

-19 -29 - 08 
a, 

-25 C: a3 as a7 ml m2 ·~ 
-25 -28 

4-
- 05 -27 a, a3 as P1 P2 ml 0:: 

-19 -31 - 09 -25 a3 as a7 ml m2 
>, 

-25 -26 - 01 -26 ..... a3 as P1 P2 ml ..... "Cl 
n:l a, 

-12 -04 - 03 -08 ·~ C: a3 as a7 P1 P2 .µ ·~ 
!,... 4-

-02 -02 - 03 -02 n:l a, a3 as a7 CL !,... 

+119 +152 + 30 +136 No added parameters 
+119 +149 - 01 +136 a3 as 

"Cl.µ 

+ 06 - 19 + 27 - 07 a, !,... m 1 C: a, 
·~ E 

+134 +144 + 28 +139 4- ..... m2 a, a, 
!,... :r: 

+ 21 - 32 - 11 - 05 C: a3 as a7 m 1 m2 ::) 

+ 14 - 33 - 11 - 09 a3 as a7 P1 P2 
' 
; 

+ 42 - 11 + 76 + 17 "Cl No added parameters a, 
I C: 

+ 38 I - 7 + 71 + 16 Q)•~ m 1 m2 0:: 4-
I 

TABLE 4 
Per cent changes of RMSE in check points 
when compared with Test A 1. 

m2 

m2 

ml m2 

Table 5, which presents the effect of scale difference between x- and y-coordin
ate axes and of lack of orthogonality at a distance of 100 mm, reveals that in 
Groups A and B (affine transformation) the effect of parameter m2 (lack of ortho
gonality) at the distance of 100 mm on the photograph is considerable, 5 - 6 µm. 
The effect of parameter m1, again, is slight in these tests, 1 µm. On the contra
ry, in group C the effect of m1 is considerable, 20 µm, and the effect of m2 half 
of what it is in groups A and B, i. e. 3 µm. 

The limited number of tests with 25 % sidelap using refined photographic coordin
ates, verifies the superiority of 60 % all around overlap with this scale of 
photograph and size of block. It must be stated, however, that although the RMS 
errors in these cases have increased both in planimetric position and in eleva
tion by 17 % and 76 % and 16 % and 71 % respectively, the planimetric accuracy, 
in particular, is sufficient for various practical purposes. 
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TEST 

A 9 

A 10 
A 11 
A 13 
A 14 

B 1 
B 2 

C 3 
C 4 
C 5 
C 6 

D 2 
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EFFECT OF 
lack of 

scale difference orthogonality 

at the distance of 100 mm on photo (um) 

1 -
- 6 

1 6 

1 6 

1 6 

1 6 

1 5 

20 -
- 3 

20 3 
20 3 

1 7 

TABLE 5 
Effect of scale difference and lack 

of orthogonality. 

ADDED PARAMETERS 

ml 
m2 
ml m2 
a3 as a7 ml m2 
a3 as P1 P2 ml m2 

a3 as a7 ml m2 
a3 as P1 P2 ml m2 

ml 
m2 
a3 as a7 ml m2 
a3 as a7 P1 P2 ml m2 

ml m2 

Using a 25 - 30 % sidelap would mean a saving of approximately 50 % in measuring 
the image coordinates; consequently, the amount of sidelap must be determined in
dividually for each work. The effects of added parameters m1 and m2 are minimal 
for these tests. 

CONCLUSIONS 

The added parameters have been used in adjustments with three sets of photographic 
coordinates which were 1) completely refined; 2) partially refined with affine 
transformation; and 3) unrefined with a first degree conformal transformation. 

The results of block triangulation obtained in using the Jamijarvi test field 
agree well with the corresponding results of theoretical investigations of accur
acy 151. This is probably due to the high accuracy of the points on the test 
field and to a succesful photography of the test field. Consequently, even the 
accuracy of Test Al (no added parameters) is remarkably good as compared to some 
other investigations of accuracy performed by using test fields. Utilization of 
added parameters does yield improved accuracies (25· % in planimetry, 5 to 8 % in 
elevation) with refined and partially refined (film deformation only) image coor
dinates. Added parameters included in the adjustment with unrefined coordinates 
provide comparable improvement in elevation but less improvement\tO deterioration 
of accuracies in planimetric position. 

Added parameters m1 (scale difference) and m2 (lack of orthogonality) have more 
pronounced individual effects on the accuracies of results with refined and part
ially refined data, than any other single parameter. However, with unrefined data 
m2 virtually no effect. This indicates that the original photographs have only 
slight non-orthogonality and that most of this deformation was induced by the six 
parameter transformation used to compensate for film deformation. Consequently, a 
five parameter transformation with one rotation, two translations, and two scale 
changes would be more effective to compensate for film deformation when four fi
ducial marks are available. If one assumes up-to-date reliable, laboratory cali
bration data and use of such a five parameter transformation for film distortion 
compensation, then the effect of m2 would be minimal and the results obtainable 
with refined data, only, would be comparable with results achieved by use of the 
added parameters. 
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ON CORRECTION TERMS FOR SYSTEMATIC ERRORS IN BUNDLE ADJUSTMENT 

by G. H. Schut, Ottawa, Canada 

ABSTRACT 

An investigation is made of correction terms which should be added to the photo
graph coordinates to eliminate systematic image deformation during bundle adjust
ment. The effect of all terms of polynomials of the third degree with respect to 
the photograph coordinates is evaluated and suitable selections are made which 
can correct stanGard strip deformations. The use of these terms does not affect 
the photograph residuals in the case of level terrain and exactly vertical photo
graphs. Other terms in which occurs the absolute value of a photograph coordinate 
or the radial distance from image point to principal point may be useful also and 
deserve to be investigated further. 

INTRODUCTION 

Correction terms applied to the photograph coordinates for the purpose of elimin
ating systematic deformation during the bundle adjustment of a block of photo
graphs were first proposed' by G. de Masson d'Autume, in a paper presented at the 
International Symposium on Spatial Aerotriangulation in Urbana, Illinois, in 196& 
The same terms appear, unaltered in a paper presented at the XIIth Congress of 
the International Society for Photogrammetry at Ottawa, Canada, in 1972 (De Mas
son d'Autume 1968, 1972). These terms were derived from the effect upon the pho
tograph coordinates of changes in orientation given to the perspective bundles of 
a strip. The changes correspond to four general types of stri~ deformation: tor
sion, longitudinal height curvature, planimetric curvature, and variation of sea
l e. 

To analyze the effect of these correction terms, one can add the corrections 
which they produce to the coordinates of a perfect grid and perform an analytical 
triangulation with the modified grid coordinates. The present writer did this up
on his return from the Symposium, using analytical strip triangulation by separ
ate relative orientation and scaling of models. This triangulation showed that 
the correction terms for torsion leave residual y-parallaxes and those for height 
curvature produce a curvature correction of each model that is very different 
from the correction applied to the strip. This is unsatisfactory because the cor
rection terms were not designed to correct such errors. 

Subsequently, this writer derived correction terms which were based upon the 
placing of each photograph in a suitable position above a strip of terrain which 
was given each of the four types of deformation and he showed these in a short 
presentation during a panel discussion at the XIIth Congress of the ISP. These 
terms are different from and somewhat simpler than those presented by De Masson 
d'Autume - and by the nature of their derivation they produce no side-effects in 
analytical triangulation. 
In both formulations, the correction terms are polynomials in the photograph co
ordinates. The differences between the two formulations and the possibility that 
systematic image deformations exist which do not cause the standard strip deform
ations make it of interest to investigate the effect of all polynomial correction 
terms separately. This will give information on which terms promise to be useful 
which ones are not, and how the useful ones should be combined. 

Such an investigation is the subject of this paper. It has been limited to the 
polynomial terms of the third and lower degrees in the photograph coordinates. 
The computations have been performed by the bundle adjustment, assuming level 
terrain and a strip of ten exactly vertical photographs, each with 25 measured 
points in a square grid. 
Other writers have recently experimented with the radial distance to the princip
al point and with the absolute value of a photograph coordinate as a parameter in 
specific polynomial correction terms. Such terms are here discussed only very 
briefly, but they deserve further investigation. 

LINEAR CORRECTIONS 

The simplest but also the least interesting corrections which can be given to the 
photograph coordinates are the linear ones 
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dx = a11 + a12 x + a13y 

dy = a21 + a22x + a23Y 
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The constant terms in these corrections represent shifts of the position of the 
projection centre of a photograph in either the interior or the exterior orien
tation. Except in very exceptional circumstances, these shifts cannot be compu
ted during the bundle adjustment. 

The terms with coefficients a12 and a23 represent scale corrections to the x- and 
y-coordinates, respectively. These terms are not greatly needed because scale 
corrections can be computed in advance of the adjustment from distances of fiduc
ial m~rks or, possibly, reseau marks in the photographs. The two coefficients 
cannot even be computed during the adjustment, except in exceptional circumstan
ces such as extremely accidented terrain with suitably located ground control 
points or very accurately known heights of the projection centres. However, if 
desired, a differential scale change can be computed during the adjustment. This 
is achieved by using only one of these terms in the adjustment. 

If a13 = -a 22 , the terms with these coefficients represent a rotation of the pho
tograph axes. This is of no interest ir the adjustment. If one of these terms is 
eliminated, the remaining one represents a correction for non-orthogonality of 
the x,y axes. This may be of interest. This leaves the linear corrections: 

dx = a1x + a 2y 

or, alternatively 

SECOND DEGREE CORRECTIONS 

The second degree corrections 

dx = a11 x 2 
+ a12xy + a13Y 

dy 2 a22 xy + = a21x + a23Y 

( 1 a) 

( 1 b) 

2 

2 ( 2) 

affect primarily the planimetry of a triangulated strip. If the terrain is level 
and the photographs are exactly vertical, they have no effect at all upon the 
heights of a strip. 
The terms with a11, a13, and a22 may be called scale correction terms. If 
a13 = -a11 and a22 = 2a11, they cause a conformal change of scale throughout the 
strip. If a13 = 0 and a22 = 2a11, they cause a so-called parabolic scale correc
tion. 
The effect of these three terms separately on the bundle adjustment of a strip 
with minimum ground control is shown in Figure 1 and Table 1. Assumed is 60 % 
overlap between photographs, measurement of 25 points in a square grid pattern in 
each photograph with 45 mm spacings between points, and a focal length of 150 mm. 
Again, level terrain and exactly vertical photographs are assumed. The strip co
ordinates are denoted by X, Y, and Z. 

If a22 = a11, the planimetric effects of the terms with x2 and xy cancel each 
other and these terms produce only an x-shift of the projection centres with re
spect to the terrain points and a corresponding longitudinal tilt of each photo
graph. Therefore, if one has somehow solved for a22 and a11, adding the same 
amount to these two parameters gives another solution which differs from the 
first one only in the X-coordinates of the projection centres and in the longi
tudinal tilts. In general, the data will not make it possible to decide which of 
the two solutions is the better one. As a result, only the difference between 
these two parameters can be a parameter in the adjustment. 

Further, it is obvious also from the figure and the table that the coefficient 
a13 of the term with y2 can be determined from the data only in the exceptional 
case of dense and very accurate ground control in suitable locations. Therefore 
in general this coefficient can be given a more or less arbitrary value. 
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FIGURE 1 Planimetric 
corrections at the 15 
points in each model, 
caused by the three 
scale correction 
terms 

TABLE 1 Effects upon a 
triangulated strip of scale 
correction terms which each 
amount to 40 µmin the cor
ner grid points in the pho
tographs; b1 is positive, 
results are at photograph 
scale. 

\ 
I 

\ 

I 
I 
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,1 . --- • 
dx == b

1
xL 

2 
f---d_x _=_bcc.1 x ___ <l_x_=_-bl 

lnrgcsL pln11iLlet1ic 
correctil1Tl )11 earh 
modd (r;e., Lg. 1) 

X-d,ift of c.<.•nlrc of 
strip witl1 rcupect 
to ends 

X--shift of projection 
c('ntrPs with ri·sw:.ct 
to '.:t:r-rain poir:itn 

corresponding tilt: 

0 .04 "'" 

+0.81 nun 

+0.27. mm 

corrc!ction +0.00148 rad 

Z-shifts of projec-
tion centreo +o.60 to -0.60 mm 

0,04 nc~ 

no shift 

no :.;hi ft 

1 -- . -- I 
I I 
\ I 

I I 
... .... 

,I 

' y I 
\ 

dy = l,
1
xy 

0.04 mm 

-0. Sl mm 

-0 .11 r11.n 

-0,0007.\ ,ad 

-0,60 to ,Q,60 n:1.1 

Accordingly, taking a22 - a 11 and the parabolic corrections 
= b1 , suitable scale corrections are the conformal 

dx = b1 (x 2 - y2) 

dy = 2b 1xy 

and also, for instance, 

dx 2 = - bly 

dy = b1xy 

and the pairs 

dx = 0 

dy = b1xy 

and 

the 

and 

and 

dx = b x2 
1 

dy 2b 1xy 

pairs of corrections 

dx = - bl(x2 + i) 
dy = 0 

dx = b x2 
1 

dy 0 

(2a,b) 

(2c,d) 

(2e,f) 

The corrections (2c) and (2d) may be called pseudo-conformal scale corrections 
and the corrections (2e) and (2f) may be called pseudo-parabolic scale correc
tions because they have the same effect upon the planimetry as the corrections 
(2a) and (2b), respectively. 
The terms with a 21 , a23 , and a12 
a23 = -a21 and a12 = -Za21, they 
a triangulated strip. If a23 = 0 
correction. 

may be called azimuth correction terms. If 
cause a conformal change of azimuth throughout 
and a12 = -2a21, they cause a parabolic azimuth 

The effect of these three terms separately on the bundle adjustment of a single 
strip with minimum ground control is shown in Figure 2 and Table 2, under the sa
me assumptions as before. 
Here, it is obvious fuat only the term a21x 2 causes an azimuth correction. There
fore, the coefficient a21 is here the parameter. As regards the coefficients a12 
and a23, only their difference could be determined and this only in the case of 
dense and very accurate planimetric ground control in suitable locations. 
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In general, these two coefficients cannot be free parameters in the adjustment. 
Each can be either made equal to zero or related to the coefficient a21. Accor
dingly, suitable corrections are, here also, the conformal and the parabolic 
corrections 

dx = - 2b 2xy dx = 2b 2xy 

b2(x2 /) 
and 2 dy = - dy = b2x 

(2g,h) 

and a 1 so, for instance, the pairs of corrections 

dx = -b 2xy, dx = 0 dx = 0 
and 

dy = b x2 dy = b2(x2 + /) dy = b x2 
2 2 

(2i,j,k) 

The corrections (2i) and (2j) may be called pseudo-conformal azimuth correction~ 
The selection of suitable pairs for correction terms with parameters b1 and b2 
from the above or from other possible pairs appears to be rather arbitrary. Per
haps, extraneous information on the type of image deformation which can be expec
ted may help in the choice. Otherwise, one may as well select a simple set, such 
as given by equations (2e) and (2k). 

FIGURE 2 Planimetric ,\- 1 
--Ii cor-

rections at the 15 points in 
each triangulated model, cau-
sed by the three azimuth cor- "-- /' 

rection terms 

' 
I 

,,,, r ' 
! I ; -- r -

\ C 

I 

TABLE 2 Effects upon a tri
angulated strip of azimuth cor
rection terms which each amount 
to 40 µmin the corner grid 
points in the photographs; b2 
is positive, results are at 
photograph scale. 

THIRD DEGREE CORRECTIONS 

The third degree corrections 

dx = 

dy 0 • b
2

x 
2 

larcest plaid.rr:etrj c cor
rcc.tion in N1c.h n:odel 
(see Fig. 2) 

Y-shift vf cen~rc vf strip 
with respect to ends 

Y-shift of projccUon 
centres with respect to 
terrain points 

corresponding tilt cor
rection 

dy = c x3 + c x2y + c 2 + 3 
21 22 23xy C24Y 

r i 1 ! - l 1 

t f I. ~ 

. • & 

t I. b 

I 
l l ~ - r --- r I 

dy = -b / 
2 dx =-b,xy 

dy = <lx ~ ~ ·1)2).'Y 

0.08 ram o.o,, mm 0.04 mm 

-0.81 mm no shift no std.ft 

·KJ.22 mm no shift -0,11 mm 

-0.001',8 rad +o .00011, rad 

( 3) 

are useful for the correction of height deformation in a triangulated strip. Some 
of these terms also affect the planimetry. 

If c11 = c22, the terms with these coefficients apply a constant correction to 
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longitudinal neight curvature of a triangulated strip, without causing other 
deformations. If c11 f c22, the longitudinal curvature correction given to each 
model is different from the one given to the whole strip. For instance, the term 
with c22 alone applies a correction to each model which is twice that applied to 
the strip and is in the opposite direction. Each of the two terms separately also 
applies corrections to the scale in y-direction and these corrections are four 
times larger in the model overlap than in the centre line of each model. 

If c12 = c23, the terms with these coefficients apply a linear torsion to a tri
angulated strip. If c12 f c23, the bundle adjustment leaves residuals in the x
and y-coordinates, it causes irregular height corrections at the ends of the 
strip, and it causes planimetric deformation. 
If c13 = c24, the terms with these coefficients apply a constant correction to 
height curvature across a triangulated strip. The term with c24 alone causes only 
a third degree variation in they-scale as a function of y. It serves to cancel a 
similar variation but of opposite sign caused by the term with c13 alone. 

The two remaining terms in Eq. (3) appear to be of little interest. The term c14Y3 
applies a correction to the strip X-coordinates which is the same as the one app
lied to the photograph coordinates. It can be used only in the case of an except
ionally large amount of planimetric ground control in suitable locations. The 
term c21x3 causes systematic residuals in they-coordinates, height deformation 
at the ends of a triangulated strip, and skewing of the X,Y axes. 

Accordingly, of interest are the following third degree corrections 

dx c1x3 + c2x2y + c3xy 2 

(3a) 

M. DE MASSON D1 AUTUME 1 S CORRECTION TERMS 

The preceding results can serve to analyse the terms for correction of systematic 
deformation proposed by De Masson d'Autume (1968, 1972). Each pair of these cor
rection terms has two variables which are different functions of one independent 
parameter. 
The correction terms for variation of scale can be written: 

The shift a1 can here be computed during the adjustment because, via the indepen
dent parameter, it is a function of a2. However, being such a function, it de
pends upon an arbitrary assumption regarding the relation between the shift and 
the required scale correction. With equal justification, it can be omitted. As 
the discussion of Eqs. (2) shows~ the choice of a ratio -1/12 between the coef
ficients of x2 and xy is also arbitrary. It makes the scale correction neither 
pseudo-conformal nor pseudo-parabolic. As the actual systematic deformation is 
unknown this ratio is equally acceptable as the ratios implied in Eqs. (2a) to 
(2f). 
The terms for correction of curvature in the horizontal plane can be written: 

dx = 0 ; 

Here, the shift Bl may be omitted for similar reasons as the shift a1 in the pre
ceding equations. This reduces the equations to the equations (2k) which are nei
ther pseudo-conformal nor pseudo-parabolic but equally acceptable. 

The terms for longitudinal curvature in the vertical plane can be written: 

dx = 0 ; 

As stated earlier, the term y2x2y without a corresponding correction y2x3 for the 
x-coordinates applies a curvature correction to each model which is very different 
from that applied to the whole strip. With orientation points only in the six reg
ular positions in each model, as used by De Masson d'Autume, this does not become 
apparent. The term YlY applies a linear correction to they-scale of the triangul-
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ated strip which is a function of the curvature correction. This correction can
not compensate for the non-linear correction to they-scale caused by the term 
y x2y. These are by-products of the adjustment that do not serve to correct as
s6med strip deformation. It follows that these corrections for longitudinal cur
vature are a rather unfortunate choice. 

The terms for torsion can be written 

d 2 2 2 . d 2 x = oly + o2X y ; y = olx + 02XY 

Because the terms with x2y and xy 2 have different coefficients, they cause x- and 
y-residuals and planimetric deformation. These, also, are an unwarranted by-pro
duct of· the adjustment. The two linear correction terms cause a non-orthogonality 
of the strip axes that is a function of the torsion correction. It follows that 
the torsion corrections, also, are rather unfortunately chosen. 

OTHER CORRECTION TERMS 

Duane C. Brown computes correction terms both in camera calibrations and in block 
adjustments. In one investigation (Brown 1971) polynomials of the third degree 
with independent coefficients were used for x- and y-corrections (10 terms each). 
All terms except the four with x3 and y3 were found to be significant. However, 
the elimination of small systematic errors near the edges of the photographs re
quired the use of general polynomials of the fifth degree. In a program used for 
commercial block adjustment (Brown 1973), correction terms are used for radial 
distortion (3), decentering distortion (2), systematic film deformation (7 for x 
and 7 for y) and unflatness of film platen (7). Detailed information on these
lected terms has not been published but, obviously, all coefficients are assumed 
to be independent. 
Bauer and MUller (1972) also make use of correction terms in block adjustment. 
Two terms with coefficients r3 and r6 correct for symmetric radial distortion 
(r is the distance from image point to principal point). Thus, apart from related 
terms which are designed to reduce the introduced scale changes, they specify: 

dx = a1xr 2 + 

dy = a1yr 2 + 

a xr 5 
2 

a2yr5 

Bauer and MUller also use other radial corrections and tangential corrections. 
These corrections can be reformulated as sums of terms which are also functions 
of x, y, and r. Such terms occur in pairs with the same coefficient. The radial 
correction terms are of the form: 

dx = bxxPyq/rp+q 

dy = byxPyq/rp+q 

and the tangential correction terms are of the form 

dx = -cyxpyq/rp+q 

dy = cxxPyq /rp+q 

in which p and q are positive integers. The division by a power of r serves to 
make the corrections for points on a line through the principal point proportio
nal to r. 
Kubik (1971, 1973) has investigated the effect of four types of corrections on 
triangulated strips and blocks. Three of these can be written as simple poly
nomial corrections to they-coordinates : 

dy = Px + Ay + Txy 

The fourth type of correction introduces the novel feature of the absolute value 
of x or y as a factor in the correction terms. These terms can be written 

d X = RX I y I ; dy = Ry IX I • 

In the way this feature is used here, the derivatives of the corrected coordina
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tes with respect to the uncorrected ones show discontinuities at the coordinate 
axes. However, this can be avoided when the absolute values are combined in dif
ferent ways with powers of x and y. 

CONCLUSION 

This investigation has demonstrated that certain terms and combinations of terms 
of polynomials in the photograph coordinates are especially suitable for the cor
rection of systematic strip deformation during bundle adjustment. 

The first degree terms (la) or, alternatively, (lb) may be used if planimetric 
torsion and differential scale error were not eliminated before the adjustment 
and if, in addition, sufficient planimetric ground control is available. 

A selection of terms may be made from the second degree terms (2a) to (2k) to 
correct systematic planimetric curvature and variation of scale. Because the act
ual image deformations are unknown, the selection can only depend upon subjective 
criteria. 
The third degree terms (3a) are suitable for the correction of systematic height 
deformation. The last of these terms can be used only if either sufficient height 
control exists across at least one strip or the lateral overlap of the strips in 
large. 
All these terms have no fffect, or at the most very little effect upon the x- and 
y-residuals that the actual systematic deformations would leave after an adjust
ment without them. Consequently, the effectiveness of correction terms cannot be 
judged by their effect upon the residuals. For that purpose, one must use check 
points and an investigation of any remaining systematic pattern in the residuals. 

The quoted investigations show that in addition to the above, terms with powers 
of the radial distance rand their reciprocals and terms with the absolute value 
of a photograph coordinate may be useful. There are here still many unexplored 
terms which correspond to simple deformation patterns. A systematic investigation 
of these terms should be made also. 
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BUNDLE ADJUSTMENT WITH ADDITIONAL PARAMETERS - PRACTICAL EXPERIENCES 

by H. Bauer, Hannover, Fed.Rep. Germany 

THE THEORY OF THE ADDITIONAL PARAMETERS 

The theory is simple. The error equations of the central perspective between the 
photo and the terrain are extended by additional free parameters. The equations 
then run : 

v = A1x + A2y + A3z -

x are the coordinate unknowns 
y are the orientation unknowns 
z are the unknown correction parameters. 

What demands should the correction terms fulfil ? 

- The terms should be effective. 
- The correction terms should be simple and as short as possible. 
- The terms should not be correlated with each other. 
- The terms should not be correlated with orientation unknowns (coordinates of 

the perspective centres and orientation angles). 
- The interior orientation of the photos (focal length and principal points) 

should not be changed. 
- For practical work terms are preferable which are not affected by rotation by 

180°. In this case it is not necessary to distinguish the direction in which 
the strips were flown, and the position of the photos in the comparator (direc
tion of triangulation) has no influence on computation. 

WE HAVE EXPERIMENTED WITH THE FOLLOWING TERMS : 

1. radial and independent on direction 

a 1x'(r' 2 -r;,2l; 

,17x'(r" 5 - r;/\ 

•~= 100mm 

2. radial and dependent on direction 

L'lx3 .13x'cos2n 1 .i,1x'sin2n 

'-'Y:l = .i:iv'r.os2n t ,1,1v'sin2,t 

.:),5 cc: il5x'cos1lu 1 ;1nx'si11 11n 

1.'.ly5 = a5v'cos4u r ,1Gy'sin1c1 

ux7 il7x'cosn I a8x'sin11 

ily7 a7y'cosu f';iax'sirH1 

dependent 

on fli\Jht direction 

3. tangential and dependent on direction 

6xg = - a9v'cos2ci - a 1 ov'sin211 

6vh = ,19x'cos2n - a 10 x'sin7n 

1~x·11 ~ · il 11 y'cos1fl -a17y'si111<1 

6y11 = ill ,x'cos4a +a12x'sin1a 

ilx'n= -,11:1v'cow - .1 14v'si11rt 

ilv'13= "13x'cosa +a14x'sinct 

4. shearing 
x' = O 

dependent 

on flight direction 
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5. affinity x' = -02ox' 

v' = +<120v' 
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The program allows four terms to be computed at the same time. For this reason 
we combined the terms to correction groups with four unknown parameters. 

- group 1: radial with r 13 , r 16 and r'cos2(a-E 1) 
- group 
- group 

2: 
3: 

shearing, affinity and tangential with r'cos2(a-E 4 ) 

radial and tangential with r'cos(a-E 3 -xi) 
- group 4: radial and tangential with r'cos4(a-E) 

RESULTS OF THE OBERSCHWABEN TEST 

Strip 1, 3, 5, 7 and 9 of the test block were added to a subblock. In this block 
the effectiveness of the correction terms was checked. The following tables show 
the profit in accuracy of the standard deviation of an image coordinate observa
tion (a ), the increase of sigmi check, and also the size of the individual cor
rection0terms. 

The 1. parameter group resulted radial corrections as a function of r 13 in a size 
of 2µm at the maximum and pointed to a lack of orthogonality. The term r 16 proved 
to be ineffective. The accuracy increase at the check points is 14 % respectively 
31 % (table 1). 

1. PARAMETER GROUP - Subblock Oberschwaben 

Strips 1, 3, 5, 7, 9 ,, 

lllilX.COrl ection inc1 ease of accuracy in 
parameter 

of an image 1 elation to without 

function size 
coordinate add. parameter 

:.\r'1 = a1r'(r' 2-102 ) a 1 = + 0,0051 -2 µm 11,4 % 5,13 µm standard deviation 

of an image coordinate 

iir;;, = a1r'(r" 5 105) a2 = + 0,16.10·6 - 0,2 µm 
sigma check 

---- 14,2 % 25,5 cm UTM - North 
613 = a3r'cos2a a3 = - 0,04 - 0,4 µm 

sigma check 

e11 4 = a4r'sin2a a4 = - 0,225 - 2,2 µm 31,0 % 19,1 cm UTM - South 

TABLE 1 

The 2. parameter group contains affine and tangential corrections. This group was 
charged twice : 

1 - To the image coordinates, which have been applied to the corrections of the 
first parameter group (table 2). 

2 - To the original image coordinates (table 3). 

The results of both computations were about the same. The accuracy of the adjust
ment increases about 25 % and the accuracy of the check points even about 50 %. 
In the first case (table 2) the size of the shearing, affinity and tangential 
distortion attains equal 2,6 µmin a distance of 10 cm of the principal point. 
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2. PARAMETER GROUP - Subblock Oberschwaben 

1 parameter group given 

Strips 1, 3, 5, 7, 9 

max.correction increase of accuracy in 
parameter of an image relation to without 

coordinate add. parameter 

function size 

,;ix'19 = 0 standard deviation 

t.v•19 = a19x' a19 = - 0,265 - 2,6 µm 26,4 % 4,26 µm of an image coordinate 

C>x20 = --a2ox' 
t.v20-"' .. +.a20v' a20 = - 0,264 - 2,6 pm sigma check 

,, 49,0 % 15.2 cm UTM - North 
t.xg = -agv'cos2a 
C>yg .. agx'cos2n ag = - 0,2G7 - 2,7 µm 

C>x'10 = -a,ov'sin2n sii1ma check 
,;iy'10 = a10y'sin2ct a,o = - 0,052 - 0,5 µrn 44,7 % 15,3 cm UfM - South 

TABLE 2 

In the second case (table 3) the shearing amounts to 9,3/m and the affinity 
4,2 fm in the same distance from the principal point. Th tangential distortion 
is insignificant. That means all radial corrections we have computed with para
meter group 1 and 2 may be explained as shearing and affinity. The size of the 
corrections to suppose that there are no systematics with photogrammetrical 
origin but systematics with terrainian origin. 

2. PARAMETER GROUP - Subblock Oberschwaben 

only parameter group 2 

Strips 1, 3, 5, 7, 9 

max.correction increase of nccuracy in 

parameter of an ima\Je , el,ition to without 

coordinate add. parameter 

function size 

JX
0

19 "0 standard deviation 
,;iy'19 = a1gx' a19 = - 0,92B - 9,3 µm 24,0 % 4,40 pm of an image coordinate 

JX20 = -a2ox' 
_\v;m = 1 a2ov' a20 = - 0,425 - 4,3 pm 47,9 % 15,5 µm sigma check 

UTM · North 
JXg = -ag y'cos7o 
Jyg = ag x'cos2n ag = - 0,007 - 0,0 /Jill 

.:'ix'10 = -a10v'sin2n sigma check 

~v·10 = -a,ox'sin2n a10=-0,0G4 - 0,6 µm 45,1 % 15,2 cm UTM - South 

TABLE 3 
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4. PARAMETER GROUP - Subblock Oberschwaben 

only parameter group 4 

Strips 1, 3, 5, 7, 9 

parameter max.correction increase of accuracy in 

of an image 1 elation to without 

function size coordinate add. parameter 

6x5 = a5 x'cos4a standard deviation 
6y5 = a5 y'cos4a a5 = -0, 198 - 2,0 µm 2,6 % 4,88 of an image coordinate 

..ixs = a6 x'sin4a 
6y6 = n6 y'sin4a n6 = -0,015 - 0,2 µm sin111a r.hrck 
-- 9,9 % '16,3 Clll UIM Nrn th 
..ixj1 =a11y'cos4a 
..iy'11 = a11x'cos4a a11 = +0,006 + 0,1 µm 

t.xj 2=-a 12Y'sin4a sigma check 
t.y,r a12x'sin4a a12 = +0,054 + 0,1 µm 1,7 % 50,8 cm UTM - South 

TABLE 4 

The parameter group 4 with radial and tangential corrections as a function of the 
quadrupel period of the image angle should eliminate systematic errors in the 
corners of the images. The parameter group proved to be ineff~ctive (table 4). 

The parameter group 3 is the radial and tangential image coordinate correction 
with the single period of the image angle. The correction depends on an image ro
tation by 1800 (that may be change of flight direction of the strips or the photo 
position in the comparator). The flight direction and the photo position in the 

3. PARAMETER GROUP - Subblock Oberschwaben 

1 and 2 parnmcter group given actual feight direction, 

strips 1, 3, 5, 7 north-south, strip 9 south-north 

Strips 1, 3, 5, 7, 9 

parameter max .correction increase of accuracy in 

I 
of an image relntion to with:iut 

function size coordinate add. parameter 

i,\x.7 = a7x'cosa 
la7 

standard dcvintion 
j-\Y7 = a7y'cosa = + 0,631 + 6,3 µ111 35 % 3,76 µm of an image coordinate 

I 

..ixiJ = a8x'sina 

..ivs = il1:3y' sinn "8 = +1,392 + 13,9 µrn 48,3 % 15,4 µm sigma check 

..ix'13.=-a 13v'cosa UTM-North 

i:iy'13~ a13x'com a 13 =-0,199 - 2,0µm 

tix•14 =-a 14y'sina sigma check 

t.v'14 = a 11\ x'sina a14=-0,107 - 1, 1 µrn 49,1 % 14,1 crn UTM-South 

TABLE 5 
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comparator were considered as additional informations at the adjustment. 
The parameter group 3 effects an important increase of the standard deviation of 
an image coordinate and no improvement in accuracy of the check points as against 
the second group (table 5). The radial correction amounts to more than 15 ~min a 
distance of 10 cm form the principal point, but the effect upon the accuracy of 
the block coordinates is small. This is an indication for a large correlation 
between correction parameters and the elements of the interior orientation (prin
cipal point location). 

The correction of a single period may have three causes: Camera errors, refrac
tion errors due to an air stream close to the airplane and influences of the at
mosphere on account of the sun light radiating from one side. Only the first two 
elements are connected with the airplane. It is possible to separate these parts 
by a combination of the parameters of one test, in which the flight direction is 
considered to be uniform (table 6), and another test in which the real flight 
direction is taken into consideration. In our case the systematic errors of the 
camera and of refraction of the air stream close to the airplane dominate. These 
are influences which are independent of the flight direction. The errors which 
are dependent of flight direction are insignificant. 

3. PARAMETER GROUP - Subblock Oberschwaben 

1. and 2. parameter group, 

given assumed uniform !eight direction 

Strips 1, 3, 5, 7, 9 

max.correction increase of accuracy in 
parameter 

of an image relation to without 

function size coordinate add. parameter 

b.x7 = a7 x'cosa standard deviation 

b.y7 = a7 y'cosa a7 = +0,376 + 3,8 µm 29,% 4,11 /lfll of an image coordinate 

~xs = as x'sina 

uva = as y'sina as = +0, 787 + 7,9 µm 49,6 % 15,0 cm siurn.i check 

i.'lx'13 = ·a13v'cosa UTM · North 

uv'13= a 13x'cosa a13 = - 0, 105 - 1,0µm 

6x'14 =·a14v'sinu ,i(J11,;1 clu:ck 

~Y'14 = a14x'sina a14=-0,114 - 1, 1 µm 42,2 % 1G,O cm Ul M-So11tli 

TABLE 6 

On the basis of the results of the explained tests we draw the following con
clusion: 

1. Correction terms of a single and a quadruple period prove to be ineffective, 
as corrections of r 1 6 

2. We have little effect with radial and tangential corrections with the double 
period. 

3. Effective is the radial correction r• 3 , which considers refraction errors and 
corrections which eliminate shearing and affinity. 

Based on this analysis we chose one parameter group with four terms and another 
with three terms, which we hoped to be very effective. The four terms are r 1 3, 
shearing and radial correction of the double period. The three terms comprehend 
r'3, shearing and affinity. 

Both parameter groups were used regular at all aerial triangulations of the Lan
desvermessungsamt Hannover. About the size of the correction terms in some block 
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name 

Oberschwaben 

Oberschwaben 

Steinbergen 

Unsen 

Stadtol dendorf 

Morse 

Alfeld 

Brockel 

Photo-
scale 

1: 28 000 

1 : 28 000 

1: 8 000 

1.; 6000 

1 : 3 300 

1: 3 300 

1: 3 300 

1: 6 000 

1: 8 000 

TEST AREA 

camera sidelap 

15/23 20 % 

15/23 20 % 

15/23 60 % 

20 % 

15/23 60 % 

30/23 60 % 

30/23. 60% 

30/23 60 % 

30/23 20 % 

strips models rms 

µm 

8 200 4,2 

8 200 4,6 

5,3 
10 90 5,3 

5 45 5,1 

6 96 11,0 
7 81 11,0 
8 127 13,7 

9 100 5,3 

5 18 4,9 

7 80 8,4 

5 85 6,8 
8 56 5,5 

radial with r3 
!l.x' = a1 x'(r'2 - 102 ) 
!:,.y' =a1v'(r'2 • 102 ) 

a1 

0,0036 

0,0048 

0,0115 
0,0114 

0,0045 

0,0111 
0,0096 
0,0132 

0,0032 

· 0,0035 

- 0,0047 

· 0,0038 

- 0,0057 

CORRECTION PARAMETERS 

shearing radial with ar' cos2 ( a - c) 
ti.x' = 0 !J.x' = a3x' cos2a !l.x' = a4x'sin2a 

!:,.y' = a2x' !:i.y' = a4y'cos2a !:,.y' = a4y' sin2 a 

a2 a3 a4 

· 0,941 

-0,995 0,053 0,033 

- 0,112 
· 0,111 0,120 -0,015 

· 0,201 0,034 - 0,039 

· 1,092 · 0,144 · 0,112 
0,061 - 0,526 - 0,185 

-2,045 -0,432 -0,028 

· 0,212 -0,060 + 0,001 

+ 1,85 - 0,106 + 0,470 

0,82 0,255 0,139 

1,71 0,120 - 0,090 

0,70 0,316 -0,000 

TABLE 7 

affinity 
2.x' = -a5x' 

!:,.y' =+a5Y 

a5 

· 0,383 

· 0,107 

0::, 
0::, 
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adjustments for height evaluation, cadastral surveying, and fix point evaluation 
will be reported (table 7). 

In the whole Block 0berschwaben with 8 strips and 200 models the size of the 
parameter corresponds to the subblock 0berschwaben, we tested before. This de
monstrates the reliability of the method of additional parameters and proves that 
even such a large block as 0berschwaben, covering an area of 40 x 62,5 km, con
tains dominant systematic errors, which can be eliminated by additional parame
ters. In the block 0berschwaben a radial effect, shearing and affinity could be 
filtered out, but no radial correction with double period. 

The aerial triangulations Steinbergen and Unsen served for height evaluation with 
an accuracy of about 1 dm. A sidelap of 60 % was used in these blocks to give 
them a maximum of stability. Compared to the 0berschwaben test the size of the 
parameters with r 13 is more than doubled. That can be interpreted, errors due to 
refraction have more importance than we supposed till now. In block adjustment 
Steinbergen with the same comparator date but a sidelap of 20 %, the parameter 
r'3 has only half the size. That means, the whole size of refraction errors can 
only be eliminated with a sidelap of 60 %. For the aerial triangulation by cad
astrial surveying a camera 30/23 was used. In spite of the smaller image angle 
the refraction parameter is rather large, and the sign of the parameter changes 
between plus and minus. The shearing has a different size. In areas with horizon
tal control points of absolutely high accuracy, like Steinbergen and Stadtolden
dorf, the correction of shearing is in the maximum 1 to 2 ~m. In all cases in 
which the quality of the horizontal control points is unknown and probably poor, 
the shearing effect is large, sometimes in a magnitude which is surprising. I be
lieve with the shearing primarily terrestrial errors are eliminated. 

In most of the discussed aerial triangulations the root mean square error of an 
image coordinate is about 5 1um. Without a shearing parameter you certainly don't 
get this, if you have no horizontal control points with high accuracy. 

The correction with r 13 , shearing and affinity have approved themselves in many 
practical cases. It is desirable to find out a correction term which eliminates 
the systematics in the corners of the images. 
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SIMULTANEOUS COMPENSATION OF SYSTEMATIC ERRORS WITH BLOCK ADJUSTMENT 
BY INDEPENDENT MODELS 

by H. Ebner and W. Schneider, Stuttgart, Fed.Rep. Germany 

SUMMARY 

An advanced concept of block adjustment by independent models is presented, al
lowing for a simultaneous compensation of certain types of systematic errors of 
model coordinates. To gain practical experience with this concept a correspond
ing computer program was written. The test results obtained up to now allow for 
the following conclusions: 
- The practical application of the concept causes no problems. 
- The accuracy of adjusted block coordinates is improved up to a factor 3. 
- The obtained accuracy corresponds very well with the accuracy as predicted by 

theory. 

PREFACE 

In modern aerial triangulation systematic errors are of central importance again. 
This was so already, years ago, when the polynomial methods were introduced into 
strip and block triangulation. But during the following phase which was charact
erized by simultaneous least squares adjustment of all bundles or models of a 
block the interest concentrated on random errors whilst systematic errors were 
neglected most of the time. 
The recent change of thinking was caused by the results of various practical 
block adjustments which indicate clearly that systematic errors of considerable 
size are present in photogrammetric data usually Ill. Some of the typical pheno
mena which can be caused by not compensated systematic deformations are: 
- A reduction of control leads to a higher decrease of accuracy than predicted 

by theory. 
- The accuracy decrease with increasing block size is higher than expected from 

theory. 
- Replacing 20 % sideward overlap by 60 % side lap the accuracy is improved only 

slightly or even not at all. 
- Starting from the same data a block adjustment by independent models can give 

more accurate results than a bundle block adjustment 
(see 121, 131, 141,151, 161). 

THE MATHEMATICAL MODEL FOR COMPENSATION OF SYSTEMATIC ERRORS 

Among the possibilities to compensate the inherent systematic errors of photo
grammetric data the concept of selfcalibration by additional parameters is the 
most promising one being available today 171, 181. In the adjustment we treat 
these parameters as random variables with appropriate weights 191, llOI. This 
approach has two essential advantages : 

- It is fully general and leads to optimal accuracy results. Random variables (or 
observations) are the general case of parameters. Free unknowns as well as con
stants are special cases of observations and can be represented by weight zero 
and infinite weight respectively. 

- Additional parameters put up as free unknowns can cause serious numerical pro
blems. If some of the unknowns are highly correlated with each other the normal 
equations become ill conditioned. This problem is avoided when the additional 
parameters are treated as observations with proper weights. 

The block adjustment can be formulated in different ways 1101- If the additional 
parameters generally are common to groups of models (to whole strips for instan
ce) the following formulation is suitable : 

Ax+ By - f 

Iy - s G 
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f vector of observations 
V 1 = vector of residuals belonging to f 
s = vector of additional observations 
v2 = vector of residuals belonging to s 
X = vector of unknowns 
A = coefficient matrix belonging to X 

y = vector of additional unknowns 
B = coefficient matrix belonging to y 
I = unit matrix 

Gff = weight coefficient matrix of the observations f 

Gss weight coefficient matrix of the additional observations s 

In equations (1) the additional parameters are put up as unknowns and these un
knowns are observed. Usually the additional observations swill be zero. But if 
some of the additional parameters are known from a priori calibrations the cor
responding amounts can be introduced into the adjustment. 

The formulation presented here fits into the approach of Genei·alized Least Squa
res llll. This approach itself is related to the concept of Bayesian Estimation 
1121. Furthermore it can be shown that the present formulation according to equa
tions (1) fits into the mathematical model of Least Squares Collocation if we set 
s = 0 (additional observations of amount zero) 1131. In this case we obtain : 

( 2) 

Ax = trend 
- v1 = noise 
Bv2 signal 

Gff = weight coefficient matrix refering to noise 
BG BT = weight coefficient matrix refering to signal ss 

REALIZATION IN CASE OF INDEPENDENT MODEL BLOCK ADJUSTMENT 

As the basic method for block adjustment by independent modjls we choose the 
planimetry height iteration used in the PAT-M43 program I 14 . Concerning the ad
ditional parameters we suppose that the systematic deformations are common to a 
certain group of models at times but change from group to group. In addition some 
systematic can be common to all models. 

With the formulation of identic deformations for different models a problem 
appears resulting from the fact that the coordinate origin is arbitrary for each 
model. The same formulation 6x = axy, 6Y = 0 for instance leads to different mo
del deformations, depending on the origin of x (see figure 1). 
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This problem doesn't appear in bundle 
block adjustment where the origin of each 
image is well defined by the centre point. 
To solve the problem also in case of in
dependent models we search for parameters 
whose effects are not changed by shifts of 
the coordinate system in x and y directio~ 
This condition leads to 4 planimetric 
parameters e, f, p, q and to 6 height 
parameters r, s, t, u, v, w. The effect 
of these parameters and their contribu
tions to the observational equations for 
planimetry and height are shown in fig. 2 
and fig. 3. 
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The parameters e and fallow for a compensation of affine deformations of the 
planimetric model coordinates. The parameters p and q are the only one parameters 
of degree 2 whose effects are independent of coordinate shifts in x and y direct
ion. They also appear in conformal polynomial strip adjustment and are able to 
compensate the trapezoid shaped model deformations gained in J 11. 

The effects of the affinity terms e and fare independent of the flight direct
ion. In contrast to that the effects of the parameters p and q change when the 
flight direction is turned. 
The height parameters rands compensate for quadratic z deformations in x 
and y direction whilst the parameter t corrects for twisted models. The terms u, 
v and w compensate for systematic errors of perspective centre coordinates. 

TESTS RES UL TS 

To gain practical experience with the suggested concept a preliminary computer 
program was written by the second author. This program is fully operational and 
is capable to adjust blocks of medium size with a reasonable computing time. The 
additional parameters may be common to any group of models or/and to all models 
of the block. The weight of each of those parameters can be varied separately in 
a range between zero and infinite. At a later time this program shall be replaced 
by an extended version of the PAT-M package I 14/. 

The practical tests were performed to get answers to the following questions: 

- For which groups of models shall be put up identical additional parameters and 
which weights shall be used for these parameters? 

- Which accuracy improvement can be attained by an extended block adjustment with 
additional parameters? 

- Is the accuracy obtained in agreement with the corresponding theoretical accur-
acy predictions? 

So far as the test material is concerned use could be made of the data of the 
OEEPE project Oberschwaben. From the comprehensive material of this project we 
selected a subblock consisting of strips 5, 7, 9 and 11 of the block Frankfurt. 
The test block an~ the 258 available control points are shown in figure 4. 
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The total number of models is 100 and the block 
size is 20 km x 62.5 km. All control points and 
tie points were signalized. The photography was 
taken with a Zeiss RMK A 15/23 camera at a photo 
scale of 1 : 28 000. The image coordinates were 
measured with a Zeiss PSK stereo comparator and 
the independent models were formed computation-
a 11 y. 

The test is not yet finished completely. In 
particular the investigation on height block 
adjustment with additional parameters is still 
at work. For that reason only the planimetric 
results are available up to now. The control 
distributions investigated here are represented 
in Figure 5. 

The results obtained shall be discussed accord
ing to the questions raised at the beginning of 
this chapter. 

IDENTICAL ADDITIONAL PARAMETERS 
AND PROPER WEIGHTS 

At the beginning each strip was given its own 
set of additional parameters e, f, p and q. 
Considering the standard deviations cr of those 
parameters we have learned that the terms p and 
q are very well determined even if only 4 
control points are used. Unfortunately the de
termination of the affinity terms e and f is 
much poorer. If only 4 control points are used 
the standard deviations are in the order of the 
amounts of the parameters themselves. However, 
if the affinity terms are common to all models 
of the block the standard deviations are reduced 
significantly. Respecting this it can be re
commended to put up individual parameters e and 
f only if there is a real reason to do so. In 
case of our test block it was found as adequate 
to put up common affinity terms only. 

"" .. • 

.. 

= 8 (i = 11) (i = 16) 
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Concerning proper weights of the additional parameters it was found that the 
amounts of the terms e, f, p and q, being computed in the block adjustment are 
only slightly dependent on their weights. This is true also in case of poor 
control distributions. 

Therefore it can be recommended to choose the weights of the additional para
meters according to their expected amounts or somewhat smaller. With that the 
accuracy is optimized and problems with respect to the condition of the normal 
equation matrix are avoided. The amounts of the additional parameters themselves 
are in agreement with the model deformations obtained in Ill. 

ACCURACY IMPROVEMENT BY ADDITIONAL PARAMETERS 

Using the control distributions represented in figure 5 the test block was ad
justed without and with additional parameters. The corresponding results are re
presented in table 1. The accuracies are related to the photo scale. 

TABLE 1 

control control check without add. pa ram. 1d th add. raram. accu1·ac 
" 

---
version points points 

G [lim] 1-'xy [prrJ Go [prr] /lxy 1i1m-l 60 0 L _J 

-
i=2 32 226 6.8 9.9 4.3 6.3 I l.G 

I 
------'-· 

i=4 16 242 6.5 13.4 4.2 6.6 1 . 5 / 2. o 
·-- --------

t ,e 8 250 6,2 20,0 4. 2 7 ~ 4 1.5 

r-------
! 2. 7 

--- --- ----··--

( i = 11) 6 252 6.1 22. 1 4.2 7.3 1.S 
~--- ·---- ----------

( i = 16) 4 
I 

254 5.9 32.4 L 4.2 13. 5 1. 4 

--

Let us start the discussion witt o 0 representing the random accuracy of model 
coordinates. Without additional parameters o 0 depends significantly on the 
control distribution used. This is in disagreement with theory. When additional 
parameters are introduced into the block adjustment o 0 becomes considerably 
smaller (at a factor 1.4 to 1.6) and the dependency on control distribution dis
appears. With 4.2 µm sigma nought is close to the noise limit we can expect from 
todays photogrammetry at all. 

Although the discussion of 0 0 is most illuminating, the real power of the new 
concept is only shown by the comparison of the absolute accuracies, expressed by 
µXY.• the RMS value of the coordinate errors at check points. We see that the 
adaitional parameters improve the accuracy the more the poorer the control 
distribution is. The improvement increases up to a factor 3.0 in case of 6 
control points used. In figure 6 the corresponding results are represented 
graphically. 

The test shows that absolute accuracies of about 7 µmat the photo scale can be 
realized today, even when the control spacing along the block perimeter is in the 
order of 4 to 8 base length. If we put this accuracy of 7 µm ~ 20 cm in relation 
to the length of the block (62.5 km) we obtain a relative accuracy which is 
better than 1 : 300 000. 
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Now a comparison is made between the accuracy obtained by block adjustment with 
additional parameters and the corresponding theoretical accuracy being based on 
random errors only 141. However, to allow for a correct comparison we have to 
consider that the check points used in the test are not error-free. Therefore the 
theoretical accuracy figures obtained from 141 are superposed by the random 
accuracy of check points which we assume with 10 cm in the terrain. This assumpt
ion can be cons·idered as realistic. The result of the comparison is given 
graphically in figure 7. 

FIGURE 7 
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The plot shows that the accuracy obtained in the test is somewhat poorer than the 
accuracy as predicted by theory. However, the discrepancies are less than 20 % 
and can be explained by the facts that our test is only one sample and doesn't 
meet the premises of the theory rigorously (different block shape for instance). 

Considering this we can say that the accuracy results of the test are in agreement 
with the corresponding theoretical expectations. This agreement is most important 
because it indicates that the systematic errors of the model coordinates are 
compensated very well by the additional parameters used and that the remaining 
errors can be considered as random. 
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RESULTS FROM THE SOUTH-WESTERN ONTARIO APR-TEST BLOCK 

by H. Klein, Stuttgart, Fed.Rep. Germany 

SUMMARY 

A new adjustment program-has been developed at the Institute of Photogrammetry 
in Stuttgart: PAT-M 43-APR; a program for the combined simultaneous block adjust
ment of photogrammetric models with APR and'or statoscope data. As a first app
lication the APR test block South-western Ontario was adjusted, in order to prove 
theory and to check handling of the program in practice. 

The results of several test groups with different control distribution, different 
bridging distances' for APR cross flights and a varied density of APR points on 
the profiles show the advantage of a rigorous combined adjustment. 

THE APR TEST BLOCK 

The APR test block South-western Ontario was provided by the Canadian Ministry of 
Energy, Mines and Resources for the purpose of evaluating the results of the com
bined block adjustment of independent photogrammetric models with APR data and of 
testing the APR version of the computer program PAT-M43 Ill, 121. The test area 
is located in Canada between Lake Huron, Lake St Clair, Lake Erie and Lake Onta
rio as shown on the attached map. It is a rectangle flown in 5 strips between La
ke St Clair and Lake Ontario, each strip about 76 models or 250 km long. 

Block description : 

Date of photography 
Camera 
Flying height of photography 
Scale of photography 
Strips with simultaneous APR 
Number of models per line 
Total number of models 
Area 
~ast-west extension 
North-south extension 
Number of APR cross flights 
Flying height of cross flights 
~PR instrumentation 

July 1972 
class A, wide-angle, f = 6 11 

5250 m 
l/33.000 
5 

a ppr. 76 
380 
6750 km 2 

250 km 
25 km 
1 0 

appr. 2000 m 
Radar APR 

The area is hilly with heights above sea-level between 75 m and 370 m. The densi
ty of APR points is 1/2 base length or 5 points across a photograph in both dir
ections, the number is 988. The total number of vertical control points is 440; 
they are very evenly distributed across the block. 

MATHEMATICAL APPROACH 

The APR block program is based on the PAT-M43 program of block adjustment with 
independent models Ill. The program iterates horizontal and vertical adjustments, 
applying 4-parameter and 3-parameter transformations in successive steps. 

The 4-parameter horizontal adjustment is the well known "Anblock"-method. Because 
of the small correlation between horizontal and vertical accuracy only the verti
cal adjustment is discussed in this paper. As described in Ill the vertical block 
adjustment makes use of the following linearized observational equations for the 
height Zij of a point i within a model j when Zi means the unknown height of the 
terrain point i : 
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for model 
[ V z] i j [-y X]. ."[~~] . - [dz]. + [z]. - [z-j i j ( 1 a) = 

points: 1 J - J J 1 

for perspec- l'xl [o -~t[:t UJ + m -[L ( 1 b ) V = Z 
ti ve cente'rs: 

v~ ij -y 

for vertical 
[v 2] i [ z]. - [z]~err ( 1 C) = 

control: 1 

The increments da, db are two of the three independent rotation parameters of a 
modified Rodrigues-Caylay matrix llf, dzj is the z-shift of the model j. 

Points of APR profiles are used as observational data for the combined adjust
ment. They are treated, in- a way, as additional vertical control with appropriate 
weighting. However, the isobaric surface to which the APR recordings refer is not 
known. Therefore additional unknown parameters are needed. We allow a constant 
shift and a tilt correction of the isobaric surface along each profile. 

For the APR height Zik of a point i in profile k we obtain the following observa
tional equation: 

for APR heights 
of model points: 

for vertical 
control: [ V z] i = 

The coefficient tik represents the distance of APR measurement i on profile k 
from an arbitrary starting point, in practice the elapsed time is used. 

The essential difference between (2b) and (le) is the fact that the point i in 
(2b) is not necessarily measured in a photogrammetric model, for instance it can 
be the height of a lake level on which the APR-line closes. Therefore a connec
tion of a photogrammetric block to control outside of the block is possible using 
APR profiles. 

HENRY CORRECTION 

The ideal situation for APR measurements would be to fly on a geopotential sur
face. Unfortunately the noise level is prohibitive for the delicate gravimeter 
instrumentation needed to measure deviations from this surface. 

Another possibility is to fly on an isobaric surface and calculate the slope of 
the isobaric surface with respect to the geopotential surface from wind informa
tion. On the assumption of constant atmospheric pressure and a balance between 
the pressure force and the Coriolis force we obtain the following correction for
mula for APR measurements, recorded on an isobaric surface; the so called Henry
correction formula 13/: 

I':. z = ~ 
g 

s2 
J A · sinl 

sl 
sino ds ( 3) 

w = angular velocity of the earth, g = local value of gravity (g45 = 
980.665 cm/sec2), A= true air speed, L = latitude,o = drift angle, ds = line 
element along the APR-line. In practice g, A, wand Lare assumed constant on 
the track, the drift angle o is measured about every five minutes with an accur
acy of 1/2 degree. Therefore the Henry correction is used as a linear correction 
between two changes of the drift angle. Because we allow a linear correction of 
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the isobaric surface in our adjustment program, we have the possibility to use 
non-corrected APR-measurements while cutting the profiles at the points of change 
of the drift angle. 

THE STOCHASTICAL MODEL 

In our combined adjustment program all observations can be weighted. Because it 
is impractical to weight all observations individually, the program allows only 
for different sets of weight matrices to different groups of observations. In or
der to obtain realistic weights the APR test block South-western Ontario was 
first adjusted with all given 440 vertical control points and all 988 APR measur
ements. The following table shows the chosen weights for the vertical adjustment 
and their agreement with the r.m.s. values of the residuals. 

Group of cbscrvations ji weights (related) I r.rn.s. values 

to the! g1'ound) , of res·iduals 
·----~➔ -·· ~----- • ·----·--~- ·----- --------··-~--------·--·--- ---·-·----- --··•--.--~-

model points z 1 

perspt~c t·i ve centers X 0. 1 

y 0.1 

z 0.0 

control poi r, t'., in 
th0 mo de ·1 z 1 

/\P 1: po·ints ·in 
the model z 1 

J\P r~ profile points z 0.25 
( ,;,; 5200 1n) 

/\PR 1jrnfilc po·ints z 0.5 
( Cc 2000 111) 

v e r·t'i Cct 1 conttol z 0.5 

Sigma-nought of vertical adjustment= 0.43 

0.347 

l. ?.09 

1 . 119 

0.469 

0.303 

0.330 

0.913 

0. 572 

0.521 

Because of unexplained large z-residuals of the perspective centers at the begin
ning and the end of each strip the weight O was given to the z-coordinate of the 
perspective centers, which is possible without detrimental effects to the adjust
ment. 
Looking at the root mean square values of the residuals and sigma-nought we al
ready can point out the following results: 

1. The accuracy of observations before adjustment is about 0.43 m. 
2. The accuracy of APR heights depends on the flying height. APR heights from 

profiles flown at lower altitude have a better accuracy. 
3. The accuracy of APR cross profiles and the accuracy of vertical control hap-

pens to be about the same. 

RESULTS OF THE COMBINED ADJUSTMENT 

Up to now 10 different series of adjustments have been performed with the test
block South-western Ontario, always using minimum control. Each series consists 
of 7 adjustments, varying the distance between cross profiles from 76 models to 
5 models. 

The last 4 adjustments of each group were done only with the western half of the 
block because in the other part not enough cross profiles were flown. Absolute 
accuracy is obtained from 170 check points. 
The first 4 testgroups were adjusted with 2 chains of control at the front sides 
of the block and without any closing of the profiles on control. 
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Accuracy results of the testblock Southwestern Ontario 
absolute accuracy in m obtained from 170 check points. 

combined adjustment: 

I full block half block control I sub-
l) I 5 2 simult. 'cross ldivided 

L:. b 76 38 19 38 19 10 chains profiles- profiles profiles 

J..4611.57 
I 

group 1 2.45 1. 6 6 1.32 1.201:.21 yes no no no 
g ro J p 2 4.39 3.43 2.42 12.52 :.89 1.80 11.76 yes no no yes 

group 3 2. 77 1 . 91 1.72 1. 85 l . 5 6 1.36 1.37 yes no no no 

group 4 3.61 3.02 1.79 2.3711.68 1. 5 3 1 . 4 9 yes no no yes 
group 5 2.05 2.67 2. 11 2.6712.11 1.90 1.96 no yes yes no 

group 6 2.14 2. 5 4 2.16 2.70j2.52 2.05 2.14 no yes yes yes 
group 7 1.96 2.3311.98 2.3311.93 1 '., l. 77 no yes yes no • 0 J 

group 8 1.86 1.6911,53 1.6711.6111.54 1.55 no yes no no 
group 9 1.38 2.3511.55 2.3111.5:, 1.22 l. 14 no yes 

I 
yes no 

group 10 I l . I\ 51 2.13
1 
1. 5 3 i 2. 05 ! 1. 4 5 ! : . 2 2 1. 171 no yes yes no 

space 
of APR 
points 

0.5b 2) 

0.5b 
l b 

1 b 
0.5b 
0.5b 

l b 
1 b 

0.5b 

' b 

1
l~ b = bridging distance of cross profiles in base length 

two step method: 

2
l b = base length 

absolute accuracy with all APR points 
and all closing points 3.L~ m. 

Test 5 - 10 used no height control points within the block. Instead 2 cross pro
files were used and the longitudinal APR profiles closed on the lakes. It was 
anticipated that the overall absolute height accuracy of the combined block ad
justment would reach about 2 m '21. The results now show that the expectation was 
not too optimistic. 

Before going into a more detailed discussion it is perhaps expedient to point to 
some accuracy results first: 

- Bridging the full length of the block (~ 250 km or 76 models) the height accur
acy can be about 2 m. 

- The accuracy is increased when cross profiles are used. When bridging 19 models 
or about 60 km 1.60 mis reached. 

- The best results, obtained with cross profiles all 5 models or 15 km, are 
around 1.20 m. This is obviously the inherent limit of the test material, given 
by flying height, photo-scale, APR equipment, terrain and control. 

Up to now the adjustment of APR profiles and their use for aerial triangulation 
was in most cases much simplified. The profiles starting and closinq over known 
areas were adjusted by applying linear corrections. From the adjusted profiles, 
vertical control points were drawn to be used for the subsequent block adjust
ment. 

With this two step method the absolute accuracy reached with our test material 
was 3.24 m. Due to the more general mathematical and stochastical approach of the 
combined adjustmeht the height accuracy has been considerable increased. 

Thus, the combined adjustment has proven its effectiveness. There are a number of 
details to be commented upon. There is one point in particular to mention: Abso
lute accuracy is steadily increased with shorter distances between cross profiles 
up to an inherent limit (testgroup 1 - 4). This effect is disturbed when the 
cross profiles are closed on known water surfaces. The results become irregular 
and absolute accuracy is not as much increased as with free cross profiles (test
group 5 - 7). Using less control absolute accuracy even is sometimes better (com
pare testgroup 7 with testgroup 8). 
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This results show that control is only necessary to fix in a way the isobaric 
surface. More control points do not result in a better accuracy. 

Using control only on known water surfaces the ratio of the maximum error and the 
average absolute accuracy is less than 2. While using this closing points as 
check points the residuals on each lake are close to a certain positive value. 
There is obviously a systematic effect of the APR recordings on lakes. After cor
rection of the APR measurements with this values we obtained a much better result 
The absolute accuracy has been increased to 1.14 m (testgroup 9 - 10). 

In the test material the density of APR points is 1/2 base length. Using APR 
points all 1 base length only (without the APR points in the middle of the models) 
absolute accuracy become sometimes better (compare testgroup 2 against 4) and 
sometimes worse (compare testgroup 1 against 3). Nevertheless the r.m.s. values 
of APR measurements of longitudinal profiles are decreasing in both cases from 
91 cm to 85 cm. It seems to be a systematic effect of the APR points on the si
des of the models against the points in the centers. 

It is an advantage of the combined adjustment that profiles which can not be clo
sed on known water surfaces or other vertical control can nevertheless be used 
very efficiently. The system automatically provides the interconnection of dif
ferent profiles via the photogrammetric models. Particularly free cross profiles 
are controling tilts and twists of long strips. By using free cross profiles the 
absolute accuracy of the testblock South-western Ontario has been increased by 
more than a factor 2 (testgroup 1 - 4). 

Between two changes of the drift angle the Henry correction is used in practice 
as a linear correction. Because we allow a linear transformation of each profile 
we can do the combined adjustment using non-corrected profiles. The profiles have 
to be subdivided at the points of change of the drift angles. Each part then is 
treated as a separate computational profile. It has to be tested in further in
vestigations whether it is possible to use non-subdivided profiles in a first ad
justment and then cut the profiles on the strength of the obtained residuals for 
a second adjustment. 

Also the problems which are due to local irregularities or disturbances of the 
isobaric surface can be solved in that way. However, in all these cases we have 
to take care of the geometric stability. Additional control or cross profiles 
could be necessary. 

If we compare the results of testgroup 1, 3 and 5 against 2, 4 and 6 respectively 
we see that the non-subdivided profiles are always better. The largest differen
ces were obtained without cross profiles, whilst the results get closer with in
creasing number of cross profiles and control points. 

Error~ of terrain coordinates or APR measurements of control points are hard to 
detect with the two step method. Because of the interconnection of different APR 
profiles via the photogrammetric models such erroneous measurements are recogni
zed by larae residuals in the combined adjustment. Within the material of the 
testblock South-western Ontario it was possible to detect 4 grossly erroneous 
APR measurements of control points. With weight zero they obtained residuals of 
more than 7 meters. 

CONCLUSION 

The results of the combined adjustments show that an absolute accuracy of 1.30 m 
(~ 0.25 O/oo of flying height) can be obtained even with bridging distances bet
ween control points from 125 km to 250 km at photo scale 1 : 33 000. In future 
the combin~d adjustment will give results sufficient for mapping with contour 
intervals of 5 m and less and very long bridging distances of control points, 
even with control points up to 50 km or 100 km outside the block. The use of APR 
measurements with simultaneous block adjustment represents a similar break 
through for height accuracy as perimeter control did for planimetry. 

Klein 5 



;:,,: 

Cl) .... 
:::s 

°' 

\ 
' ' \ 
' ' ) 

I 
I 

I 
H U,' R 

\ . • ( I , 

.~ 
0 :,!::,_ 

~? ~=o~{:: 

n -, 
\\ 

.. ~ lexington 
I 

-\ 
,\ 

'·"';;,CLEMENS~', .• :JJ:P-. ~ ... J-!,,, 

I , .?.$., 
I I U' _: 
i / .,..._ 
) ,-Lak 

'ROIT "s, Clair 
/ _/ 575 --

I 
I 

I 
I 

I 

t"' 
\ 

"')_ ·v 
-e 

NTO 
I I I_.,.,...... _;~--

t 'O OAKVILLE 

◊ 
0\111 \\ 
:'/ .. %TON 

lj..,"fi?r • 
r.c;1(\A' ' 

. ., , j _ PO_BtOALHI 

,~ 

i ) 
AT!\ 
r 

' 
' 

~ ~ ~ ~.~-~''I ,.,..,, .. ,.,Y""{ ·~ -· .. ,._,.,., ~.~---- PO~C( 

1 "'"" 'C::: / '";"J\7":..~i?/ - __ ,--r'-,,v/ :~f • 
t- tl r· / . Port Ma,tlan<l8'.': I 

r,• -\_ ( I /\ '\ 
-;- - - l--- - f- / - I 

'·'""' '1 -- I :J\ PortBurwell ~ r. -j_ I I . ~,.. -.,n~ .. -· ,, 

~

- - - J -~""-- ~ _y ~ /., ' 

- .,.,--- 1l _, /, 1--"' 
R I 

.; 
~ 

572 _______ ,,. 

,,./f 
,,,/ I 

,,. ,,. 
/' 

p... 
1(4 E ------

1 --

y --/-,,. 

_; 

4?0 1 

µ ---- _,_ ----

-~ 

-- 1 

~i ~ ~~ -<.,, 

" // r\ //;,,,. '·~· 

,x 

,. z "'t--1 ·e:, ! '1 - (' \ '-"'.-- ~ ,1 

(i(~- '~~ 
I - _r.J\ ~ 

..... 
0 
N 



- 10 3 -

REFERENCES 

I 1 I 

I 3 I 

I 4 I 

I 5 I 

Ackermann , F . , Ebner, H . , K 1 e i n , H . : "E i n Pro gr a mm pa k et f Ll r di e Aero tr i an -
gulation mit unabh~ngigen Modellen", Bildmessung und Luft
bildwesen 4/1970 

Ackermann, F., Ebner, H., Klein, H.: "Combined Block Adjustment of APR Data 
and Independent Photogrammetric Models" The Canadian Sur
veyor, 26 (1972)-4, p. 384 - 396 

EMR (Department of Energy, Mines and Resources in Canada) "Errors in iso
baric formula for use in APR" 

Jerie, H.G. and Kure, J.: "Data analysis and report on the investigation 
into the application of the airborne profil recorder to 
photogrammetric mapping, ITC Publications A 25/26, p. 80 
1964 

Jerie, H.G.: "Theoretical height accuracy of strip and block triangu
lation with and without use of auxiliary data" Photogram
metria 23 (1968), p. 19 - 44. 

Klein 7 



- 104 -

BLOCK TRIANGULATION WITHOUT POINT TRANSFER 

by J. Albertz, W. Kreiling, J. Wiesel, Karlsruhe, fed,Rep, Germany 

1. THE PROBLEM OF POINT TRANSFER 

Usually the formation of strips and blocks in numerical aerotrjangulation is ba
sed on the fact that coordinates of identical points (tie points) are measured in 
different photos or models. In order to get good results it is not sufficient to 
perform precision measurements, but is absolutely necessary to ensure that the 
same points are observed in adjacent photos or models. Any identification error 
is causing the same effect as a measuring error. For that reason the identifica
tion of points in overlapping photographs should be carried out with the same 
precision as the measurements are performed. 

In practice the identification of points in various photographs is not as easy to 
perform as it would seem. In particular this applies to the identification of 
points in different strips~ Therefore various methods and instruments were deve
loped to transfer points from one photograph to another (de Masson d'Autume 1968~ 

The most rigorous solution- of the problem is the signalization of tie points on 
the ground. This can be done with targets normally used for marking control 
points. In the photographs the images of a target relate of course to exactly the 
same point, misidentification is impossible and a monocomparator can be used for 
measurements. But this method involves a severe disadvantage: field work is in
creased considerably and this is just the opposite of what we want to achieve by 
using aerotriangulation methods. Besides, taking the photographs becomes much mo
re difficult because pin-point flying is required in order to get the signalized 
points at preplanned positions in the image plane. 

Another point transfer procedure is mainly propagated in Great Britain (Eden 196n 
It consists in selecting small objects in overlapping photographs using a stereo
scope and rather high magnification. It depends on the photo scale what types of 
objects are usable, e.g. stones, tufts of grass, bushes or similar objects. Ste
reoscopic vision is only used to guarantee identity of these small objects~ But 
the measurements relating to their centers of gravity are performed in a monocom
parator. 
A third method is the marking of points in the photographic emulsion by means of 
a point transfer device. Many manufacturers of photogrammetric equipment offer 
special instruments for this purpose, e.g. Zeiss Snap Marker, Wild PUG 4, Kern 
PMG 1, Jenoptik Transmark. In any case stereoscopic fusion in conjunction with a 
floating mark is used to identify points in adjacent photos. The marking itself 
is accomplished by a mechanical device or by a laser beam. Unfortunately the mar
king results in a damage to the photographic emulsion so that stereoscopic fusion 
becomes more difficult. 

With regard to the accuracy of transferred points Brucklacher (1961) reports that 
coordinate errors between+ 4 and+ 7 µm were achieved with the aid of the Zeiss 
Snap Marker. Ackermann (1972) states t'hat the errors lie somewhere between+ 5 
and± 10 µm (vectorial error). Eden (1973) compared the accuracy of the monocular 
method using small objects in the photos and the point transfer by stereoscopy. 
Against the widely held opinion that the stereoscopic performance results in the 
highest accuracy, he states that it is more dependent on the observer's skill and 
also more prone to occasional mistakes in identification. 

In any case, the transfer of points is a rather troublesome and time-consuming 
procedure. Some attempts have been made to overcome the difficulties by automati
on using an electronic or digital correlation technique (e.g. Roos 1971). But it 
would be unrealistic to expect from this method a practicable solution of the 
problem in the near future. Such a system would not directly reduce the tedious 
work of manipulating the photographs. Moreover, enormous costs would be involved, 
and the necessary equipment is at present not available. 

During the International Congress of Photogrammetry in Lausanne 1968 the acquisi
tion of data in aerotriangulation and especially the problem of point transfer 
were thoroughly discussed (ISP 1971). This led to a resolution proposing "that 
research on the problem of point transfer be encouraged", a resolution which was 
almost forgotten in the following years. But the problem still exists. 
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2. A METHOD OF BLOCK FORMATION WITHOUT POINT TRANSFER 

A block triangulation method which does not require point transfer was briefly 
described by Albertz (1972). In contrast to the aerotriangulation methods in use, 
it is not based on the identity of points in adjacent models or strips. 

In order to understand the procedure we can compare it to a triangulation of the 
perspective centers. Not only the coordinates of the perspective centers have to 
be determined in relation to a common coordinate system but also the angles of 
rotation. In a terrestrial triangulation network angle measurements are used as 
observations. If the photos have been oriented with respect to each other the two 
straight lines, connecting the perspective centers, the image points and the 
ground point, form an epipolar plane. In other words, the condition of coplanari
ty which can be established for every pair of homologous straight lines is satis
fied. If this is not the case, the discrepancies can be utilized to derive cor
rections for the orientation parameters of the two photos. 

In practice the orientation elements of all the photographs should be simultane
ously determined in a least squares adjustment. For this purpose we need a suffi
cient number of observations appropriately distributed within the block. Such ob
servations are easily obtainable by the stereoscopic measurement of any ground 
points in the overlapping area of adjacent photos. This applies not only to the 
photos within a flight line but also to the photos of adjacent strips. The ground 
points need not be signalized in the field or marked in the photographs. The mea
surements are performed by means of a stereocomparator and result in the image 
coordinates of the point in both photos. As mentioned above each measurement 
yields an observation equation according to the condition of coplanarity. In the 
least squares adjustment the orientation parameters of all the photographs are 
determined in such a way that the sum of squares of the remaining errors is mini
mized. 
This adjustment procedure results of course in a block model which is not fitting 
to control points. In order to adjust the whole block to the geodetic coordinate 
system another group of observation equations must be set up and introduced into 
the system. For each control point whose image coordinates were measured two 
equations can be established according to the basic equations governing central
perspective image formation. This the adjustment will yield orientation elements 
related to the coordinate system defined by the control points. 

3. NUMBER AND PATTERN OF OBSERVATIONS 

Each photo within the block has overlapping 
areas with at least 8 adjacent photos. Ste
reoscopic measurements of the images of 
ground points could be carried out in all 
these photopairs. Let us consider an examp
le which is shown schematically in Fig. 1. 
The block consists of 9 x 9 photos whose 
centers are plotted in the figure. Forward 
and side overlap are supposed to be 60 % 
either. 
Under these conditions any photo inside the 
block has overlapping areas even with 24 
photos. The performance of measurements in 
all these combinations would result in a 
highly overdetermined system. But of course 
this would be very time-consuming and un
economic. 
Investigations have shown that the measure
ments relating to one photograph and the 
photographs not directly adjoining can be 
omitted without difficulty. Then eight pho
tos, adjoining directly, will remain as 
sketched in the upper right hand corner of 
Fiq. 1. If all these combinations are measu
red for the whole block we get the pattern 
of observations shown in Fig. 2. Altogether, 
among the 81 photographs there are 272 com
binations to be measured. 
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Fig. 2 Fig. 3 

This number is still reducible. In each square formed by the adjacent photo cen
ters one diagonal can be omitted. In this case the observations could be arrang
ed as shown in Fig. 3. This way 208 combinations are left to be measured. 

The most advantageous pattern with 
regard to the amount of measure
ments follows if every second pho
tograph along the flight line is 
omitted. Thus we obtain a block 
formed of photo strips with the 
unusual conditions of 20 % fur
ward and 60 % side lap. The num
ber of stereo pairs to be mea
sured is reduced to 120 as shown 
in Fig. 4, where also a few photos 
are sketched to demonstrate their 
grouping. 
The amount of measurements could 
be further diminished by reducing 
the side lap to 20 %. But this 
version would require a rather 
dense distribution of control 
points in order to achieve suf
ficient height accuracy. 

Fig. 4 

4. PERFORMANCE OF THE MEASUREMENTS 

The measurements described above have to be carried out by means of a stereocom
parator. The operator has to choose a number of ground points in the stereogram. 
These points are selected in such a way that they are well distributed in the 
overlapping area of the photos. The number of points necessary to form a block 
depends on the observation pattern. But in general it is advisable to take a few 
more measurements than the minimum amount, e.g. to measure six points per stereo
gram. In doing so the loss of time becomes small since the time-consuming part of 
the procedure is the manipulation and set up of the photos and the measurement of 
the fiducial marks. Compared to that the operator can rather quickly set at any 
ground point. 

The measurements would not be completed without measuring the image coordinates 
of the control points and the points whose coordinates are to be determined by 
the aerotriangulation. In either case the points must be identified in one ste
reogram but a transfer to other photos does not have to be done. In general this 
procedure is much the same as in other aerotriangulation methods. 

Albertz 3 



- 107 -

Some stereocomparators do not allow the rotation of the photos. In this case the 
stereoscopic observation cannot be carried out in epipolar planes if the base 
direction is not parallel to one of the edges of the photograph. However, in ex
periments this fact was found to be of no disadvantage. 

5. NUMERICAL SOLUTION 

The computations of this aerotriangulation method consists of two parts. As the 
first step the block is formed by determining the orientation elements of the 
photos in a least squares adjustment. In the following step which is independent 
of the previous one the coordinates of new points are determined by intersection 
in space. 

DETERMINATION OF THE ORIENTATION ELEMENTS 

The adjustment is based on observation equations. Since there are two types of 
observation equations these equations are divided into two groups. The first 
group relates to the stereoscopic measurements and makes use of the condition 
of coplanarity in its general form. 

b. 

z 

Fig. 5 

Fig.5 shows any pair of photos in the block. The following condition must be 
satisfied for each pair of homologous rays: 

x~ y~ z~ 
I I I 

= X. Y. z. = 0 01 01 01 

X' 
k 

Y' 
k 

Z' 
k 

Xok yok Zok 

X'i' Y'i, Z'i and X\, Y\, Z\ are the coordinates of the image points after the 
transformation into the geodetic reference system X, Y, Z. D is the rotation ma
trix of the respective photo. Due to the second equation, in the first one the 
unknown angles of rotation w, $, K appear in transcendental functions. Therefore 
this equation must be linearized after the introduction of approximate values for 
the unknowns. In order to simplify the computation we use the volume of the tetra 
hedron Oi P' i P' k Ok as a fictitious observation. But this type of observations 
must be normalized before being adjusted simultaneously with other observations. 
Thus we obtain the following observation equation for each point measured stereo
scopically (Albertz and Kreiling 1972, p. 184) : 
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1 
v11 = -N (kX.dX .+ky.dY .+k2.dz .+k .dw.+k<p.d<p.+k .dx. 

I 01 I 01 I 01 ())1 I I I XI I 

with N factor of normalization 

kXi ... kxk observation equation coefficients 

dX .... dx. corrections for the orientation elements (photo i) 
01 I 

dX
0

k ... dxk corrections for the orientation elements (photo k) 

The second group of observation equations relates to the measurements of the con
trol points and is based on the equations governing central-perspective image 
formation: 

with 

a
11

(X - X
0

) + a
21

(Y- Y
0

) + a
31

(Z - 2
0

) 

x' = ck al3(X - Xo) + a23(Y - Yo)+ a33(Z - Zo) 

al2(X - Xo) + a22(Y - Yo)+ a32(Z - Zo) 

y' = ck al3(X - Xo) + a23(Y - yo)+ a33(Z - Zo) 

X, Y, Z control point coordinates 
0 11 .•.. 0 33 coefficients of the rotation matrix D 

Again the equations must be linearized by the use of approximate values for the 
unknowns. Thus for each control point and for each photo in which it is imaged 
we obtain two observation equations: 

V = x' gXdX + gydY + g2dZ + g dw + g d<p + g dx + x' - x' 
O O O ()) <p X 

V = y' hXdX + hydY + h
2

dZ + h dw + h<pd<p + h dx + y' - y' 
O O O ()) X 

with gX .•. gx , hX ... hx observation equation coefficients 

x', y' image coordinates as calculated with the approximate 
values of the unknowns 

x', y' measured image coordinates 

Due to the fact that only the orientation elements of the photos appear as un
knowns the system of normal equations has the form of a banded matrix. The block 
shown in Fig. 4 yields the following distribution of non-zero elements in the 
no rm a 1 e q u at i o n s : 
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34 39 45 48 
Due to the nonlinearity 
of the observation equa
tions the unknowns have 
to be determined in an 
iteration procedure. 

Fig. 6 

The orientation elements resulting from the adjustment are used to determine the 
coordinates of new points by intersection in space. In this procedure the object 
point has to be determined by a definition since in general the homologous rays 
will not really intersect. It is advisable to define the midpoint of the line 
segment which represents the shortest distance between the skew lines as an ob
ject point (Albertz and Kreiling 1972, p. 193). 

6. PRACTICAL INVESTIGATIONS 

The block triangulation method described above was programmed for the UNIVAC 1108 
of the University of Karlsruhe. This program is a test version, that is to say it 
is not optimized. From these investigations the following results are reported. 

TESTBLOCK OBERSCHWABEN 

A part of the OEEPE Testblock Oberschwaben was used for a practical test. This 
subblock consisted of 7 strips of 11 photos each. The photos were taken with a 
wide angle camera (f = 143 mm) at a flying height of 4300 m (photo scale 1:28000) 
with 60 % forward and side overlap. The material is described in detail by the 
OEEPE (1973). 

The measureme~ts were pe~formed acc?rding to the configuration shov·n in Fig. 3. 
In the recording of the image coordinates occasional errors of 100 µm occured, as 
a consequence of which the following computations became rather difficult. 
16 control points were arranged at the perimeter of the block with average distan
ces of two base lengths. In addition 4 vertical control points were used inside 
th~ block at nearly_equal distances. The results were checked at the signalized 
points of the testfield, and the residual errors were found to be 

µ = +9 µm= + 25 cm xy -
in planimetry (coordinate errors) 

in height µz = +13 µm= + 36 cm=+ 0 08 O/oo h . g 
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FICTITIOUS TESTBLOCK 

For investigations into the accuracy of various patterns of observation and the 
amount of measurements involved a fictitious block was used. It consisted of 9x9 
photos with 60 % forward and side overlap. To the fictitious image coordinates 
the normally distributed random error cr 0 was added. 

The observation pattern sketched in Fig. 4 was found to be the optimum if the 
accuracy is compared to the number of photo pairs to be measured. Control points 
were arranged at the perimeter of the block. Their average distances were two 
base lengths (i = 2) as according to 16 points, and four base lengths (i = 4) 
according to 8 points. The following coordinate errors were obtained at check 
points: 

= 2 

= 4 

0. 9 cr 

1. 2 cr 
0 

0 

0. 9 cr 
0 

1. 1 cr 
0 

2 . 3 cr 
0 

3. 1 cr 
0 

The accuracy is nearly the same as the one resulting from the observation pattem 
of Fig. 3 although the number of models was reduced by 42 %. The investigation 
will be continued. 

SUMMARY 

An aerotriangulation method is described which does not need identical points in 
adjacent models to form a block. Compared to the method with independent models 
the number of models to be measured is increased, but the time-consuming point 
transfer procedure which is also a source of errors is eliminated. The method 
makes use of the condition of coplanarity which is applied to stereoscopic measu
rements in various combinations of photopairs. In a least squares adjustment only 
the orientation parameters of the photographs have to be determined. Therefore 
the non-zero elements in the system of normal equations coefficients form a ban
ded matrix which is advantageous for numerical solution. A practical test confir
med the theoretical investigation. 
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ANALYSIS OF COVARIANCE MATRICES 

by H. Ebner, Stuttgart, Fed.Rep. Germany 

SUMMARY 

The paper starts with a representation of the concept of inner accuracy which was 
introduced by P. Meissl in 1962 and which is applied frequently in Geodesy. Pro
ceeding from this concept a theory is developed, allowing for a rigorous analysis 
of covariance matrices. By this theory any given covariance matrix can be dis
integrated into a covariance matrix of simpler structure and the effect of a set 
of filter parameters. An example shows how the analysis works and demonstrates 
the power of the theory. 

THE CONCEPT OF INNER ACCURACY 

In 1962 P. Meissl introduced a concept into Geodesy which allows to filter the 
effect of an arbitrary set of parameters out of a given covariance matrix. The 
accuracy remaining after filtering is called inner accuracy Ill, 121, 131, 
In Geodesy the filter parameters most of the time are restricted to shifts, rota
tions and eventually a scale factor. In this case the inner accuracy is the ac
curacy being liberated from the effect of shifts, rotations and scale, More-
over most of the geodetic applications of the theory of inner accuracy are rela-
ted to free adjustments 141, 151, 161. 
It should be emphasized, however, that the concept of inner accuracy is neither 
restricted to free adjustments nor to a certain number or type of filter para
meters. 

FORMULATION 

We start from a random vector x and the associated covariance matrix M. The vec
tor x is split into the expectation vector E [x] and the increment vector dx: 

X = E [x] + dx ( 1) 

From dx we separate the effect of the filter parameters dt, being represented by 
the filter matrix G. The remaining vector is called dx. The associated covariance 
matrix we call Q. 

dx = dx - Gd t ( 2) 

The filter parameters dt now are determined so that the trace of Q becomes a min-
imum. 

trQ -+ Min ( 3) 

The derivation of the vector dt and of the corresponding covariance matrix R is 
given in 121, The results are: 

dt = (GTG)-iGTdx 
R = (GTG)-iGTMG(GTG)- 1 

Inserting (4) into (2) we get (I= unit matrix): 
dx = (I-G(GTG)- 1 GT)dx 

Q = (I-G(GTG)-iGT)M(I-G(GTG)-iGT) 

( 4) 

( 5) 

( 6) 

( 7) 

The covariance matrix Q represents the inner accuracy of the random vector x 
which remains when the effect of the filter parameters dt is eliminated. The re
sults (4) and (6) are identic with the results of a least squares adjustment, 
which fits the vector x onto the vector E [x] using the oa.raflleters dt and 
minimizing the sum of squares of the residuals dx: ' 

( 8) 
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From there it follows that the m1n1mum conditions (3) and (8) are equivalent. This 
is shown in detail in proof 1 (see appendix). At the same time Q is identified as 
the covariance matrix of the residuals. 

GENERALIZATION 

By introducing a weight matrix P the minimum conditions (8) and (3) can be gener
alized to: 

dx T p dx --;;. M i n 

trQP --,Min 

( 9) 

(10) 

The conditions (9) and (10) are equivalent again (see proof 2, appendix). Analogue 
to the more general minimum condition (10) equations (4) to (7) are generalized 
to: 

dt = (GTPG)-iGTPdx (_11) 

R = (GTPG)-iGTPMPG(GTPG)- 1 (12) 

dx = (I-G(GTPG)- 1 GTP)dx (13) 

Q = (I-G(GTPG)-iGTP)M(I-PG(GTPG)-iGT) ( 14) 

Converting equation (2) the random vector dx now can be expressed as a linear 
function of the components dx and dt: 

d x = dx + G d t = [I G] [ ~: 1 ( 15) 

Analogue to (15) the covariance matrix M of the random vector dx can be represen
ted as: 

( 16) 

The submatrix U of the common covariance matrix of the components dx and dt can 
be obtained by applying the law of error propagation to equations (13) and (11): 

( 17) 

The existence of U demonstrates that dx and dt are correlated with each other. 

A THEORY FOR ANALYSIS OF COVARIANCE MATRICES 

In a previous paper a theory was presented, which proceeds from the concept of 
inner accuracy and allows for a rigorous analysis of a given covariance matrix I?/. 
In the present paper this theory is derived slightly different and the whole pro
blem is treated more comprehensively. By analysis we understand a rigorous dis
integration of M into a covariance matrix K with a structure as simple as possib
le and the effect of a set of filter parameters, represented by a coefficient 
matrix G. 

DERIVATION OF THE THEORY 

We search for a random vector dxK with the associated covariance matrix Kand for 
a filter matrix G which allow for a rigorous separation of the given random vec
tor dx according to: 

dx = dxK + GAt (18) 

At the same time we dispose of the weight matrix P, which was 
arbitrary up to now and set: 

P ~ K- 1 (19) 

The vector dxK and the covariance matrix K can be represented 
analogue to equations (15) and (16) 
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roK ·1 G J K = II G l I· S_i GT 

L - '-

Because of ( 19) dx K and dtK 
OK and S follow as: 

OK= K - G(GTK-1G)-1GT 
S = (GTK- 1G)- 1 
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G] [dxKJ dtK 

= OK+ GSGT 

are not correlated with each 

(20) 

( 21 ) 

other. 

( 2 2) 

(23) 

It can be shown that the random vector dx can be separated 
according to (18) if and only if by use of the same filter matrix 
G both vectors dx and dxK lead to the same residuals: 

dxK = dx (24) 

(see proof 3, appendix). 

Equation (24) is equivalent with the condition: 

( 2 5) 

Usin~ equations (22) and (23) we convert the condition (25) into the more practi
cable form: 

K=Q+GSGT (26) 

Combining equation (16) and (21) and considering condition (25) the covariance 
matrix M now can be disintegrated analogue to the separation of dx in (18): 

M = K + I) 
ro 

G J \_u T 

.7 ,-I 7 

sJ lGTJ= 
with 

T R - S ( 2 7) 

Rand Sare positiv semidefinit matrices, but the difference matrix Tis not 
necessarily positiv semidefinit. Equation (27) represents the aspired analysis 
of the covariance matrix M. The meaning is that M can be expressed rigorously 
by the covariance matrix Kand the effect of filter parameters with the co
efficient matrix G. As can be shown condition (26) is necessary and adeouate 
for the validity of equation (27) (see proof 4, appendix). Therefore (26) can 
be used as a proper criterion regarding the choice of Kand G. 

CRITERION I 

The given covariance matrix M can be analysed rigorously according to equation 
(27) if and only if the chosen matrices Kand G fulfil condition (26). The per
formance of the analysis can be simplified essentially by replacing the choice of 
K by the choice of the weight matrix P which is related to K according to equa
tion (19). Then the covariance matrix K needed in criterion I is estimated as 
follows: 

E [Jo 2] = E [dxTPdx] /r = trQP/r (28) 

K = EG02] p-1 (29) 

E ~o~_is the expectation of the variance factor being computed from the resid
uals dx. The redundancy r is determined by the number n of random variables 
minus the number u o-f filter nararneters. r'he pro_of of equation (28) and a dis
cussion of equation (29) is given in the appendix (proof 5). 
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As soon as criterion I is fulfilled the question appears whether all filter para
meters effect the analysis or whether some of them can be omitted without effect
ing criterion I. Therefore we look for a criterion which detects filter parame
ters without influence over the analysis. For that purpose we split the vector 6t 
into the components 6t1 and 6t2 and represent equation (27) accordingly as: 

R11 \1 

= R12 - S12 

R22 - S22 (30) 

The aspired criterion can be formulated as follows: 

CRITERION I I 

The analysis (30) is not effected by the filter parameters 6t2 and can be repre
sented without puting up G2 if and only if the following equations (31) are valid 

T22 = 0 

u2 = o ( 31) 

(see proof 6, arrendix). 

SPECIAL CASES OF THE ANALYSIS 

Equation (27) represents the general case of an analysis of the given covariance 
matrix M. Beside this various special cases of the analysis are possible. Two of 
them, being of particular interest and appearing frequently shall be treated in 
detail. 

SPECIAL CASE A : U = 0, T = positiv semidefinit 

With that equation (27) is simplified considerably to: 

M = K + GTGT (27a) 

Considering (27a) together with equation (18) we see that here T is the covari
ance matrix of the filter parameters 6t. Moreover from (27a) it follows that dxK 
and 6t are not correlated with each other. In this case equation (18) can be 
interpreted as a separation of the random vector dx into the independent compo
nents of noise and signal, being used in collocation 181. 

SPECIAL CASE B u2 = 0, T22 = positiv semidefinit 

With that equation (30) is simplified to: 

M = K+G uT+u GT+G T GT+G T GT+G TT GT+G T GT 
1 1 1 1 1 11 1 1 12 2 2 12 1 2 22 2 

Equation (30a) can be split properly into 

M = M+G 1U~+U 1G~+G1T11 G~+G 1T12 G~+G 2T~ 2G~ 

M 
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The covariance matrix M differs from M due to the effect of the filter parameters 
6tl only (see proof 7, appendix). If the filter parameters 6t1 are of no particu
lar interest, equation (30a) therefore can be replaced by the much simpler dis
integration (30c). Considering equation (30c) we see that here T22 is the co
variance matrix of the filter parameters 6t2. Moreover 6t2 and dxK are not cor
related with each other. 

PERFORMANCE OF THE ANALYSIS 

The following block diagram shows the steps of the analysis and their sequence. 
The analysis starts with a proper choice of the weight matrix P and the filter 
matrix G, representing the stochastic model and the functional model of the ana
lysis. The necessity to assume a proper mathematical model a priori we know from 
least squares adjustment and regression analysis respectively. Of great importan
ce in this context is the fact that the suitability of P and G can be checkPd 
rigorously by criterion I. 

Equation (26) which is used in criterion I is 
identic with the basic equation of a posteriori 
variance and covariance estimation, given in [9 [. 
Therefore the corresponding procedures can be 
used sucessfully to estimate K. Most of the 
time it will be sufficient to assume uncor
related random variables dxK and to estimate 
their weights only. Concerning the choice of 
the filter matrix Guse can be made of the fact 
that filter parameters without influence over 
the analysis are detected by criterion II. 
Therefore it can be recommended to start the 
analysis with puting up relatively many filter 
parameters. Of course they have to be linear 
independent. As filter parameters often the 
coefficients of regression polynomials will be 
used. 

With the practical application frequently it 
will not be possible to fulfill criterion I 
rigorously. In this case, suitable statistical 
test procedures have to be applied to decide 
whether criterion I is fulfilled or not. If 
equation (26) being used in criterion I isn't 
valid exactly we must not apply criterion II 
rigorously. The question whether some of the 
filter parameters don't effect the analysis 
in this case again has to be answered by 
applying suitable statistical tests. 

COMMENT 

The analysis of a covariance matrix Maccord
ing to equation (27) has to be discriminated 
from a decomposition of a covariance matrix z 
by factor analysis [10 [. This method of multi
variate analysis is characterized by: 

( 3 2) 

Analysis of thr covariance m~trix M 

according to (27) 
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A is the factor loading matrix. The number of collumns of A is fixed usually. 
D is a diagonal matrix. Equation (32) is less general than (27) because no co
variance term corresponding with U is existing in (32). As ipposed to the analy
sis (27) where P and Gare chosen a priori and improved if necessary, in case of 
factor analysis A and Dare estimated directly. The corresponding estimation pro
cedures are relatively complicated and depend on the assumption of normal distri
buted variables. The estimation of A and D is followed by an interpretation of 
the factor loadings of A. With the analysis treated here this step is avoided 
completely because the meaning of the filter parameters is given a priori. 
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APPLICATIONS OF THE THEORY 

The concept presented in this paper is a suitable tool to analyse any given 
covariance matrix, obtained theoretically or empirically. This shall be demon
strated by the following analysis of the theoretical covariance matrix of the 
z coordinates of a photogrammetric model. 

For that purpose we suppose vertical wide angle photooraphy. 
we assume as b = 1 and the flying height as h = 153/92. 
The 8 model points have the same heights and are 
distributed regularly (see figure 2). Points 3 and 5 
are control points in planimetry and height, point 2 
is an additional height control point (free adjust-
ment). 

The image coordinates we assume as uncorrelated observa
tions of variance 1. Putting up a rigorous least squares 
adjustment according to the bundle method we obtain the 
covariance matrix M of the 8 model heights as a sub
matrix of the complete inverse of the normal equation 
matrix: 

8.30 1.38 1.38 

M 17.30 -0.70 5.02 0.52 

-0.70 17.30 0.52 5.02 
1. 38 5.02 0.52 8.86 1 . 51 
1.38 0. 5 2 5.02 1. 51 8.86 

The base length 

3 4 

1 t-----u 2 

.8 

5 ('<----' 6 

FIGURE 2 

The variances and covariances belonging to the height control points 2, 3 and 5 
are zero of course. Due to the existing symmetry the heights 4 and 6 as well as 
7 and 8 are of equal accuracy. 
The analysis of the covariance matrix M we start assuming P = I for the weight 
matrix and putting up 6 filter parameters according to a-regression polynomial 
of degree 2 in the model coordinates x and y. With that we obtain the following 
filter matrix G: 

The first three filter parameters allow for a shift in z and for tilts in x 
and y direction. These parameters are needed for levellina the model. The other 
three filter parameters are put up arbitrary. Performing the analysis we obtain: 

- 2J E Lo 
O 

= 5. 5 3 

K = 5.53 I 

This covariance matrix Kand the chosen filter matrix G fulfil criterion I. 
That means that Kand Gallow for a rigorous disintegration of M according to 
equation (27). The matrices U and T follow as: 
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0.92 0.92 7 
-0.92 -0.92 

· -0. 46 -0.46 -0.15 
u = I u1u2 

~l 
=t 0.46 0.46 -0.15 

L I 
-0.46 -0.46 0.15 
0.46 0.46 0.15 

0.61 
-0.61 J 

0.92 -0.46 -1.38 -1.381 
-0.46 20.28 , -12.45 4.15i 

T = 

. I 
' ' -2,46 I ' 2.77 ' i 

I 

-1,38 -12.45 5,53 I 

I 
I -1. 38 

2. 77 3.47 
4.15 J 

Because criterion I is fulfilled criterion II can be applied rigorously. Doing 
this we see that the last filter parameter 6t6 going with y2 has no influence 
over the analysis of M (T 66 = 0, u6 = 0). 
If we collect the first three levelling parameters in the vector 6t1 and the last 
three in the vector 6t2 and if we divide the matrices G, U and T correspondingly 
we see that the premises of special case Bare given: 

M differs from M due to 1he effect of the levelling parameters 6t1 only. We are 
allowed to replace M by M because M is arbitrary with respect to these three 
parameters due to fue arbitrary choice of the three height control points 2, 3 
and 5. If we fix three other heights, we obtain different results for U1, T11 
and T12 but we get u2 = 0 again and T22 remains unchanged. 

From these facts it follows that M can be represented by K = 5.53 I and the ef
fect of two filter parameters, going with x2 and xy respectively. These two para
meters are uncorrelated with each other and their variances are 5.53 and 3.47 
respectively. 
The results of this analysis can be interpreted as follows: The covariance matrix 
K describes the accuracy of the model heights without the effect of the orienta
tion parameters of the bundle adjustment. This accuracy is obtained keeping the 
orientation parameters of both photos fixed. Then all model heights get the same 
accuracy and are not correlated with each other. The variance in z is 
2,c2/b2 = 2.1532;922 = 5.53. 

Among the orientation parameters of the images 1 and 2 the only one of interest 
here are those which lead to model deformations in z being not compensated by 
the filter parameters 6tl of model levelling. These orientation parameters are 
¢1 or ¢2 causing a cylinder shaped deformation in z and wl or w2 causing a twist
ed model. The filter parameters going with x2 and xy are able to compensate those 
deformations rigorously. The filter parameter going with y2 is not needed at all 
and gets a variance of zero accordingly. 
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Proof 1 

R e p 1 a c i n g ( 8 ) by t h e e x p e c t a t i on E [ dx T dx] a n d c o n s i d e r i n o 

E [dx] = O we get: 

E [ dx T dx J = E [ t r ( dx T dx u = E [ t r ( dx dx T )] = t r ( E ~x dx T J ) = t r Q 

Proof 2 

Analociue to proof 1 we obtain: 

E [dxTPdx] = E[tr(dxTPdx)] = EGr(dxdxTP-~ = tr(E GxdxTP]) 

= t r ( E [ dx dx T J P ) = t r Q P 

Proof 3 

From (18) follows (24): 

d-x K = ( I - G ( GT P G ) - 1 GT P ) d X K = ( I - G ( GT PG ) - 1 GT P ) ( d X - G L:,. t ) = dx 

From (24) follows (18): 

d X = dx + G d t = dx K + G d t = d X K + G ( d t - d t K ) = d X K + G .A t 

Proof 4 

(26) is identic with (25). From (25) follows (27) directly. 

From (27) follows (26): 

K = M-GUT-UGT-GRGT+GSGT = Q+GStT 

Proof 5 

(28) follows from proof 2: 

E I~ 
0 
~ = E [dx T P dx] / r = t r Q P / r 

(29) is an aporoximate estimation of K. The rigorous relation 

between Kand P should be: 

K = E iG 2J p-1 _ o K 

with E[c-;
0

2JK being computed anal9gue to above as: 

E0/]K = E [dx~PdxKJ;r = trQKP/r 

A rigorous estimation of K using E ~
0

2
JK ia impossitile because 

K ~tself is needed for the determination of E [002JK. Therefore 

E j 0
0 

2
], being determinable replaces E [0

0 
2
] in (29). The better 

t h ~ c h-o i c e o f P a n d G t h e c 1 o s e r i s E [ 0 
0 

2] t ~ E [ 0 /] K . A s s o o n 

as K, computed from (29) fulfils criterion I we obtain: 

E [0/] = trQP/r = trQKP/r = E [0/]K 
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The rigorous validity of 

K = E [a/]K P-
1 

- 1 
can be shown starting from K = cP and proving c = 

E [a
0

2]K = trQKP/r = tr(KP-G(GTK-
1

G)-
1

GTP)/r 

(trKP-tr(GTK- 1 G)- 1 GTPG)/r = c(n-u)/r = C 

Proof 6 

From (30) and (31) follows (Q-QK)
1 

= 0, which is necessary and 
adequate for the validity of (30) using G1 only 

For proving that (31) follows from (30) and (O-QK) 1 0 
we separate (GTPG)- 1 into: 

(GTPG)- 1 
• [ :!: :::] 

U2 and T22 , appearing in (30) we represent explicitely as: 

u2 = (I-G(GTPG)- 1GTP)(M-K)P(G 1A12 +G 2A22 ) 

T T T T T 
= (I-G 1A11 G1P-G 2A12 G1P-G 1A12 G2P-G 2A22 G2P)(M-K)(PG 1A12 +PG 2A22 ) 

T22 = (AI2GIP+A22G;P)(M-K)(PG1A12+PG2A22) 

In the following proofs we consider: 

From O = (Q-QK) 1 follows U2 = O: 

0 = (I-G1A11GIP-G2AI2G~P-G1A12G;P-G2A22G;P) 

(Q-QK)1(PG1A12+PG2A22) 

( T T T T T T -1 T = I-G 1A11 G1P-G 2A12 G1P-G 1A12 G2P-G 2A22 G2P)(I-G 1 (G 1PG 1 ) G1P) 

(M-K)(I-PG1(GIPG1)- 1GI)(PG1A12+PG2A22) 
T T T T T 

= (I-G1A11 G1P-G 2A12 G1P-G 1A12 G2P-G 2A22 G2P)(M-K) 

(PG1A12+PG2A22) = U2 
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Proof 7 

We put up G1 only and prove that Mand M lead to the same 
covariance matrix of residuals: 

- -
From (Q-Q)

1 
= 0 follows that Mand M differ due to the 

effect of.6.t
1 

only. 

Ebner 11 



- l22 -

COMPARISON OF ADJUSTMENT METHODS OF THE AEROTRIANGULATION BY NUMERICAL 
FILTERING TECHNICS 

by Gy. Alpar, Sopron, Ungarn 

Aerotriangulation is a complex process involving sophisticated recording, measur
ing and computing technics. Generally two kinds of comparison are practicised for 
the test of aerotriangulation methods. 

The first of them starts with aerial photographs taken of a test area with preci
se geodetic control. The second one operates with computer simulation of the pre
vious items. Both are concerned with the whole complexity of the aerotriangulati
on and the "goodness of fit" is judged by average coordinate discrepancies de
termined at check points. 

The adjustment of an aerotriangulation is, however, a purely mathematical procedure 
even if it anticipates profound knowledge of the preceeding processes. So, we can 
split the problems if the comparison of the different adjustment methods is re
stricted only to the different mathematical formulation of the same aerotriangu
lation problem. It is not a new, but a scarcely appreciated fact namely that the 
coefficient matrix of the· (linearised) observation equations A, together with the 
appropriate weight matrix q-1 widely determine the outcomes of an adjustment. 
From these matrices we can compute always a third one, which gives the inverse 
relationship expressing explicitely the unknowns parameters of the adjustment 
problem: 

x = B L (1) m,l m,n n,l 
Here, x is the vector of the unknowns, B is a m,n-matrix (m < n) and L stands for 
the residuals (containing also the observations). 

At this point we get in touch with numerical filtering technics, because the lin
ear combination BL in equation (1) represents - no doubt - a simple linear filter 
stock. Numerical filtering is, however, a much more general and very powerful 
estimation method. With knowledge of some criticism related to "least squares 
filtering" (see e.g. A. H. Jazwinski, 1970), mention must be made here that lin
ear combinations in the sense of equation (1) are practical filters for our simp
le stationary case. 
In the following, the B matrix will be called the "Filter Matrix" and we will 
show how to perform a comparison with its help. 

In the case of a least squares adjustment the B matrix is given by the matrix 
product: 

( 2) 

Here, the B matrix is a special type of the generalized (or pseudo) inverses of 
A (see e.g. A. Bjerhammar, 1973). Each row of such an inverse matrix is a linear 
filter, which enhances just the unknown to be determined while suppressing all 
the other ones with the help of appropriate linear combinations of all measure
ments. It is also possible - even if it is not practical - to compute a B matrix 
for the non least squares adjustment methods, however not only these filter mat
rices but also the x and L vectors in equation (1) can be considerably different 
for the same aerotriangulation problem. Supposing always identical geometric sit
uation for a test case only the coordinate unknowns of the different adjustment 
procedures can be regarded as common elements. For this reason we split equation 
( 1 ) : 

X B 
( 1) = (Bl) L, (la) 
x2 2 

where xJ stands for the coordinate unknowns and B1 is the appropriate filter mat
rix while x2 denotes the orientation parameters and B2 is the related filter mat
rix. 

Now, we can compare two different adjustment methods applied to the same test ca
se computing the difference of their B1 matrices under the constraints, that they 
are of equal size and the L vector is common. Such a difference matrix "maps" in 
all detail the differences of the adjustment methods to be compared. 
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The constraint related to the L vector is, however, a very serious one and in 
this way we can study mainly the effects of different weighting only. 

If the L vectors of the adjustment methods under comparison are different, but 
otherwise the size of the related B1 matrices and consequently also that of L 
are equal, then we can solve the problem introducing a so called transmitter 
matrix: 

1 n,1 = Tn,n Ln,l 

In the simplest case Twill be a diagonal matrix and I is called the vector of 
equivalent residuals (see F. R. Helmert 1924, and H. Wolf 1971). The least squa
res adjustment with I can be performed now in the following way: 

TAX - T (L + v) = 0 ( 3) 

-1 where vis the vector of the corrections. Then the normal equations with Q are: 

AT TQ-l TAx - AT TQ-l TL= 0 

and the related filter matrix is: 

B = (AT TQ-l TA)-l AT TQ-l T (2a) 

It is not so evident, however, how to determine the B matrix for a non least 
squares adjustment method. In equation (3) the effect of the T matrix is similar 
to that of the special weighting technics introduced by F. R. Helmert, which is 
termed nowadays also for "homogenisation of the observation equations", but we 
call it here the Helmert premultiplication technic because of their dominant com
putational characteristics. Weighting is however a common procedure also for non 
least squares adjustment, and so the B filter matrix can be computed here via 
simple weighting technics. For this reason we can make use from the so called 
Cholesky factorisation (or decomposition) of the q-1 matrix: 

0-1 = 0-1/2 (Q-1/2)T 

and with the substitution 

K = TQ-1/2 

we can write now: 

( 2 b) 

It is easy to see that Kand KT work here as the Cholesky components of general 
weight matrix. When the relationship between T and L is more complex that is the 
T matrix is no more a diagonal one, there is no restriction to use these weight
ing technics. 
In the most general case - e.g. in the comparison of bundle and polynomial ad
justment methods - the L vectors are entirely - also in size - different. The 
computation of the compatible B (resp. B1) matrices via least squares leads us 
to the adjustment of correlated observations. This formally agrees with that of 
equation (3), but here we have a two-ways comparison procedure depending on the 
choice, which one of the different L vectors will be taken for base. So, it can 
occur, that the matrix-product KKT results in a singular weight matrix and its 
use in connection with non least squares adjustments may cause some inconvenien
ces. The alternative choice, however, produces always a unique B matrix. 

In the foregoings we dealt actually with the counterplay of the mathematical 
formulation of the aerotriangulation problem and weighting technics. It seems 
that a useful comparison method can be derived from these duality. The Helmert 
premultiplication technics and Cholesky factorisation are the basic mathematical 
tools in the numerical procedures of these proposed comparison strategy. Also for 
points not involved in the adjustment we can construct prediction filters. In 
such a case also the appropriate part of the B2 matrix ~ill be effective. Finally 
mention can be made, that least squares filters have always some optimum charact
eristics but it does not mean, that the coordinate estimates determined in this 
way are unbiased, i.e. the best ones. 
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CONTRIBUTION TO A GENERAL STEREOSCOPIC BLOCK ANALYTICAL AEROTRIANGULATION 

by E. Dorrer, Munich, Fed.Rep. Germany 

SUMMARY 

Elevation changes of the McCall Glacier, Brooks Range, Alaska, were to be de
termined from aerial photography flown in 1958 and 1971. Different photo scales, 
extremely low image contrast in the third generation 1958 photography, different 
object illumination and terrain snow coverage, however, made the identification 
of transfer points virtually impossible. Therefore, a method for connecting over
lapping photographs not requiring transfer points was utilized, similar to the 
one published by Albertz (1972). Employing the coplanarita principle as fundamen
tal condition, the method is based upon stereocomparator measurements in possibly 
all existing overlapping photopairs of a block. 

Subsequent application of this method to a pilot project proved to be successful 
only partially, mainly due to the particular geometric configuration of the block. 
Modification of the original method by incorporating also transfer points signi
ficantly improved both the accuracy and the iteration convergence for the 2 by 
3 photo block. Commencing with an analysis of the results of this project, the 
mathematical model of a general approach to block analytical aerotriangulation 
with or without transfer points is discussed. 

INTRODUCTION 

The purpose of this paper is twofold. Firstly, originating from a certain field 
of application, an uncommon photogrammetric method of aerial triangulation had to 
be utilized. Secondly, the mathematical background for the method used and for 
similar versions is described. 
As part of its glaciological activities, the Geophysical Institute of the Univer
sity of Alaska, Fairbanks, under Dr. G. Wendler, has carried out mass balance 
studies on a typical ''cold" Arctic glacier. The selected McCall Glacier in the 
Brooks Range, Alaska, had been surveyed during the IGY 1957-58. From terrestrial 
and aerial surveys the glacier was mapped in 1 : 10 000, with 5 m contours on the 
glacier and 25 m contours elsewhere. This contour map, published by the American 
Geographical Society, was compiled from 1 : 24 000 aerial photography (USAF), and 
plotted on a Wild A-7 stereoplotter at the Ohio State University (Case, 1958). 

The aerial photography was repeated in 1971 at the scale 1 : 20 000. Usually mass 
balance studies on glaciers are carried out by comparing two independently plot
ted contour maps (so-called topographic method). The only link between the two 
maps are common control points or parts of common bedrock contours or features. 
Having been determined to a large extent independently, such two plots yield 
statistically reliable results only if the glacier elevations changes are at 
least three times their standard error. As in the McCall Glacier project neither 
the old control points could be reestablished nor glacier surface changes larger 
than a few meters be expected, a purely analytical method was chosen. Its dis
advantage, viz. giving singular points rather than lines, is largely outweighed 
by its higher accuracy. 

OBJECTIVES AND PROBLEM DEFINITION 

The objectives were therefore, to determine glacier height changes by analytical 
photogrammetric means, to establish a digital terrain model for each of the two 
epochs, and to compare the two models. 

Theoretically, there would be no problem to combine all necessary aerial photo
graphs from both epochs into a - whatever arranged - aerial block. Well identi
fied pass or transfer points on non-glacier terrain (so-called bedrock or 
reference points) would be needed as well as some control points, in order to 
perform either a sequential or a simultaneous block adjustment. The raw digital 
terrain models would then be determined by spatial intersection of all measured 
glacier photo points. 

The 1958 photography available was of third generation only, therefore image con
trast proved to be extremely low. Together with the fact that the photographs of 
both epochs had different object illumination and showed completely different 
terrain snow coverage, identification of a sufficiently large number of well 
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distributed common transfer points was virtually impossible. It was therefore 
decided to make use of a method published by Altertz (1972) which deliberately 
propagates a solution for block triangulation without transfer points. This 
method requires stereo measurements in as many stereopairs as possible, i.e. in 
any combination of two mutually overlapping photographs. Merely by means of 
stereoscopic vision, corresponding places rather than points can be identified 
and visually correlated easier. Thus, point identification is strictly combined 
with point measurement. 

A stereoscopic inspection in a Zeiss PSK showed the principal feasibility of this 
method. Figure 1 shows the geometric configuration of the 2 x 3 photo block 
measured. In total 11 stereo pairs were measured, viz. 2 pairs 1958, 2 pairs 1971 
and 7 pairs 1958/71 combined. Ground control had been established in 1971 by a 
new field survey. Ten stations were signalized by 2 - 3 m crosses of fluorescent 
red material. The terrestrial network was subsequently adjusted in a local system 
and the coordinates of the stations were computed (Ameresekere, 1972). Final 
accuracy was 0.3 min planimetry and 0.15 m for the elevations. 
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FIGURE 1 • Schematic photo coverage of McCall Glacier area for 
stereo block analytical triangulation. 
1958 photographs 05, 04, 03 scale 1:24,000 
1971 photographs 19, 17, 15 scale 1:20,000. 

The entire problem was defined as follows: 

1) Stereoscopic point measurements in all suitable stereo pairs. 

' 

~' 

2) Stereo-block analytical least squares adjustment of these measurements into 
the given ground control. 

3) Establishment of digital terrain models for the two glacier epoch surfaces. 
4) Comparison of the two digital terrain models. 

In order to reduce possible local bias, common reference points on bedrock and 
along the periphery of the glacier had to be selected as well. 

The purpose of this paper is to elaborate mainly on phase 2). First, the actual 
photogrammetric solution employed to the McCall Glacier project is briefly descri
bed, and the errors are analyzed. Finally an attempt is made for a general 
approach to a rigorous block analytical aerotriangulation, viz. with and/or 
without transfer points. Dorrer 2 
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ACTUAL PHOTOGRAMMETRIC SOLUTION 

when a decision had to be made whether a simultaneous or a sequential solution 
should be employed, the sequential solution received priority. This for the 
following reasons: 

1) Developing the mathematical model and a corresponding computer program for a 
simultaneous solution would have taken a too long time. Both available man 
power and financial capabilities were far below a desirable figure. 

2) The sequential solution provides a very valuable means of detecting errors 
after each phase. 

3) For an as small block as the one of the McCall Glacier project, no significant 
loss of accuracy would have to be expected from a sequential approach. 

Analogous to a single stereomodel the sequential solution adopted is based on a 
clear distinction between relative and absolute orientation. In the particular 
case of the McCall Glacier project, no information was available for the interior 
orientation of the 1958 photography. However, because of the extremely mountaine
ous character of the terrain, the recovery of the interior orientation parameters 
could be combined together with the general relative orientation. 

The block diagram in Figure 2 indicates the various phases involved in these
quential solution. Only the first six steps are typically photogrammetric. 

STEP 1: 
The comparator coordinates measured directly had to be transferred into photo co
ordinates via given fiducial marks. This transfer is necessary as the photographs 
cannot be centered and oriented in the PSK. The transformation is a simple planar 
rotation with translation. 

STEP 2: 
The first fundamental phase of the solution consists of a simultaneous relative 
orientation of all eleven stereo pairs measured. Basis for the mathematical solu
tion is the coplanarity condition which must be applied to all pairs of cor
responding image points (see Appendix A.l). For the McCall Glacier. block con
sisting of 2 x 3 = 6 photographs, an auxiliary spatial reference system with 
origin in one of the photographs and parallel to its image system was chosen. 
Together with the 3 interior orientation parameters of the 1958 photography, a 
total of 3 + (6-1) x 6-1 = 32 parameters had to be determined. The unknowns were 
computed by linear least squares estimation, the mathematical model of which 
being established in the conventional straightforward manner by linearization of 
the nonlinear coplanarity equation. With a numerical convergence factor of 10-lO 
the solution of the linear equations converged to that of the nonlinear after 
9 iterations. This comparatively large figure is caused by the specific block 
configuration (Figure 1) and the interior orientation parameters included. 

STEP 3: (Appendix A.2) 

With all internal and (relatively) external orientation parameters known, object 
space coordinates and parallaxes corresponding to the measured point pairs were 
established by spatial intersection (four linear equations each). In case the 
parallaxes of a point exceeded 3 times the RMS value determined from all parall
axes, this point was rejected as orientation point, and the relative orientation 
repeated. Four runs were required in the McCall Giacier project, causing a re
jection rate of about 12 %. The points involved were either situated on the low 
contrast glacier surface, or measured in a stereopair consisting of photographs 
from different epochs and with mainly large vertical base component (pairs 05/19, 
04/17, 03/15, in Figure 1). The result of step 3 is a digital multiple stereo
model consisting of orientation points, control points, glacier points, a few 
reference points. 

STEP 4: 

A control point measured in the 1971 photography should obtain unique model co
ordinates. If measured in several photopairs, the coordinates found by inter
section were averaged. This procedure, however, entails inconsistencies of the 
solution, which is one of the main defficiencies of the adopted sequential method 
as compared to a simultaneous one. 
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STEP 5: 
The second fundamental phase of the method consists of an absolute orientation of 
the digital stereomodel, i.e. in a transformation of the model coordinates of all 
points into a given terrain coordinate system by means of control points. For a 
small block such as the one in the McCall Glacier project, a similarity trans
formation is sufficient. Larger blocks may require higher degree polynomials, un
less a rigorous simultaneous solution is adopted. The actual transformation was 
carried out with the Stuttgart PAT-M43 computer program (Ackermann, 1970), al
though only one stereomodel was involved. The generality of PAT-M43 allows such 
a special case. 

STEP 6: 

Theoretically the previous steps should provide unique ground coordinates for the 
few reference points, i.e. points identical to both the 1958 and 1971 photography. 
Due to completely different systematic error patterns inherent in the two types 
of photographs, the expected value of the coordinate differences of these refer
ence points cannot be considered zero. In order to reduce or eliminate this 
local bias, particularly relevant for the elevations Z', Z", a correction sur
face must be computed for the height differences tZ = Z" - Z' from all measured 
reference points. Each of the three glacier regions selected (Fig. 1) having its 
own set of reference points, three different local biases had to be determined. 
Due to the limited number of reference points, simple correction surfaces could 
be estimated only. The residuals are responsible for the final accuracy of the 
glacier surface elevation differences. A discussion of these is beyond the scope 
of the paper. 

The method outlined above did not show very satisfactory results: too large a 
percentage of orientation points had to be rejected, and the coordinate differ
ences of multiply measured points - control and pass points - frequently were 
larger than originally tolerated. A few control points having been misidentified, 
it was decided not to throw away the important information inherent in the 
measurements, but rather incorporate it as transfer information as done in 
ordinary block triangulation procedures. Therefore, step 5 was extended to in
clude transfer points as well. For that reason the multiple stereo model was sub
divided into two submodels with a few points in common, and PAT-M43 was applied. 
This resulted in a general decrease of the coordinate differences of common 
points by over 30 %, and the resulting RMS values seemed in agreement with the 
original expectations. 

The computer program comprising steps 1 to 4 requires 100 Kbytes for compilation 
with the IBM FORTRAN IV-G compiler, and 110 Kbytes for the execution of 550 data 
points. The CPU-time on the IBM-System/370 of the University of New Brunswick 
was approximately 40 s for compilation and an average 240 s for execution of the 
data points in a single run of iteration. 

ANALYSIS OF RESULTS 

There are two kinds of analyses, one of intermediate, purely photogrammetric 
interest, mainly discussed in this chapter, the other of final glaciological 
interest. 
A total of 516 points were measured stereoscopically on the PSK. This number can 
be subdivided into three tapes of stereo-models, as indicated in Table 1. It 
summarizes the RMSEs of residual y parallaxes, yielding, as measure for non
intersection of a pair of spatial rays, some indication of the stereomodel 's 
accuracy. Obviously, standard errors in the 1958 photography were about twice 
those of 1971. A more detailed analysis shows that observations originated from 
highly normally distributed populations. An indication of how well the simultane
ous relative orientation, including inner orientation for one set of photographs, 
performed, give the RMS values in Table 2. Photo 04 was kept fixed, thus all ex
ternal orientation parameters are related to it. Recovery of the inner orient
ation parameters for the 1958 photography lead to the following result: 

x
0 

= 0.17 + .14 mm 
y

0 
0.12 + .08 mm 

f = 15 5 . 2 2 + . 1 9 mm 
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Table 1. Il.US errors of residual y parallaxes 

Stereo Number of 

Combination 
stereo 
pairs 

1958/ 1958 2 

1958/1971 7 

1971/1971 2 

The absolute orientation as 
direct output of PAT-M43 
showed RMS values of the 
coordinate residuals of 
photogrammetric model 
points, i.e. transfer and 
control points, as listed 
in Table 3. When reduced 
to image scale, the 
horizontal error is smaller 
than 15 µm. 

The standard coordinate 
errors turned out to be 
0.30 m for planimetry and 
0.22 m for the elevations. 
These values agree rather 
well with the a priori 
values of the terrestrial 
network adjustment (0.30 
and 0.15 m). The result 
therefore indicates the 
validity of the statistical 
model used. For an average 
flying height of 3000 m 
above ground, the relative 
elevation error is below 
0.5 x 10-4; this accuracy 
would never have been 
achieved by a purely 
topographic method. 

Number . 
of 

points 

154 

182 

180 

--

Table 2. 

E p 0 

Number 

X 
0 

y 
0 

z 
0 

w 

cp 

K 

HMSE Number of Ueasuremen ts 
of > 
PY lx mm 2x RUS 3x RMS 

.846 m 55 3 

.627 m GO 8 

.402 m 46 10 2 

-----·---- --- --·----- ----

RMS values of orientation parameters 
after simultaneous relative orientation 

C h 1958 1971 

of photographs ( 2) 3 

.8 m :.l.4 m 

• 7 1. 9 

.4 4.7 

29" 53" 

42 57 

17 24 

Table 3. InIS values of coordinate residuals 

Photogrammetric model points 
Coordinate 

Transform. + Control Control 

X 0.12 m 0. 15 m 
y 0.17 0.21 

z 0,10 0.14 

From these results we may expect elevation errors mostly smaller than 0.30 m for 
well defined points. For glacier points, however, about two to three times this 
values must be considered, mainly due to difficult identification on the snow 
covered glacier surface. 
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From a photogrammetric point of view these achievements are rather satisfactory. 
For the glaciological investigation, additional errors revealed by reference 
points on bedrock around the glacier, must be considered. The photographs of both 
epochs yield different elevations for these reference points. The distribution of 
the elevation differences of corresponding reference points give an indication of 
the local bias still present in the computed glacier elevations. To reduce this 
bias, the following procedure was adopted. For each of the three glacier regions 
at least 4 reference points were carefully selected. The elevation differences AZ 
were used to interpolate a least squares bilinear trend surface. The elevations 
of glacier points were corrected prior to comparing the two glacier surfaces 
represented by unordered sets of spot heights. The standard error of glacier 
elevation change is a function of its position. Computed values for each region 
can be considered as representative for the final elevation changes shown in 
Table 4. 

Table 4. Glacier elevation chanµ;es 1\J58-71 as determined 
by aerial pl10togramme try. 
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··-
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i 
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reference I 
I 

I I J ____ 
! I I 

I 
' 
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I 

+ 
: Eegioual ave rage I 

l ! 

0 AZ (J • \J rn 1. 7 Ill u,u Ill 
I 

' I - 0 AZ/ ✓n 0 ,4 O,o 0.4 i 0 AZ = m m TU 

I 

The standard errors 0Az are valid for a single elevation difference, averaged 
over each of the regions. Since for each region one elevation change AZ was de
termined out of several interpolated spot heights, the actual standard errors for 
the meaned height change must be smaller. Assuming no further bias, the standard 
errors of the mean of the determined elevation changes can be considered around 
0.5 m (last line). This accuracy is completely satisfactory for glaciological 
purposes. 

Due to unfavorable snow coverage of the glacier surface, only the three mentioned 
glacier regions could be chosen. Normally elevation changes should be determined 
for the entire length of the glacier. The McCall Glacier, however, was completely 
covered by snow from an altitude of 1950 m upwards. No information of the neve 
region could therefore be obtained. As Fig. 3 shows, the normal trend of eleva
tion change vs. altitude is clearly visible, and may be extrapolated beyond the 
observational region. 
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GLACIER ALTITUDE 
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FIGUHE .?> • UcCall Glacier. Elevation change vs. 
glacier altitude obtained from aerial 
photogrammetry 1058 and 1971. 

SPECULATIONS ON A RIGOROUS SOLUTION 
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Though consisting of ideas only, the following section nontheless is of value for 
future consideration. The solution outlined in the previous sections has, besides 
its sequential character, the defficiency that either two different types of con
dition equations are to be used (Albertz, 1972) for orientation and control 
points, or a separation in relative and absolute orientation becomes necessary. 
The situation is further complicated if transfer points are to be included. With
out a specific forcing condition, the common information inherent in transfer 
points cannot be utilized in a simultaneous solution. Since the ground system 
may be considered but another stereo model (0-model according to Ackermann, 1970) 
identical conditions can be used for control and transfer points. 

It seems more adequate for a rigorous solution to describe the geometrical 
relationship between measured image coordinates and object coordinates by just 
one type of condition, viz. the collinearity condition. Which form one wants to 
use is immaterial. Appendix B.1 proposes an implicit form yielding a general 
least squares estimation problem. 

The conventional least squares approach, i.e. if a differentiation is made bet
ween observations, unknowns, and fixed quantities (e.g. ground control coordina
tes), necessitates strict distinction between single points, transfer points and 
control points. This leads to a different consideration of each of these point 
types, a procedure that may easily be overcome by also considering ground co
ordinates as random variables (Brown, 1971). Such a solution, favored by the 
author, is discussed briefly in Appendix B.2. A rethinking of possible correla
tions between image coordinates of the same point when measured stereoscopically, 
seems desirable, though. This statement is particularly valid for statistical 
analyses. 

CONCLUSION 

The proposed rigorous stereo-analytical aerotriangulation procedure does not 
solve the point transfer problem. For an improved connection of individual 
stereomodels or bundles, Albertz' method should be included in the common tri
angulation and block adjustment procedures, and vice versa. The fundamental 
collinearity condition seems generally more applicable to all types of photo
grammetric points than the coplanarity condition. 
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APPENDIX A 
Analytical treatment of principle of sequential solution 
1 - Coplanarity Condition - Relative Orientation 

The coplanarity equation is the fundamental condition for relative orientation. 
It states that the base line between two exposure stations and the two object 
rays to an object point lie in the same plane. Consider, e.g. two mutually over
lapping photographs p,q of a block. For a point i measured in the photopair (p,q) 
the coplanarity condition may be written in the following tensor form (Dorrer, 
1971), ;\,µ,v = 1,2,3 

where 

(A. 1) 

C~ = object space coordinates of projection center of photo numbers, 

image space coordinates (in a system parallel to the object space 
system) of a point i measured in photo numbers. 
(Note: Einstein's summation convention is adopted for subscripts 

The image space coordinates uµ are related to the actual photo coordinates 
xµ (x 1 ,x 2 ,o)T by the expression (K = 1,2,3) 

where 
a 3x3 orthogonal rotation matrix of photo s, 
image coordinates of a point i measured in photos, 
photo coordinates of perspective center of photos. 

( A . 2) 

and 

only). 

Equ. (A.1) and (A.2) combined define a non-linear condition for a measured point 
pair. All orientation parameters 9 and image coordinates x combined yield a 
system of condition equations 

f (8,x) = O. (A.3) 
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Linearization of equ. (.A.3) by means of a Taylor expansion gives rise to the "de
sign" matrix A = af/ ae, and the discrepancy vector w = f(6°,x), according to the 
least squares terminology. The stochastic model assumed was that all image co
ordinates have unit weight. Rather than make use of the combined adjustment case, 
a simplified parametric case was adopted, viz. 

A d9 + w = v (A. 4) 

Here, the residuals v are referred to "pseudo-observations" w, i.e. to the co
planarity condition as random variable. 

2 - Space Intersection 

The purpose of space intersection is to determine the coordinates Xµ(µ=l,2,3) of 
an object point by use of two (or more) phltographs of known orientation. Funda
mental equation is the collinearity equation which must be applied to both 
images, viz. 

X = C' + k' r' (XI. - CI) = C' +k' u' µ µ µv \) \) µ µ (A.5) 
X = C" + k" r" (XII - C" ) = C" +k" u 11 

µ µ µv \) \) µ µ 

The scalars k I ' k" can be eliminated by writing equ. (A.5) in the form ( a = 1, 2) 

X - C' u' X - C II u 11 

a a a a a a 

X3 - C' u' X3 - C II u 11 

3 3 3 3 

or 

u'X - u'X = u'C' - u'C' = s' 3 a a 3 3 a a 3 a (A. 6) 
u"X - u"X = u"C" - u"C" = s" 3 a a 3 3 a a 3 a 

Equ. (A.6) may be condensed by means of the 4th order Kronecker Delta, and by 
representing the primes by an additional index S= 1,2, viz. 

t ( S) X 
aµ µ 

= s (.s) . 
a 

(A.7) 

The components oft are entries of a 4x3 matrix; the three unknown coordinates 
Xµ may be estimated by parametric adjustment. 

In order to estimate the achieved accuracy of the space intersection, the dis
crepancy was computed between an intersected object point and one of its de
termining object rays. The minimum distanced of a point Xµ and a vector uv 
originating from the projection center C is given by 

µ 2 
2 ((X\ - r,\) u\) 

d = (X - Cµ)(Xµ - C ) - ------ (A.8) 
µ µ u u 

\) \) 

The sum of the two minimum distances between a pair of object rays is the 
y parallax. 

APPENDIX B 
Analytical formulation of a rigorous solution 
1 - Collinearity Condition 

The collinearity equation is the fundamental projective condition between image 
coordinates and object coordinates. It may be applied to any block configuration 
and to any type of points. An implicit form of it may be written in the form 
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0 ( B . 1 ) 

where 
point number, 

s . 
l 

= any stereopair, in which point occurs, 

p photo number in stereopair s i ' 

y = 1 for left photo of a pair, and 
2 for right photo of a pair 

cS 
¢0KA E¢crv E KA\) 

i s the fourth order Kronecker Del ta 

Ci,' = 1, 2; K 'A' )J '\)' = 1, 2, 3. 

Equ. (B.l) contains the information for all point pairs or points measured in 
stereopairs or single photographs. For a point pair within a particular stereo
pair, equ. (B.l) simplifies to 

(B.2) 

The partial derivatives of fiy with respect to the orientation parameters, i.e. 
Ci, 

cY , ,&Y (rotational parameters of rY, ), and cY , show immediately the structure 
)J K )JA \) 

of the linear system of equations used for a linear least squares estimation. 
Viz. 

i=k 

i=k 

2 - Least Squares Estimation 

XXX. • • 
xxx •.• 
. . . xxx 
.. . xxx 

xxx ... 
xxx .•• 
.•• xxx 
••. xxx 

xxx ... 
xxx ..• 
. . . xxx 
.. . xxx 

i=k 
XXX 
XXX 
XXX 
XXX 

i=k 
x ••• 
• x •• 
• • x • 
• • • x 

... ... 

. ... 

Equ. (B.1) applied to all measured image points qives rise to the following 
general system of nonlinear equations, written in matrix notation 

f ( 9 ' X ' X = 0 ( B. 3) 

where e = vector of orientation parameters 
X = vector of ground coordinates 
X = vector of image coordinates. 
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Independent of the fact what points are or are not known, the ground vector x 
may be considered a random variable vector. If in addition to the covariance 
matrix K of the actual observables x, also the covariance matrix K~ of the 
ground xvector x is known at least approximately, x may be considered but 
another observation vector. With V and v representing the residuals to X and X, 
respectively, the least squares condition 

T -1 T -1 L = V Kx V + V Kx V min. 

yields a linear system of condition equations with unknowns, viz. 

A d9 + Bxv + BXV + w = 0. 

With 
BT BT M = Kw = Bx Kx + Bx Kx X X 

the interesting parameters 

d9 = -(AT M-1 A)-1 

V 
T 

KX BX t, V = 

where 
t M-l (A (AT M-l 

are 

AT M-1 w 

T 
Kx Bx t 

' 

A)-l AT M-l - I) w 

are the correlates (or Lagrange multipliers). The size of the largest matrix to 
be inverted is identical to the number of orientation parameters. For regular 
blocks this matrix has typical banded structure, and may be inverted by known 
numerical methods. 
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DEVELOPMENT OF A COMPUTER CIMULATION SYSTEM 
CONCERNING THE ACCURACY OF PHOTOGRAMMETRIC OPERATIONS 

by H. G. Jerie, Enschede, Netherlands 

ABSTRACT 

The objective of the paper is to give an introduction to a Rand D project 
initiated by the ITC research group. 
This research project concerns the development of a computer simulation system 
as a tool to meet various objectives, the most important being: 

a) Establishment of accuracy models for various photogrammetric operations; 
b) The evaluation of known and the development and evaluation of new data proces-

sing methods; 
c) Feasibility studies concerning new photogrammetric methods and equipment. 

The computer simulation system is meant to replace practical integral experiments 
to a large extent and furthermore to yield a consistent system of accuracy models. 
Alternative methods to achieve the same objectives, i. e.: 

a) practical experiments and 
b) analytical derivation by application of the statistical laws of error propa-

gation 
require either much more effort (a) or are less capable to cope with the system
atic character of the various error sources involved in photogrammetric operati
ons (b). Past efforts to establish computer simulation systems are characterized 
by limited objectives and scope and were therefore not able to fully meet the 
above mentioned objectives. 

In order to allow a universal as possible application of the computer simulation 
system, it will be constructed in a modular way. For specific applications the 
various relevant models will be combined by individual operating programmes, 
copying the actual flow of physical process to be simulated. 

The main phases of a simulation programme are: 
a) Generation of photography (including generation of terrain elevation data); 
b) simulation of observation phase; 
c) data processing phase; and 
d) statistical processing. 

Eventual new features of the simulation system will be a terrain elevation gener
ator and furthermore the fact that the various error sources in the imaging and 
observation phase are generated sequentially and by random error functions. The 
total development project therefore consists of the task to design proper functi
onal and statistical models for the various error sources and subsequently an
alyse a sufficiently large amount of experimental data, to verify the derived 
models for the parameters of the respective random functions. 

While this paper only gives an overall description of the initiated simulation 
system, it is intended to describe the development of the various models in more 
detail in a series of papers to appear subsequently in the ITC Journal. 

1. INTRODUCTION 

The ITC research group has initiated a project which aims at the development of a 
triple purpose computer simulation system: 
a) For the establishment of accuracy models for various photogrammetric operati

ons; 
b) as an efficient instrument for the development and evaluation of data-proces-

sing methods; 
c) for feasibility studies concerning new photogrammetric methods and equipment. 

The necessity for accuracy models for various photogrammetric sub-processes 
employing different process-components which are currently available has already 
been explained in a preceding paper Ill. It is strongly felt that a computer 

Jerie 1 



- 138 -

simulation system, being designed to simulate the functional and stochastic pro
cesses as realistically as possible in view of the intended applications, will 
yield a consistent system of accuracy models in the most efficient way. 

With respect to the second objective, it is felt that for the development and 
evaluation of suitable data processing methods (e.g. adjustment procedures, gross 
error detection methods, etc.), date generated by a computer simulation system 
can be extremely useful. They can be produced with a fraction of the effort re
quired for practical experiments, can be more representative as an individual 
test and contain complete data concerning ''true values". 

With respect to the third objective it will be quite obvious that a simulation 
system, being composed of all known information about possible sources of errors, 
will be a very convenient means of studying the probable effect of new concepts 
and designs, concerning methods and equipment. In this way a number of potential
ly good ideas which are never realized because of the required effort for practi
cal testing might come to reality. On the other hand considerable effort which is 
currently spent on testing impracticable innovations might be saved. The literat
ure contains a fair number of examples of both categories. 

The objective of this paper. is to give a general introduction to the problem and 
its various components and aspects and to serve as a basis for a series of papers 
to be published in this Journal, dealing in more detail with these components and 
eventually presenting results of the applications of the computer simulation 
system. 
It will be obvious to the reader that the development of such a system is a tre
mendous task and cannot be completed within a short period. Indeed, it will never 
be complete as new data and information should be added continually. However, it 
is hoped that some useful results can already be produced by the system in the 
not too distant future, although in a provisional form. 

2. COMPUTER SIMULATION VERSUS ALTERNATIVE APPROACHES TO THE PROBLEM 

The development of a computer simulation system for the establishment of an ac
curacy model, in view of the considerable effort involved, is only justified if 
on the one hand the potential user of derived information can be persuaded to 
trust this information, and on the other hand if it can be proved that this ap
proach is superior and more efficient than alternative approaches to the problem. 
Before attempting a comparative evaluation of the different approaches possible, 
let us first state the problem clearly: 

Accuracy performance of photogrammetric operations is influenced 

- firstly by the chosen process parameters and process components (e.g. type of 
camera, photoscale, measuring equipment and methods, control distribution, data 
processing methods etc.); 

- secondly by error sources which in each individual case are mainly of a system
atic. nature, within individual photographs, models, strips or blocks, but dif~ 
fer to various degrees for different projects (e.g. irregular refraction, lens 
distortion, film flatness, film distortion, instrumental errors etc.); 

- thirdly by errors mainly of a purely random nature such as observation errors; 
- fourthly by indirect error generating influences which are themselves system-

atic in nature such as flight parameters, terrain deviations, accidental loca
tion of various points for measurement etc. 

The planner of a project needs information concerning the accuracy performance of 
his choice of parameters and components. However, considering what has been sta
ted above about the error generating influences (especially with respect to the 
random (unpredictable) nature of various systematic errors) it is evident that 
these are by no means constant, but can bary in a statistical sense. The planner 
therefore has to cope with this uncertainty. The degree of risk which he is wil
ling to accept is a matter of policy, but it has to be known to him. 

Let us now, iij the light of this situation, analyse the value of accuracy inform
ation derived from individual practical experiments. Firstly they generally re
present only one combination of project parameters and in most cases it is diffi
cult, if not impossible, to determine the functional relationship between the 
various process parameters and the final accuracy performance. This means that 
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no useful information is derived for any situation with different process para
meters. In order to achieve this it would be necessary to repeat the experiment 
under systematic variation of the different parameters. One can easily imagine 
that this would result in an inconceivable number of practical experiments. Fur
thermore, the individual experiment represents just one random combination of 
error generating influences and it is by no means certain that any independent 
repetition of the experiment would not lead to slightly or considerably different 
results (as a consequence of another combination of error generating influences). 
Hence to gain information concerning the character and range of this uncertainty, 
each experiment would have to be repeated many times under completely independent 
circumstances. Considering the high cost in time and money required for such in
tegral tests, this method seems out of question. 

How does the proposed approach by computer simulation now compare to integral 
practical experiments with respect to effort and achievements? This approach also 
requires practical experiments. However, the objective of these experiments is 
the establishment of comprehensive statistical data and stochastic models con
cerning the individual sources of errors. If this information can once be obtai
ned then computer simulation can take over the role of practical experiments. The 
execution of a simulated project will take computer-minutes instead of many man
years. Only in this way will it be possible to allow not only for all possible 
variations in project parameters, but also for all possible variations in size 
and character of the different error sources. 

The probability that the functional and stochastic models established and applied 
in the simulation process are not absolutely correct in each individual run, will 
in view of the inavoidable (i.e. natural) uncertainty of the outcome, play a 
negligible role. We have to balance this against the fact that practical experi
ments do not give any information concerning this uncertainty. 

Let us now turn to another approach to the problem of establishing accuracy mo
dels: their analytical derivation by application of the statistical law of error 
propagation. Or, in other words: the establishment of functional and stochastic 
models (in the form of variance or covariance matrices of the stochastic quanti
ties involved) and their formal processing analogue to the physical process in 
question in order to derive variance or covariance matrices of the final results. 

Although the application of this approach in the past has contributed consider
ably to our knowledge, it suffers from a number of theoretical and practical 
short-comings, the effect of which on the results obtained is difficult to esti
mate. Considering past investigation of this type the following critical remarks 
can be made: 

a) In order to reduce the required computational effort various simplifying as
sumptions have to be made: Photographs, model, and strips are assumed in ideal 
positions. The same is true, e.g. with the position of orientation points, 
minor control points, tie-points, and ground control points. 

b) Investigations are not extended to include elevation differences of the ter
rain, although this must have some (possibly considerable) effect on the 
results. Not only do height differences in the individual model result in 
variations of the accuracy of relative orientation, but they also cause sig
nificant correlations between points in different photographs, models, and 
strips (because of the effect of systematic errors). 
It is a generally accepted hypothesis in this approach that systematic errors 
(in a completely schematic configuration without terrain-deviations) cause 
systematic deformations within the strip which can easily be eliminated by 
the adjustment procedures. This assumption is, however, not longer true for 
irregular configurations and existing terrain elevations. In this case local 
errors and correlations are generated which have a pseudo random character 
within the whole block or strip. 

c) Although theoretically possible, in practice no correlations between observa
tions or pseudo-observations are introduced in the computation process. 

d) Input- and output errors have to be considered to be normally distributed be
cause the applied laws of error propagation are based on this assumption. 
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e) No information can be given concerning the statistical spread of resulting 
variances. In some configurations, as for instance single strip triangulation, 
the variances of one individual strip can vary considerably from the mean 
values obtained through many repetitions. This is due to the high correlation 
existing within one strip which in turn is caused by the accidental effects of 
double summation. 

f) This approach does not allow the statistical investigation of the effects of 
"gross-errors". 

g) It would be extremely difficult using this approach to deal with various 
approximate methods because of the complex mathematical relationships involved 
(e.g. all kinds of smoothing processes), or the occurrence of systematic er
rors for which no suitable stochastic description can be defined. 

h) Finally - and this is in the eyes of the author the most serious shortcoming 
of the method (because of the necessity to make simplifying assumptions, and 
to use for different investigations different types of input in form of pseudo 
observations) - the results of different investigations are not compatible 
with each other. They do not form a consistent system, which allow the planner 
to judge for himself which results he can achieve under his specific circum
stances. 

The above discussion might appear to the reader to be too severe a criticism of 
the alternative methods, but it has been done in the desire to pave the way for 
discussion of an approach which appears to offer the only possibility of achiev
ing a comprehensive and consistent system of information about accuracy perform
ance. There will remain a limited necessity for the execution of integral experi
ments, partly in order to check and verify the results obtained by computer simu
lation and partly because there will still be people who will trust the "real 
thing" more. Computer simulation can, however, play a useful role in these also 
with respect to optimal designs of such experiments. 

Last but not least it should be mentioned, that, to the author's belief, the 
value of the simulation system is only partly based on the possibility of evalu
ating processes and components already in use, but is even more important in 
that it offers the possibility of experimenting with new concepts before trying 
them out in practice. This, after all, is the proven advantage of the application 
of computer simulation and operational research in many other fields of techno
logy. 

3. COMPUTER SIMULATION IN THE PAST 

Numerous examples of application of computer simulation are known from literatu
re. However, most of these concern efforts of very limited scope and application, 
e.a. studies of the effect of control distribution on various adjustment proce
dures. Exactly this was also the purpose of a past development of the ITC (The 
ITC-test block 121, 131) and of later developments (Doyle 141 , Anderson ISi), 
The error models, applied for these developments were not sufficiently realistic 
to allow their applications for general investigations. This is certainly the 
greatest danger in developing such a simulation syst~m. Cases are known, where 
authors reported enthusiastically about incredibly good results of new procedu
res, seeming completely forgetting the fact that this was only due to unrealistic 
assumptions concerning the input data. 

The only serious effort to create a computer simulation system for more general 
use comes from P. Malinen 161. However, as this author has left the photogrammet
ric profession, obviously no further development has taken place. However, all 
these efforts are characterized by considerable simplifications which were pro
bably partly due to non-existence of relevant information, partly due to limit
ations in possible effect. The present project will have to stand on the shoul
ders of these predecessors. As the required knowledge concerning error models to 
a large extent does not yet exist, a considerable effort will have to be spent 
in acquiring this knowledge. 

4. DESIGN PRINCIPLES AND SPECIFICATIONS FOR THE SIMULATION PROGRAMME 

The objective to be achieved with the simulation programme, namely the possibili
ty of establishing for various photogrammetric subprocesses accuracy models which 
are compatible with each other and form in themselves a consistent system, re-
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quires a systems approach to the design and the operation of the simulation pro
gramme. A modular sequential form of data generating and processing will be chu
sen, which copies more or less exactly the actual flow of physical processes, 
which are to be simulated. 

Simplifying assumptions will only be made as far as this is dictated by the 
limitations of available statistical data or as far as this is permissible in 
view of the inevitable uncertainty of the final results. We must always keep in 
mind that the ultimate objective of the exercise is to predict the obtainable 
accuracy for projects to be executed in the future, under governing circumstan
ces which are partly of a random nature. With this in mind it could be unreason
able to consider small influences which have an insignificant effect on the final 
result. 

Considering the quite different applications of the simulation programme, it 
would not seem efficient or feasible, to endeavour to prepare one programme with 
possibilities for all these choices. It seems more reasonable to develop a set 
of sub-programmes for data generation, functional and statistical computation, 
which can be called on by operating programmes developed individually for each 
new type of application. 
Four main phases can be distinguished in the total process of simulation: 

1. Generation of "photography": This includes generation of terrain data (terr
ain elevation), flight parameters, and image coordinates of various categories 
of points: ground control, minor control tie-points, relative orientation points, 
scale transfer points, check points and, if required, auxiliary data also. 

2. Simulation of "observation phase": Depending on the procedure (type of method 
and equipment) to be investigated, various stochastic influeces, e.g. instrument 
errors and observation errors have to be simulated. The latter will partly depend 
on image quality (influenced by meteorological circumstances, optical quality of 
lens, flight speed and exposure time, granularity of photographic material, pho
tographic processing, structure and contrast of terrain details, etc.) and human 
skill. 

3. Data processing phase: This is identical to what happens in reality. Various 
methods of pre-processing and adjustment will be applied to the "observations" 
carried out in the second phase. 

4. Statistical processing: Determination of those statistical indicators, by 
which the accuracy of results can be described, through comparison of the results 
of the third phase with the corresponding "true values". 

As n um e r i ca 1 s i m u 1 at i on u s u a 11 y i n v o 1 v e s t h e ex e cut i o n of a 1 a r g e n um be r of " runs" 
this means that a tremendous amount of data has to be generated and processed for 
each individual investigation. In order to reduce the amount of data to be stored 
the results of each individual run have to be suitably compressed to be used in 
the final statistical analysis of all runs. 

The whole process is represented schematically below: 

Fci,•-:ion on i1~ut--clat:1 (!Xtl':dnctcr)J 

,--------7, /, -----

G~;;~:;;tion of pho~f,g;l'aphy (:rnd-~~;~:-;J~J 
-·-·· -·--- ____ i __________ __ 

@rn:i1a:ion f;f_oh,3cn·ation y:h:ts~ 

! 
[ Data JH'oc2.s:sinr;J 
------· . 1 ··-----·-· 

(s;o;)'!_:,·r;s~:io11 __ n;:_s·,~:1h,:tic;il chL:l. cf_ii,divi.dual runs 1 
~------1 i . 

[:L:,tlsticalyr•J~c,~s:.ng· of ('OJl>i)rcssecl cl:·tal 
(• 
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For the first and second of the above mentioned phases,the following components 
will have to be developed: 

1. A terrain elevation generator: A number of typical terrain forms (landscapes) 
will be selected, and mathematical functions developed which simulate those pro
perties of reality which are essential with respect to the accuracy of photo
grammetric operations. These are in the first place height distributions and 
distributions of height differences in function of distance and mean elevations. 

2. A generator for flight parameters (camera stations, tilts and crab): Depend
ing on the flying height, stability of aircraft and navigational aids, different 
statistical populations for flight parameters will be made available for selec
tion. Formal values for forward and lateral gain will be computed in function of 
the incidental terrain elevations encountered. 

3. Generators for the approximate image coordinates of those points, which are 
in reality selected by the human operator, e.g. relative orientation points, 
minor control points, tie points, scale transfer points, in some cases ground 
control points. The formal position of these points depending on the flight para
meters of the photographs involved and on ground elevations, will be perturbated 
by random values as analysed from real projects. These approximate image coordi
nates will be projected on to the "terrain" and thereby the "true ground coordi
nates" of these points determined. 

4. Generators for "image errors": Several sources of errors will be generated in 
sequence: 
4.1 - Influence of refraction: standard values will be perturbated according to 
assumptions concerning the statistical distribution of meteorological irregulari
ties. In this way, correlations between image errors of ground points appearing 
in different photographs will be generated properly. The influence of turbulence 
under the camera window will be neglected for the time being, because of the lack 
of theoretical and statistical data. The same holds for the influence of front
plates, the influence of which will be considered at a later stage. 
4.2 - Influence of lens distortion: of interest are of course not only the 
calibrated mean distortion functions (they are corrected for in most processes 
anyway, either by computational or physical means) but even more so the irregular 
radial and tangential distortions. In this respect it would be highly desirable 
to simulate gradual changes, as caused in reality by the influence of temperature 
changes on the lens during the flight. 
4.3 - Influence of variation in film thickness: results of laboratory investiga
tions on the possible variations will be used in appropriate functional and 
stochastic models for generation of resulting image errors. 
4.4 - Influence of unflatness of film during exposure, caused by dust particles 
and incorrect working of suction devices, will be introduced by functional and 
stochastic error models, based on the findings of special investigations into 
the problem. 
4.5 - Influence of regular and irregular film distortions, caused by mechanical 
influences at the moment of exposure, and during photographic processing. With 
such phenomena, large variations in the systematic deformations can be expected 
for different projects; smaller, gradual changes will occur with time during one 
flight mission (i.e. on the photographs of one film). 
Both these large variations for different missions and the smaller gradual chan
ges during one mission have to be simulated, because the former cause statistical
ly large uncertainties for future projects, while the latter cause correlation of 
data within one strip or mission, which to a certain extent reduces the effect of 
the distortions on the final result of one individual project. Image distortions 
caused by the process of production of diapositives or paper prints will brc of 
interest when investigations are made into the accuracy of plotting with approxi
mate instruments. 

5. In the "observations phase" we have to distinguish two sources of errors: The 
first are static and dynamic instrument errors, resulting in both systematic and 
random errors of observations. The second category concerns observation or measu
ring errors, which are influenced by many factors. They can partly be grouped to
gether under the concept "image quality", resulting in systematic errors of in
dividual points and in a basic uncertainty to which we have to add the effect of 
the observational skill of the human operator. 
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The foregoing analysis of the character of various error-sources should make it 
clear that the concept of purely random and independent "observation errors" is 
theoretically wrong. This can easily be proved by the fact that otherwise an in
crease of repetitions of observations should lead to each required level of ac
curacy. 
For our intended purpose we have to consider two main aspects. The actual charac
ter of certain systematic errors can vary c~nsiderably, and cannot be predicted 
for future projects. It has in this respect to be treated as random. On the other 
hand, within one mission or parts of it, some of the systematic errors change 
only slightly and gradually in character, and this can cause accumulation as well 
as partial compensation of these error influences on the final accuracy results. 

The extent to which these phenomena play a significant role, can only be establi
shed after actual application of the simulation system to different photogrammet
ric processes. 

5. THE ESTABLISHMENT OF REALISTIC ERROR MODELS 

To establish realistic error models for all the error sources mentioned in the 
foregoing paragraph will not be an easy task, and will require considerable ef
fort. A consolation might be the thought that this will be only a fraction of the 
effort which would be required, if the general task were executed in an alter
native way (e.g. by integral experiments). Different sources of statistical input 
data, like lens calibration data, reseau measurements, photogrammetric test field 
measurements, but also results from various laboratory tests (film thickness and 
unflatness) and even from other fields of sciences (like meteorology) will have 
to be suitably combined. 

The results obtained in this way can be checked against results of practical ex
periments of different size and scope. Only after we can be satisfied that the 
results of previously executed practical experiments can be achieved by the 
simulation system in a significant manner, will it be applied to hitherto un
tested processes. 

One of the difficulties encountered lies in the fact that although a large num
ber of experiments and investigations has been carried out in order to establish 
the size of errors arising from different error sources, this has nearly always 
resulted in description by standard deviation. For error generation this is of 
course not sufficient, because the errors are in reality not normally distributed 
and independent. 

For simulation purposes these errors must therefore be defined as functions (e.g. 
film distortion as a function of image-coordinates). For this purpose the comple
te set of measurements will be required in order to analyse their functional and 
stochastic characteristics. Each of the error-sources defined will be the subject 
of a specialized investigation. Reports on the results of these investigations 
can be expected in subsequent editions of this journal. 

The author wishes to conclude this introduction to a research project, which it 
is hoped may be of considerable benefit to the photogrammetric community, by a 
request for assistance from his readers. The ITC will be extremely grateful for 
appropriate data in various forms, be it camera calibration data, test field 
photography or measurements, reseau photography and measurement, data concerning 
equipment calibration, observational accuracy etc., or any information concerning 
possible sources of such data. 
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CAMERA CALIBRATION BY PHOTOGRAPHING TEST FIELDS 

by I. H~dem, Oslo, Norway 

INTRODUCTION 

An aerial camera is a prec1s1on instrument which gives numerical results to an 
accuracy of the order of one micron. However, unlike other precision instruments 
an aerial camera is not calibrated under real working conditions. The camera is 
ordinarily calibrated in laboratories, but other methods are also applied, e. g. 
photographing the horizon (in combination with angle measurements) or photograph
ing from high towers 161. In all cases, the conditions deviate from the real 
operational conditions, which are characterized by extreme temperature, humidity 
and air pressure. 
It has been assumed that the large variation in termperature to which the camera 
is exposed under real working conditions might have a special influence on the 
camera calibration elements, especially the focal length. Investigations to veri
fy or reject this assumption have, however, given contradictory results 141,llOI, 
The reason for this may be that in experiments in the air it is difficult to 
separate the influence of the temperature from the influence of other sources of 
error such as refraction and earth curvature, and in the laboratory (cold cham
ber) it is difficult to imitate the temperature conditions under which the camera 
operates. 
In East Germany the temperature conditions in a camera were recorded during 
flight and then reproduced in the laboratory 1171. One conclusion was that both 
the extremely low outside air temperature and the large temperature gradient in
side the lens might have a significant influence on the focal length (wide angle 
camera 11/18). However, no significant influence on the image quality and the 
characteristics of the distortion curve was found. 
In this paper a survey of the possibilities of estimating and testing the inner 
orientation of aerial cameras from air photos of test fields will be given. 

THE ESTIMATION OF PHYSICAL QUANTITIES IN PHOTOGRAMMETRY 

The functional model of the aerial photograph is expressed by a) the condition 
equations which exist between the elements of the central perspective, and b) 
the correction formulae for the disturbances on the central perspective,,viz. 
1) refraction, 2) earth curvature, 3) lens distortion and 4) film shrinkage. 
Thus, the parameters of the functional model are: 

X
0

, Y
0

, Z
0

, ¢, w, K 

X , Y , Z 

x, y 

outer orientation 
terrain coordinates 
image coordinates 

x
0

, y
0

, c inner orientation and 
the coefficients of the correction formulae. 

Traditionally these parameters are estimated as follows: 
1. Refraction and earth curvature are estimated on the basis of physical data 
for a "normal" atmosphere and geodetic data for the dimensions of the earth. 
2. Inner orientation including lens distortion is determined by camera calibra
tion, ordinarily in laboratory. 
3. Film shrinkage is determined from 4 or more fiducial marks. 
4. The unknown terrain coordinates are estimated by an adjustment procedure re
garding the inner orientation x0 , y0 , c and the known terrain coordinates as 
"constants", and the image coordinates, corrected for refraction, earth curvature 
lens distortion and film shrinkage, as independent "observations" usually with 
equal weights. 

THE USE OF TEST FIELDS 

By photographing a test field with height differences, it is possible to estimate 
and check inner orientation, distortion and even affinity, under operational con
ditions. However, in using a test field for this purpose, many difficulties are 
met: 
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A permanent network of signalized points, suitable for the flying heights in 
question, must be established. The points must be determined in the field with 
high accuracy (mx =my= mh = 2 cm or less). The network should be regularly loca
ted (preferably symmetrically) m the film. 

The conditions under which the calibrated values are derived should be represen
tative for the conditions under which these values are to be applied in later 
photogrammetric missions. However, the calibrated values derived from photographs 
over a test field reflect the particular physical conditions under which the 
calibration was performed. Photogrammetric missions might be carried out under 
quite different conditions, resulting in instability of the calibration data. 

In mountainous terrain photogrammetric refraction is an important source of er
ror. The atmospheric conditions of a test field with large height differences 
(which are necessary to determine the complete inner orientation) may not re
present the operative conditions of the mission flights. 

In addition, the temperature conditions in the operating camera and the physical 
conditions under which the film is handled, processed, stored and measured may be 
different. 
It is difficult to find a test field with a terrain form that gives an accurate 
estimate and a powerful testig of the errors in inner orientation. As known, 
these errors are compensated for, more or less, by other elements in the case of 
nearly flat terrain (correlation effect). A nearly sloping plane is also un
favourable in this respect. To give an idea of this problem, the accuracy of the 
elements has been derived on the basis of formulae (2), for theoretical cases of 
terrain forms, fig. 1. The result is presented in Table 1. 

Case 1 

Fig 1. Theoretical terrain forms with 9 points 

Thus, camera calibration from aerial photographs of test fields has many dis
advantages in comparison with traditional calibration in the laboratory. The 
tendency towards analytical photogrammetry, which can take advantage of more 
specified camera calibration, has, however, made calibration under real conditions 
more justified than before. Further investigations into this field of photogram
metry are therefore desirable jl8j. 

For the time being it may be said that because of the difficulties which are met 
in performing a complete camera calibration from air photographs it is doubtful 
whether this form of calibration can replace the traditional one. It should also 
be borne in mind that traditional analytical calibration (i.e. independent cali
bration of each element such as lens, cone, flatness of plates etc.) constitutes 
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Case 2 
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The standard errors C5. = 1/Q~ • C5 ( in µ), 
l ll 0 

C5 the standard error of uni tweight ( =l for all observations). 
0 

an important means of checking the result of the photogrammetric process \31. 
Therefore, integral calibration by means of test fields should rather be con
sidered as an additional form for checking the results as such calibration would 
check the performance of the whole procedure under operational conditions. 

In the following a method of statistical investigation into the geometrical 
accuracy of air photographs taken over test fields will be outlined. Then a 
practical application will be reported. 

DERIVATION OF THE BASIC EQUATIONS AND FORMULATION OF THE TEST 

By p~otographing a test field with height differen~es it is possible to estimate 
the errors in the elements of inner orientation and also the residual affinity 
when the data from the calibration in laboratory and data for correction of re
fraction and earth curvature have been applied traditionally. The procedure for 
estimating these errors and testing their significance will now be formulated in 
agreement with the general theory of the Appendix. 

According to the central perspecttve the image coordinates are non-linear func
tions fx, fy of the terrain coordinates and the orientation elements. 

x = f (X,Y,Z,\D,W,K,X ,Y ,z ,x ,y ,c) 
X O O O O 0 

( 1 ) 

y = f (X,Y,Z,\D,W,K,X ,Y ,z ,x ,y ,c) 
y O O O O 0 

The terrain coordinates are assumed to be error free. Thus, expanding in a Taylor 
series we obtain, after neglecting terms of higher order and adding linear terms 
for the influence of residual affinity: 

X' +~X + f%i.z Y'c X' 2 X'Y' 
dx = dx - Z' de - Z'dK + (1 + zi2lc d¢ - zi""2c aw 

0 Z' o Z 1 
0 

Y' + .£_dY Y'c X'c X'Y' d¢ - (1 
yt 2 ( 2) 

dy dyo - Z' de + zt7dZ
0 

+ Z'dK + 'zi"'2c + zi2lc aw 
Z' o 
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x,y = image coordinates transformed on the fiducial marks and 
corrected for lens distortion, refraction and earth 
curvature. 

fx 0
, f O = given values being computed from the coordinates of the 

Y test field, the approximate values of the six orientation 
elements, and the values of the three inner orientation 
elements from laboratory calibration. 

d ~.dw,dK, dX
0

,dY
0

,dZ
0

= corrections to the approximate values of outer orienta
tion. 

dx
0

,dy
0

,dc = corrections to the values of inner orientation. 
dm, dB= parameters of residual affinity, i.e. scale difference 

and lack of perpendicularity of the image coordinates, 
respectively. 

The least squares' estimators de, dx, dy, dm and dB for the corresponding para
meters in (2) can now be determined. These estimators reflect the errors in the 
inner orientation elements and residual affinity under operational conditions. 

Investigations into whether these errors have a significant influence on the re
sults can be carried out as a test of the null-hypothesis: 

A ft A ~ ft 

de= dx = dy = dm = dB= 0 (3) 

Thus, the test procedure given in the Appendix can be applied, with r = 5 and 
s = 11. 
Residual distortion has not been regarded in the fundamental equations. Reliable 
determination of the distortion requires an appropriate control point distribu
tion, which is difficult to achieve for a test field with large height differen
ces. 

EXAMPLE OF APPLICATION 

The outlined procedure for integral calibration by means of test fields will now 
be demonstrated by a practical application. 

The test field (about l km 2) situated in Bae rum community is characterized by a 
deep valley and a ridge parallel to this valley, with heights from 100 to 400 met
res above sea level, see. Fig. 2 
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Fig 2. Cross-section through the test field 
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A geodetic network of about 30 control points was established in the field and 
signalized by yellow sheets of plastic, 30 x 30 cm. The test field was covered 
by two strips (c = 15 cm/ 23 x 23). The flying height H

0 
above sea level and the 

base length B were as follows: 

Strip 1 
Strip 2 

H0 = 1000 metres, B 
H0 = 850 metres, B = 

250 metres 
200 metres. 

From each of the two strips, that photogr~ph showing the most appropriate distri
bution of the imaged control points was selected for calibration. The two photo
graphs selected in this way were copied on Cronaflex and measured in Zeiss Asco
record monocomparator at I.T.C., Delft 1970. 

Affine transformation on four fiducial marks and correction for lens distortion, 
refraction and earth curvature were carried out. 

The test of the null-hypothesis (9) was performed for each of the two pictures 
independently. However, an equal cr

0 
was assumed for these two cases (The assump

tion that cr 0 is independent of the flying height is in general justified when the 
flying heights do not differ too much). The result of the test is given in Table 
2. 

Square sum of residuals 

Humber of Under the Under tile 1) 2) 3) 
Case Flying coordinates 0-hypotesis alternative 

~ 

i height n. QH. Qa. 0 F. f. 
1 0. 1 1 

1 1 1 

metres \J 

1 1000 24 1905 535 7.0 5,5 2.5 

2 850 30 1655 921 6.9 3.0 2.5 

Table 2. Test of the influence of inner orientation 

1) ; 2 = Q /(n. - s ); s = 11 
oi ai 1 a a 

(the number of elements under 
the alternative). 

2) F. = (OH - Q )/rcr 2:r = 5 
l i a i o 

(the number of elements 
being tested). 

cr;l (nl-sa) + o~l (n2-sa) 

n1 + n2 - 2sa 

(o 2 is the weighted mean of 
0 

3) f. = the 95 %-value of the 
l 

Fischer-distribution, with 

rand (n 1 + n2 - 2sa) de
grees of freedom. 

It is seen from Table 2 that the 
null-hypothesis (3) has to be re
jected in both cases. 

Case de dx dyo dm dB 
0 

l 237µ 5\J -10µ 0 -10·10 
-5 

2 -22)J -~()µ 14µ -20•10 
-5 

0 

The estimated standard error of unit weight CT 6.9p 

Table 3, Estimated calibration values 

QC Qx Q Qm QB 
0 yo 

Q 193 70 88 7•10- 6 152•10_ 6 

C 
-6 

Qx 53 -35 0 -66·10 

0 -6 -6 
Q 56 -31· 10 60-10 

yo 
140•10-)L - j 2 

Q 10·10 
m 

310 • 10 
l 2 

QB 

Table 4. Weight and correlation numbers rn Case l 
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A 95 % confidence interval 
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0 

5.7 µ 
< 
- a 

0 
~ 10.2 µ. 

The estimated calibration 
values are given in Table 3 
and their correlation in 
Tables 4 and 5. 
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QC Qx 

QC 44 13 

Qx 16 
0 

Qy 
0 

Qm 

QB 

Q Qm QB 
0 yo 

-15 -34•10 
-6 

-47·10 
-6 

-5 -13•10 
-6 -46•10- 6 

14 -13·10 
-6 16,10- 6 

190·10- 12 -20·10- 12 

180•10-lL 

Table 5. Weight and correlation numbers in Case 2 

SOME COMMENTS AND ADDITIONAL REMARKS 

1. The estimated values of the errors in the inner orientation and affinity are 
strongly correlated (tables 4 and 5). This circumstance, in addition to the fact 
that the abundance was moderate, did not justify testing the significance of each 
error independently by the t-test as mentioned in the Appendix. 

2. Rejection of the null-hypothesis (3) indicates that other forms of checking 
the photogrammetric equipment, its function and its environmental conditions are 
desirable, such as independent calibration of lens, cone, filter, etc., or part
ial calibration by reseau photographs to check the integral effect of film 
shrinkage and unflatness from the' moment of exposure. To check the atmospheric 
conditions and determine their influence would imply the difficulties referred to 
in the Introduction. 

3. When many pictures taken with the same camera are calibrated by means of test 
fields the possibility of estimating and testing the variations in the calibrati
on data exists (see 16 ). No conclusion has, however, been drawn in this respect 
from the two pictures taken of the Ba:rum test field. 

APPENDIX - A short review of the theory of regression analysis 

In mathematical statistics ridgid methods have been derived for estimating un
knowns x and testing hypotheses about x on the basis of observations of random 
variables Z, which are assumed to be independent and normal with expectations z 
being linear functions of x, i.e.: 

( A 1) 

y known values 
n number of observations (Z) 
s number of unknowns (x). 

The fundamental equations (Al) express z explicitely. Thus, the problem of estim
ation the unknowns x and their reliability corresponds to "adjustment of indirect 
observed quantities" in the classical theory of adjustment. A procedure for test
ing hypotheses about x will be outlined since this procedure can be applied in 
checking the performance of the whole photogrammetric process under operational 
conditions (integral calibration). 
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For this purpose 

(y i 1 ' """ Yi s) : i = 1, 2' "·"' n 

will be interpreted as different sets of values for the free variables: 

Y1• ....... ' Ys . 

A procedure can now be derived for testing whether the variables 

contribute to "explaining" the variation in Z. The null-hypothesis (H
0

) is thus: 

x1 = x2 = ...... = xr = 0. (A2) 

To test this hypothesis the least squares' estimators A1 , x2 , 
firstly determined, giving the square sum of residuals 

,. 
...... xs are 

n s 
0 = 1: (Z. - 1: (y .. · x.) 2 

a i=l l j=l lJ J 

a n d t h e es t i m a to r o f t h e v a r i a n c e : 
Q ;2 = _a_ 

o n-s 
0 0 Then the least squares' estimators xl+l' x1+2 ' 

the conditions of (A2), giving a 
square sum of residuals 

n s 
0 OH = L ( z. - 1: (y. . . X. ) ) 

i=l 1 j=r+l lJ J 

An optimal test of H
0 

is to reject H
0 

when 

F 
OH - Oa > 

...... , 

(A3) 

(A4) 

x0 are determined under s 

(A5) 

where f 1 is the (1-E)-value of the Fischer distribution with rand n-s degrees 
-E 

of freedom. The theory of this test will be found in many testbooks on statistics 

It can be found in the literature 121, 1161 that in testing the influence of 
systematic errors Xi(i = 1, 2, ... , r) on the result of measurements in photo
grammetry and geodesy a number of tests are carried out independently on the 
basis of the same square sum of residuals Oa, given by rA3). Thus, for each of 
the elements Xi (i = 1, 2, ... , r) the null-hypothesis Xi= 0 is rejected with a 
risk niveau of a when 

I xi I ✓Tn=s"J 

✓o: ✓~ 

> 

where t 112 a is the (1 - l/2a)-value of the t-distribution with (n-s) degrees of 
freedom. Oii is the weight number of xi. 

It should be remarked, though, that this approach is not theoretically correct 
when the ti-values are algebraically correlated. If, however, the Xi(i=l,2, ... ,r) 
are stochastically independent, at least approximately, and (n-s) > 60, the 
effect of the correlation between the ti-values is negligeable (how to deal with 
this problem when (n-s) < 60 is discussed in j14I), 
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SUMMARY 

In the present paper some problems of camera calibration by means of a test 
field are discussed, in particular the estimation of errors in the inner orien
tation and tests of their significance. Attention is paid to analysis of re
gression, a statistical theory concept, and a numerical example of a practical 
application to camera calibration using a test field is given. 
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TANGENTIAL AND ASYMMETRIC LENS DISTORTION, DETERMINED BY SELF-CALIBRATION 

by 0. Kol bl, ZUrich-Birmensdorf, Switzerland 

SUMMARY 

The method of self-calibration is used for the determination of the asymmetric 
and tangential lens distortion. This method only applies the coplanarity condi
tion for homologous rays and does not require any other references like ground 
control points. Therefore the computed parameters are free of systematic errors 
inherent to test fields or triangulation nets. The calibration procedure is 
applied to convergent and vertical photographs. A noticeable tangential distor
tion of 0.01 mm has been determined for an aerial camera. It should be possible 
to increase the accuracy in block triangulation by the incorporation of these 
calibration results. 

1. INTRODUCTION 

The increasing measuring accuracy in photogrammetry requires a continuous refine
ment of the mathematical model for the description of the imaging process. In 
general the atmospheric refraction and the symmetrical lens distortion are taken 
into account. Whereas there are only a few experiments in which the tangential 
and asymmetric lens distortion were incorporated in an analytical aerial triangu
lation [l[. The main reason for the omission of these factors seems to be the 
difficulty to determine the asymmetric components with sufficient accuracy. 

The use of collimators or goniometers is of limited value, as the measurements 
occure along diagonals or half diagonals. The measurement along different diagon
als requires a rotation of the lens. Small centring errors might cause a severe 
falsification of the asymmetric components. 

Calibration with test fields has the advantage that the required photographs are 
taken under operational conditions. But the establishment of a test field is very 
costly and requires extremely high precision for the terrestrial point determina
tion. The same objections hold for an experiment in which the tangential and 
asymmetric lens distortion are incorporated as unknowns in an analytical block 
triangulation [l[. As will be shown later these additional parameters cannot be 
determined in blocks with 30 % lateral overlap except control points are in
corporated. This means that possible systematic errors in the control points are 
readily interpreted as errors of the inner orientation. It must be admitted that 
a better fit to the control points can be achieved in this way; only such ap
proximations are not always desirable. The mentioned difficulties could be avoi
ded by stellar-calibration. Although the star positions are known with high ac
curacy, the results of the camera calibration can be very limitedly transferred 
to other applications (close range or aerial photography). This is mainly due to 
the differences in atmospheric refraction. 

In order to avoid these problems it was tried to determine the parameters of the 
decentring lens distortion by the method of self-calibration. A complete camera 
calibration is achieved by this method merely by the use of the coplanarity con
dition of homologous rays (cf. [3[ ). Convergent photographs would be required for 
the complete calibration; if the calibration is restricted to the radial and de
centring lens distortion, then the calibration procedure can be applied to verti· 
cal photographs as well. This method should be of special interest for the 
analytical block triangulation in order to control systematic errors introduced 
by defects of the inner orientation. 

In the following the mathematical model for the approximation of the lens distor
tion is briefly described and the limitations of the method are pointed out. The 
second part deals with the experimental results. The decentring distortion has 
been computed for various cameras under operational conditions but the presenta
tion is mainly restricted to the calibration of aerial cameras with vertical 
photographs. 

2. MATHEMATICAL MODEL 

For a discussion of the asymmetric and tangential lens distortion it should be 
taken into account that these lens errors are mainly caused by manufacturing de
fects like small centring errors of the individual lenses. Therefore it is not 
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possible to calculate the asymmetric components from the design of a lens as it 
could be done, at least theoretically, for the symmetric distortion. Conrady 141 
has tried to compare the asymmetric distortion with the deformation of a bundle 
of rays on a mince prism. This conception might be interesting for the construc
tion of a compensation plate. For numerical calculations it would cause addition
al complications as the quality of the approximation should be tested beforehand. 

For this reason no physical explanation was sought for the chosen mathematical 
model; but special attention is given to great flexibility of the formulaes. 
Furthermore they should allow a differentiation between the tangential and asym
metric distortion. This differentiation is appropriate as the two components can
not be determined with the same precision. The asymmetric distortion can be 
affected by an insufficient film flatness. The deviation of the film in the 
camery from the ideal image plane will cause a shift of the image points in 
radial direction, similar to the radial displacement due to height differences 
in the terrain. Except for the film shrinkage a superposition with other errors 
can be excluded for the tangential lens distortion. 

The specifications for the mathematical model are rather well met by mixed tri
gonometric terms. The following formulaes have been used for the approximation of 
the radial lens distortion (1) and the asymmetric (3) and tangential (4) compo
nents of the distortion (cf. Ill, 121, 151), 

Ar' 

XI -x I - tid I • 
o x' y' = y'-y'-tid' 

0 y 

r'2 
= --2 (L 1 cosa +t 2 sina+t

3 
cos 2a +t 4 sin2a) 

r' 
l, 

a = 
-;;, 

arc tgx' 

( 1) 

( 2) 

( 3) 

( 4) 

( 5) 

a3, a9 and a7 are the parameters of the radial distortion, r' is the distance of 
an arbitrary image point from the principal point of symmetry and r 0 fixes a 
second intersection of the distortion curve with the zero axis of the coordinate 
system. The image coordinates of the principal point of autocollimation are in
dicated by x~ and y~; tidx and tidy stand for a deviation of the principal point of 
autocollimation from the principal point of symmetry. This deviation can only be 
computed if the lens has a noticeable equation. In general such parameters should 
be set constant if the estimated mean square error outweights the computed para
meter. 
The formula chosen for the radial distortion differs from the usual power series 
with only odd terms. Power series have the disadvantage that the individual coef
ficients are highly correlated, which might cause difficulties for the solution 
of the normal equations. This effect could be avoided by the use of orthogonal 
polynomials. But this orthogonality cannot be obtained for a complete calibration 
in a useful way. Therefore a formula was chosen which avoides the strong correla
tion of the power series. Furthermore the path of the distortion curve can be 
estimated from the coefficients of the trigonometric terms without computation 
(cf. 151), 
The pattern of the asymmetric and tangential lens distortion is shown in fig. 1. 
The parameters s1 and s2 would cause a shift of the principal point of symmetry 
equivalent to tidx and tidy and therefore are omitted for the following consider
ations. 
The distance from the principal point (r') has been introduced in a quadratic 
form mainly to avoid a discontinuity in the origin. Actually the decentring dis
tortion proved to be too small to test in which form the radial distance should be 
applied; rb was used in formula (3) + (4) for a reduction of the parameters. 
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Fig. 1 

Image displacement due to the de
centring lens distortion as it is 
approximated by the formulaes (3) 
and (4). The index of the principal 
point H' in the figure (Sl, S3, Tl 
T3) refers to the parameters 
(s 1 , s 3 , t 1 , t 3) in the formulaes. 
The asymmetric distortion is shown 
in the upper part of the picture. 
The tangential components are shown 
in the lower part. 

The further mathematical formulaes for the calibration do not show any particula
rities. The correction equations for the adjustment were obtained from the co
planarity condition. The equations were linearized with the help of the quotient 
of the differences 

af f(x + 6X) - f(x) 
clX 6X 

The computed parameters were evaluated by their reproduceability in different 
blocks and by their mean square error and correlation coefficients estimated 
from the inverted normal equation. 

When a certain parameter is not significantly different from zero it can be as
sumed that the optical or mechanical manufacturing is sufficiently high for this 
special component. Its determination in a special calibration procedure is then 
superfluous. 

3. EXPERIMENTAL RESULTS 

Various cameras have been tested by the method of self-calibration. Table 1 gives 
a survey of the calibration results. In general the tangential distortion remains 
within+ 2 µm for the controlled close range cameras as well as for the aerial 
cameras-with picture size up to 9 x 12 cm 2 and fuerefore can be neglected. In 
some cases an asymmetric distortion up to 5 µm has been determined which is due 
to a deformation of the image plane. For lack of space these experiments are not 
further discussed. 
The procedure of self-calibration might be of special interest for the analytical 
aerialtriangulation. As already indicated convergent photographs are needed for 
a complete camera calibration. Vertical photographs can be used when the cali
bration is limited to the determination of the distortion. This limitation should 
not be very serious as the principal distance and the principal point for aerial 
cameras can be determined with high precision by laboratorial tests. A special 
advantage of the method would be that the photographs to be used are taken under 
operational conditions. The mathematical solution of the self-calibration is 
equivalent to a block adjustment according to the bundle method, but no control 
points are required. 
Various triangulation blocks and triangulation strips have been used for the 
practical experiments. At last the triangulation blocks were reduced to a minimum 
size of only two strips with two pictures (60 % forward and lateral overlap - the 
two strips were flown in opposit direction). The photographs originate from the 
test block "Oberschwaben" of the OEEPE (camera: Zeiss RMK A 15/23 with Pleogon A2 
1 : 5.6, f = 153 mm). The measurements of the picture coordinates were taken on 
stereocomparators (Zeiss PSK and Wild STK). Fifty to hundred regularly distribu
ted points have been measured in each model. In the measurin~ phase the floating 
mark is placed on the ground of the stereoscopic model and the transversal 
parallaxes are carefully eliminated. Point marking or sketching is obsolete as 
the individual points are only measured once. 
Measurements were taken in all possible model combinations (df. fig. 2), in total 
6 models were formed in a block with 4 pictures. The block size has been reduced 
to a minimum to keep the amount of time for the measurements and the computation 
as low as possible. The given results are based on two blocks in order to permit 
a control of the calibration date. 
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aerial cameras aerial cameras 
Cl u,,,, range photographs ronvtn\J<:nt photographs vertical photographs 

camera Photo Linhof Tech Ii ,: .. ;u l bl ad Li nhof Auro Hassel bl ad Zeiss RMK 
Theodolite ni ka Technika 

Ions Orthorrotar Symmar Planar Pl .1nar Planar Pl eogon 
l :25/HO l :5.6/135 l :2.8/80 l :3.5/135 l: 2 8/ :,,: 1:5.6/153 

picture size[mm] l 30 x 180 90 X ] 20 55 x S5 ~U X 120 55 X 55 230 X 230 
focusing di stance[ m' /1 .5 3. 5 3.5 00 co co 

emulsion base pl<lfo µ L, te pl ate film film film 

number of tests 2 3 3 l l l (block l) l (block 2) 

m [jlm] 
p i]..9/iJ.5 ij.2/±!_1.!_ i!:,9/j],0 -:!},9/i] .8 ~,3/±!).4 :::._4,8/±!),6 _::i.1/±!).~ 

mH [}lm] .±!t l /_,__ ·o .:t_',7/.±.17 .±.38/.±.16 .±.38/_±_19 i.N.:t.45 - -
me (,um] .±.38/.:t.'i'5 .±.29/.±.20 .±.21 /.±.15 .±.136/.:t.l 03 .±.83/.±.74 - -
radial distorlion 

t, r' s [ym l -2/-11 -10/-14 +29/+27 -10/-15 +20/ ,20 -4/-3 -3/-2 

at r' [mmJ 
0 

50 30 20 40 20 lOli 100 

6 r' [ym] -1/-G +138/+l 36 -140/-139 +36/+70 -121/-123 -5/-4 -3/-3 
for r' [mm] 80 60 30 60 30 120 120 

point of symmetry 

t, d' [mm] - -0,62 .±. 0,80 -0.15 .±_0,20 +6.63 .:t.1,32 -1.02 ;t_0.78 - -X 

t, d' [mm] - -4,03 .±. 0.62 -0. 19 .:t.0, 14 +3.38 .±.1,63 -0. 72 .:t.0,47 - -y 

;1:;y111metric 
distortion 

s3 (ym] -3.3.:t.l,3 +2.9 .:t.0,5 -1. 7 .±.2.0 -4,2.±.l.8 +l. l .:t.2,6 +3.l .±.5,9 +l, 7 .±.5,9 

s 4 (ym] -0.5 .:t.1,0 +O. 7 .±.0,1, -1.6.:t.2,7 +l .6 .:tl ,6 -3.0 .:t.1,9 +3.1 .±.4, 1, +0,7 .±.4,3 

tangential 
distortion 

tl [)Im] -1.5 .i,0,6 +0.9 .:t.0.5 -1.0,:t.0,7 +0,5 .±.2,2 +2.1 .±.3.8 -10.3 .±.1. l -12.4 .±,1.0 

tz [fm] -0.9 .±.l ,fl +0.6 .:t.l .O +0.8 ,:t_0.9 -2.0,:t.l.O -7.4 .±,3,7 -1.1.:t_LZ -1.8 .±.1.2 

t3 [ym] +1.0 .±.0,'/ -0,6 .±.0,3 -0, 1 .±,0,5 -1.6,:t.l.9 +1.9 .±.1,8 -1.4 .:t.2,0 +3,2 .±.2,0 

\ [jlm] 0,4 .±.1 ,0 -0, l .±.0,11 -0.R .i,0,6 +2,6 .±,1,5 -1.1 .±_2.2 +6,0 .:t.2,0 -0.1 .:t.2.0 

Table 1 

Calibration results of various cameras. The self-calibration has been computed 
with and without additional parameters for the decentring lens distortion (cf. 
values before and behind the slash). mp stands for the root mean square error of 
the residual parallaxes, mH and me for the root mean squareerror of the principal 
point and of the principal distance; ~rs is the first maximum of the distortion 
curve which intersects the zero axis at a distance of r 0 from the principal 
point; t,r' gives a second point of the distortion curve at a distance of r'; 
t,dk and t,d' indicate the deviation of the principal point of symmetry from the 
principal point of autocollimation. s3, s4, t1 ... t4 are parameters of the asym
metric and tangential distortion, their values and the corresponding root means 
square errors are given. 

Fig. 2 

Model formation for the calibration 
of vertical photographs (60 % lateral 
and longitudinal overlap) 
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The computation was done in the data centre of the ETH ZUrich (Eidgenossische 
Technische Hochschule) on a CDC 6500. A special program was set up for the compu
tation. In this program the number of pictures used for the calibration is only 
limited by the capacity of the computer. The sequence of the calculated models is 
arbitrary, the point number is used to indicate by which pictures the individual 
models were formed. 
An analysis of the computation results indicates that the asymmetric and tangen
tial distortion as well as the coefficients (a5, a7) of the radial distortion are 
determined with high precision. The incorporation of the additional parameters 
leads to a reduction of the residual parallaxes of 20 to 30 %. Difficulties arise 
only for the determination of the coefficient a3 of the radial distortion. Its 
precision estimated from the inverted normal equation is relatively low and would 
cause errors of the distortion curve of 30 to 40 µm. The estimated mean square 
error of the distortion curve is reduced to 0.5 to 1 µm when this coefficient 
(a3) is set constant. According to the inverted normal equation this effect is 
due to a high correlation of a3 with the angle of convergence (6~ and 6w) of ad
jacent photographs. The high correlation between these parameters is noticed in 
triangulation strips as well as in blocks with 60 % sidelap. The correlation 
could be reduced by the use of convergent photoqraphs as they are needed for a 
complete calibration (cf. fig. 3) or by a trivial solution, that means, one of 
the two correlated parameters is set equal zero or constant. As convergent photo
graphs are excluded, an approximation must be found for one of the variables. For 
the tilt this could be done by the use of auxiliary data. The precision require
ments would not be very severe for the special purpose of the determination of 
the decentring distortion and a mean square error of± 0.5C could be admitted. 

If auxiliary data are not available then the coefficient a3 of the radial distor
tion should be set constant. Its value could be taken from the calibration report 
of the camera. For the present computation a3 has been set zero. In fig. 4 the 
computed radial distortion is compared with the values of the calibration report 
of the manufacturer. The distortion curves coincide rather well; the differences 
remain within+ 1 µm up to a distance of 100 mm from the principal point. Greater 
differences occure only at the edge of the pictures. This is partly due to the 
neglection of the third order term (a3); a certain inaccuracy of the distortion 
curve results also from the limited number of points in this zone. 

w 
~ 

, I I 

/! /! 
"'· £.1,m) "rf i 

0 0 ao·-7- ~ 

,, " 

, 
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'l 
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Fig. 3 
Camera arrangement for a complete calibration 
of an aerial camera (f = 150 mm, picture size 
23 x 23 cm2) and the estimated mean square 
error of the principal distance (me). The pho
tographs are simulated for different angles of 
convergency (y), The block diagram indicates 
the assumed terrain shape. The computation was 
done for various height differences (6h) in the 
terrain, hg indicates the flying height. The 
mean square error of the residual parallaxes 
was set to+ 5 µm. 

The tangential distortion is very remarkable 
and larger than expected (cf. fig. 5). Its value 
rises up to 10 - 12 µmin the direction of the 
flight line at a distance of 100 mm from the 
principal point. The computed tangential 
distortion is highly significant as the cor
responding mean square error remains within 
± 2 µm. 
These values of the tangential distortion are 
described by the parameter t1 (cf. formula 3). 
The other parameter of the tangential distor
tion as well as those of the asymmetric distor
tion are much smaller and not significant ac
cording to statistical tests-:- This means that 
an asymmetric distortion can not be detected. 
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Fig. 4 
Comparison of the radial distortion curves 
determined by self-calibration and collimator 
measurements. The last curves represent the 
mean of four half diagonals which have been 
measured. Curve A was taken from the cal ibra
tion report before the flight, curve B after 
the flight. The first two curves are provided 
with the computed confidence interval (root 
mean square error). 
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Fig. 5 

Tangential distortion with confidence interval 
(camera Zeiss RMK A 15/23 with Pleogon A2 1 : 5.6, f = 153 mm). 
The figures a and b represent the tangential 
distortion at a distance of 100 mm ftom the 
principal point. The mean square error of 
these curves is nearly constant and about 
+ 2 µm. They are taken from different triangu
lation blocks. 

The given calibration results are based on the two triangulation blocks with 
60 % lateral overlap. The precision of the distortion parameters is considerably 
reduced if triangulation strips or blocks with less than 60 % sidelap are used. 
The calibration results of the two triangulation blocks coincide very well, but 
a further control is hardly possible. The camera calibration report of the manu
facturer only states that the tangential distortion does not exceed± 10 µm. 

Different results have been obtained in the investigation of MUller-Bauer Ill, in 
which the material of the test block Oberschwaben has also been used. Various 
parameters for the decentring lens distortion and affine deformations have been 
introduced in this block adjustment. The differences might be due to systematic 
errors in the triangulation net of the ground control points or due to deforma
tions of the national UTM projection system. As the block adjustment was done 
with pictures of only 30 % lateral overlap, the internal stiffness of the block 
is not sufficiently high to permit the determination of these additional para
meters without the use of control points. 

4. CONCLUSIONS 

The application of self-calibration to vertical photographs shows that it can be 
recommended to extend the mathematical model for the decentring lens distortion 
and to make optimum use of the relations between adjacent bundles of rays. The 
camera calibration is achieved in this way without the use of ground control. 
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The results do not coincide with a block triangulation with additional parameters 
as systematic errors of the triangulation net originating from deformations of 
the national projection system might cause severe alterations of the assumed lens 
distortion. 
It should be possible to increase the accuracy in block triangulation by the in
corporation of the results of the self-calibration. As no special photographs are 
needed, the procedure could be included in routine triangulation work. 

REFERENCES 

Bauer, H. und MUller, J.: "Height accuracy of blocks and bundle adjustment 
with additional parameters", Int. Archieves of Photogrammetry 
Ottawa 1972 

Brown, D.C.: "Decentring distortion of lenses" Phm. Eng. 32, 444-462, 1966 

Ko 1 b 1 , 0. : "Selbstkalibrierung von Aufnahmekammern" Bul 40, 31 - 37,1972 

141 Conrady, A.: "Decentring lens systems", Monthly Notices of the Royal Astro-

Ko 1 b 1 , 0. : 

nomical Society, Vol. 79, 384 - 390, 1919 

"Analytische Verzeichnungsdarstellung bei der vollst~ndigen 
Kalibrierung", Bul 39, 169 - 176, 1971 

Ko 1 b 1 7 



- 160 -

EVALUATION OF SOME INTERPOLATION METHODS 

by G. H. Schut, Ottawa, Canada 

ABSTRACT 

A recently published interpolation method is based upon the correlation theory of 
stationary random functions. This method is here discussed together with two 
others which are not overtly based upon correlation theory but employ its 
formalism and differ only in the choice of correlation function. In the case 
of a two-dimensional field of reference points, these methods perform the inter
polation by the summation of surfaces and therefore they can be characterized as 
multisurface methods. A method of a different type which can be characterized as 
a moving surface method is presented here in a more general form than in earlier 
publications. Finally, results obtained with these methods are compared. The re
sults tend to show that a multisurface method can give a better accuracy than a 
moving surface method but only with a fortunate choice of correlation function. 
The one measure which contributes most towards good results is the reduction of 
the data by a trend function. 

INTRODUCTION 

The theory of stationary random functions has become the mathematical basis for 
a method of interpolation and smooting or, in other words and with a possibly 
somewhat different interpretation, prediction and filtering. This method is used 
in geophysics ~here it was introduced by Moritz {1963), and it was introduced in 
photogrammetry by Kraus (Kraus, 1972; Kraus and Mikhail, 1972) with an assumption 
that is not based upon the theory. 

Recently also, two other interpolation methods have been published (Arthur, 1973; 
Hardy, 1971, 1972) which make use of the formalism of the theory. However, their 
authors do not refer to this theory but base their formulation upon other consi
derations. Therefore, these methods cannot properly be called prediction methods. 

The present paper describes first the conditions under which the theory is appli
cable and the extent to which the three methods apply the theory. For this pur
pose, the following sections contain a summary of the so-called correlation theo
ry of stationary random functions and an analysis of the three methods. As the 
analysis shows, the common characteristic of these m•thods is that in a two
dimensional field of reference points they perform the interpolation by the summ
ation of fixed precomputed surfaces. Therefore, they may be called multisurface 
methods. 

Very different from these methods is a method of pointwise interpolation and 
smoothing which has been developed by the present writer for specific cases of 
interpolation (Schut, 1970) and smoothing {Schut, 1972). A more general descrip
tion of this method is given here. In the case of a two-dimensional reference 
field, it computes a surface for each point at which the interpolation is per
formed. When going from one interpolated point to an adjoining one, this surface 
continuously changes its position and possibly its shape and, therefore, this 
method may be called a moving surface method. 

These four methods are applied to the interpolation of heights of points on a 
surface in three-dimensional space. For this application, a known analytical sur
face has been selected. This serves to compare the results of the methods and to 
obtain information on the degree to which in practical applications the specifi
cations of correlation theory must be followed. 

CORRELATION THEORY 

A random function of one parameter, say x, is a function whose values are random 
variables (Yaglom, 1962). With such a function are associated distribution func
tions which specify the probabilities that the values of the function, individu
ally and in sets of two or more, lie within specified ranges. The random function 
is called stationary if these probability distributions are independent of the 
value of x. 
The correlation theory of these functions is based upon the first and second mo
ments of the distribution functions. The first moment is the mean value of the 
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function. The second moment is a function, B(µ), of the separationµ in x of two 
values of the random function. B(µ) is called the correlation function or covari
ance function. The theory has been developed for the case where the first moment 
is zero. 
To apply the theory to a given case where a number of function values at equally 
spaced values cf x is given, the first moment is made zero by subtracting the 
mean from each value. Letµ be the number of spacings that two values of the 
random function are separated in x. The function B(µ) is now computed for each 
integer value ofµ by taking the mean of the products of all pairs of values of 
the random function whose arguments areµ spacings apart. B(o) is the mean square 
of all values of the rindom function. The correlation function can be normalized 
by dividing all its values by B(o). 
Because the correlation function is a statistical concept, it cannot be accurate
ly determined if only a limited number of values of the random function is 
available. In such a case, if the correlation function is not known in advance, 
a correlation function must be assumed that agrees reasonably well with the 
values calculated from the available values of the random function. It must, 
among others, have the following properties based upon its statistical origin: 
it must be positive atµ= o, it must have its maximum absolute value atµ= o 
and its graph must by symmetric with respect toµ= o. Further, if i and j are 
the sequence numbers of any two of the equally spaced values of x andµ= i - j, 
the matrix B whose element bij equals B(µ) must be nonnegative definite. 

According to (Yaglom, 1962) a correlation function which is often used in cases 
where precise information is not available is 

( 1 ) 

This function is always positive and with increasing values ofµ it rapidly 
approaches zero. The correlation is not necessarily always positive; it can 
for instance have the character of a damped oscillation. In that case, a more 
suitable correlation function is 

B(µ) = (exp(-aJµl))cos(bµ); a>o, b>o. (2) 

Let now the correlation function of a stationary random function be known and let 
the values si of the latter function at equally spaced values Xi(i = -1,-2, .. ,-n) 
have been measured. According to correlation theory, the best linear estimate of 
the random function at xm (m = 0,1,2, ... ) is: 

Sm= bm tB- 1s (3) 

Here, bm tis the row vector whose components are the values B(µ) for 
~ = m+l, m+2, ... , m+n; B-l is the inverse of the above-mentioned matrix B whose 
elements have values B(o) to B(n-1); s is the column vector whose components are 
the values si of the stationary random function for the arguments xi. Obviously, 
sm is a linear function of the si with coefficients which depend upon the value 
of m. For economy of computation, the constant vector B-l s is computed first. 
Subsequently, for any value of m, the value sm of the random function at xm is 

-1 computed as the scalar product of the two vectors bm and B s, 

If the values si are affected by errors ni, the actual observations are 
si = si + ni. Let it be assumed also that the errors ni are elements of a 
stationary random function, that their mean value is zero and that the two 
random functions are not correlated. The correlation function of the actual ob
servations is then the sum of the correlation functions of the two random 
functions: 

( 4) 

The best linear estimate of the value sm of the random function at Xm is now ob
tained from 

(5) 
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in which, as before bmt is the row vector whose components are the values of the 
correlation function Bs(µ) forµ= m+l, m+2, ... , m+n. However, the elements of 
the matrix B are now tne B(µ) of eq. (4) forµ= +,l, ... ,n-1 and 1; is the vector 
whose components are the actual observations of the stationary random function. 

Obviously, the formulas (3) and (5) can be extended to the case where mis not a 
nonnegative integer. If mis any rational non-integer number, the formulas serve 
for interpolation between the measured values or for extrapolation beyond them. 
Both these cases have been covered by the name prediction. If m = -1, ... , -n, 
Eq. (3) reproduces the actual observations. Equation (5) gives here the best 
linear estimate of the values s· of the random function. This has been called 
filtering. 1 

INTERPOLATION IN TWO DIMENSIONS 

Yaglom (1962) also mentions the concepts of a stationary random function in mul
ti-dimensional space and the correlation theory of such a function. This random 
function is said to be homogeneous and isotropic if its correlation function is 
a function of only the distance between points in the space, not of location or 
direction. 
Moritz (Moritz, 1963; Heiskanen and Moritz, 1967) has applied these concepts to 
interpolation in two-dimensional space. His si are the gravity anomalies in a 
given area. Assuming that the average product of two gravity anomalies is a func
tion of the separation of their locations only, this average product again 
defines the correlation function. Moritz's interpolation formula is identical 
with Eq. (3) but it now has the following interpretation. The reference points, 
that is the points at which the gravity anomalies are determined, are ordered in 
an arbitrary sequence. The components of the vectors are the gravity anomalies, 
ordered in this sequence. The element bij of the matrix Bis the value of the 
correlation function for the distance between the two points with sequence num
bers i and j. The i-th component of the vector bm is the value of the correlation 
function for the distance between the point at which the gravity anomaly is to be 
predicted and the point with sequence number i. 

More recent publications (Moritz, 1972a, b, 1973) extend the interpolation and 
filtering to the case where the observations are the sum of a linear function of 
unknown parameters, a stationary random function, and measuring errors. The line
ar function contains the systematic part of the observations and may be called 
the trend function. If the trend function were known, its values could be sub
tracted from the observations and subsequently the correlation theory could be 
applied. In Moritz's formulation, however, the parameters in the trend function 
are computed simultaneously with the interpolation and filtering. Because the 
correlation function cannot be computed from the observations, a likely correla
tion function must here be assumed. Also the trend function must be a pre
determined type of analytical function of the spatial coordinates. For a further 
discussion of this see (Whittle, 1963). 

KRAUS'S LINEAR LEAST-SQUARES INTERPOLATION 

Kraus has adopted Moritz's {1963) formulation for his least-squares interpolation 
(Kraus, 1972). He makes use of Eq. (5) with the assumption that the random 
measuring errors are uncorrelated. This makes Bn(µ) non-zero only ifµ equals 
zero. 
In addition, he assumes that the most appropriate correlation function is a 
Gaussian curve. After normalization, this gives 

( 6) 

For this, there is no justification in the theory of random functions. When the 
first moment has been reduced to zero, for large values ofµ the distribution 
function B (µ) is equally likely to have negative as positive values. This can 
be illustr~ted with practical examples. An experimentally derived correlation 
function in (Moritz, 1963) attains negative values. Also, the experimental data 
in Fig. 2 of (Kraus, 1972) can be fitted much better with a function that becomes 
negative for large values ofµ. Finally, in°a soon to be published investigation 
of film deformation by Dr. H. Ziemann of the Photogrammetric Research Section of 
NRC the experimental data produces a correlation function which with increasing 
point separations becomes unquestionably negative and ramains so over a consider
able range of separations before it returns to zero. In all these cases, the 
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experimental data can be fitted much better with a correlation function of the 
type 

Bs(µ) = (exp(-aµ 2 ))cos(bµ); a>o, b>o (7) 

Kraus (1972) states that this method of interpolation, which he applies here to 
film deformation correction, is independent of the type and structure of the 
systematic deformation. However, best results in the statistical sense are ob
tained only if the data is a realization of a random function with all the re
strictions discussed in the preceding sections. This cannot be achieved by 
simply subtracting a constant from all observations to make the first moment 
equal to zero. 
Recognizing this, in (Kraus and Mikhail, 1972) the concept of the trend function 
is utilized. As it is put here: relative to the trend function, the data must 
have positive and negative regions in a more or less random fashion. The trend 
function is assumed to have been determined first and the interpolation and fil
tering are performed after reducing the data by the trend function. 

ARTHUR 1 S INTERPOLATION OF A FUNCTION OF MANY VARIABLES 

Arthur (1965) has devised an interpolation method which makes use of Eq. (3). The 
correlation function used here is 

( 8) 

in which dis the distance between two points and the parameter a is a constant 
distance. By making a larger than the largest distance between two points, B(µ) 
remains positive for all values ofµ. For criticism of this method, the reader 
should refer to (Schut, 1970). 

Arthur (1972), after having given a remarkably incorrect listing of this 
criticism, has changed his correlation function to a Gaussian curve. Based 
upon a desired closest possible approach to a linear interpolation in the case 
of two reference points only, he now chooses the correlation function 

B(µ) = exp(-2.5µ 2 ); µ = d/a. ( 9) 

Now, the parameter a is the average distance between adjacent reference points. 
As Arthur (1972) states that no interpolation method has a theoretical basis, he 
is apparently unaware that his method differs from the one derived in correlation 
theory only in the criterion used for selection of the correlation function. 

HARDY 1 S INTERPOLATION WITH MULTIQUADRIC EQUATIONS 

Hardy (1971, 1972), also, has developed an interpolation method which makes use 
of Eq. (3). The role of the correlation function is here assumed by one of the 
functions 

and 
B(d) = (d 2 + C) 1/ 2 

B(d) = d2 + C. 

( 10) 

(11) 

Here, dis again the distance between two points while C is a constant to which a 
value is assigned in advance. 
Hardy (1971) has given the interpolation its geometrical interpretation. It is 
simply a summation of n functions. Each term of the scalar product of the vectors 
bm and B-ls in Eq. (3) contributes one function to the summation. Each such func
tion contains one adjustable parameter which is the component, say ai, of the 
vector B-ls, In a two-dimensional reference field, this function is a surface of 
revolution with its extreme at the i-th reference point and with aiB(d) as a 
vertical section. 
Equations (10) and (11) appear to be unsuitable as correlation functions because 
B(µ) increases with increasing values ofµ. However, Hardy reports reasonable
looking results in the use of his formulation for contouring. These results are 
obtained by carefully choosing the reference points at significant terrain points 
such as highs and lows. This seems to indicate that the form of the correlation 
function is not very critical, especially if a rather large number of reference 
points is used. Nevertheless, to avoid sharp peaks or dips at the reference 
points, one should avoid functions such as Eqs. (1) and (2), and Eq. (10) with 
C = o. Schut 4 
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In a more sophisticated version of the method (Hardy, 1971), a polynomial of low 
degree is added to Eq. {3). The coefficients of this polynomial are determined 
simultaneously with the components of the vector B-1 s• This means that here a 
trend surface is determined simultaneously with those components. 

POINTWISE INTERPOLATION 

As Eq. (3) and (5) show, the interpolated value sm at any point is a linear 
function of the reference values si or si with coefficients which depend on the 
position of that point. Therefore, the interpolated value can be said to be a 
moving (weighted) average of the reference values. 

Taking the case of the height interpolation over a given area, the interpolated 
value may be interpreted as the height of a horizontal plane. Therefore, for 
each interpolated point Eqs. (3) and (5) determine a horizontal plane and the 
height of this plane is taken as the interpolated value at the point. 

The method of interpolation and smoothing developed in (Schut 1970, 1972) is a 
generalization of this concept. Taking again the case of the height interpolation 
the horizontal plane is replaced by a tilted plane or even by a curved surface. 
For each interpolated poi~t separately, the surface is computed which best fits 
the reference heights in a specified sense and the height of the surface at that 
point is accepted as the interpolated value. 

Let the equation of such a survace give its height as a linear function of its 
parameters and let the parameters be determined by the method of least squares. 
To compute the parameters, the observation equations generated by the reference 
points can be collected in the matrix equation 

Ap = s ( 12) 

in which the components of the vector pare the parameters, the elements of the 
i-th row of the matrix A are the coefficients of the parameters in the observa
tion equation for ~e i-th reference point, and the components of the vectors 
are the reference heights. This equation leads to the normal equation 

AtWAp = AtWs (13) 

in which Wis the diagonal matrix whose elements are the weights assigned to the 
reference points. 
Because these weights will be f~nctions of the location of the interpolated point 
they will be different for each such point. As a result, the matrix AtWA cannot 
be computed and inverted once for all, as the matrix B in the preceding methods, 
but the normal equations must be formed and solved for each interpolated point. 
Of interest is then only the height of the computed surface at that point. 

This method is not restricted to the case of the interpolation of heights over a 
two-dimensional point field, as shown in (Schut, 1970). In its more general app
lication, because of the necessity to form and solve normal equations separately 
for each interpolated point, this method may be referred to as the method of 
pointwise interpolation. 

One important consideration in this method is the choice of the surface which is 
computed for each point. To save computation time, it should have only a few 
parameters. A simple formulation is a polynomial with respect to the planimetric 
coordinates. It need not have higher than first or second degree terms. 

A second important consideration is the choice of the weights to be assigned to 
the reference points when determining a best-fitting surface. The weight should 
be a monotonically decreasing function of the distance between reference point 
and interpolated point. Because of this, the best-fitting surface varies slowly 
from any one interpolated point to immediately adjacent ones and for this reason 
this method may be called the moving surface method of interpolation. Further, 
the totality of interpolated points defines a continuous surface which cannot be 
given an analytical formulation. A rather sharp drop-off of the weight at small 
values of the distance produces a continuous surface which fits well at the re
ference points. A slower drop-off produces a smoothing effect. 
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In experiments with interpolation in planimetric block adjustment (Schut, 1970), 
the best results were obtained with the weight function 

3 2 3 w = (1-r) (1-r ) /r. (14) 

Here, r is the ratio between the distance to a reference point and a fixed 
maximum distance beyond which reference points were not used. These results 
were obtained with a fixed distance which was somewhat larger than the largest 
distance in the block. For ratios smaller than 0.01, r was made equal to this 
value. This prevents the weight from rising to infinity when r approaches zero. 

The use of maximum distance by which all distances are divided serves two pur
poses. Firstly, it makes it possible to specify a weight function which can be 
used independently of the size of the block and of the unit of measurement. 
Secondly, by making the weight function approach virtually tangentially to zero 
when the distance to a reference point approaches the maximum distance, dis
continuities in the surface defined by the totality of interpolated points can 
be avoided without having to use all reference points for the interpolation of 
each point. In the case of a dense net of reference point, the proper choice of 
a maximum distance can save much computation time. 

A weight function which proved 
was required (Schut 1972) is: 

w = 1 - 2r 2 (r < 0.5) 

w = 2(1-r) 2 (r > 0.5). 

to be suitable in a case where a strong smoothing 

( 15) 

Various other weight functions could be used. Arthur (1972) has suggested re
placing the ratio r in the denominator of the weight function (14) by r2. This 
causes a considerably sharper drop-off in weight with increasing values of r than 
does an increase in the powers of 1 - rand 1 - r2. 

A function which can be adapted to both interpolation and smoothing is 

( 16) 

If the constant a is equal to 14 or 20, this function varies from unity at r = o 
to less than 10-6 or 10-8, respectively, at r = 1. The smoothing effect could be 
varied by varying either one or both of the constant a and the maximum distance. 
However, both these measures can affect the number of points that effectively 
participates in the interpolation. Rather, the degree of smoothing should be con
trolled by using the weight function 

w; exp(-ax 2); x = r/(b + (1-b)r). (17) 

Here, a is a fixed value which may be taken to be 14 and b is a variable parame
ter. In the case of a fairly regular distribution of reference points and the use 
of a maximum distance which is about four times the average distance between ad
jacent reference point, the value b = 0.2 gives very little smoothing, b = 1 
which reduces Eq. (17) to Eq. (16) gives a fair amount of smoothing, and b = 2 
gives a very considerable amount of smoothing. 

EXPERIMENTS 

1. EXPERIMENTAL SURFACE 

To evaluate and compare the results that can be obtained with these methods, they 
were applied to the height interpolation of points on a known analytical surface 
in three-dimensional space. This is the application in which the first three 
methods can be collectively called multisurface methods and the fourth method 
can be called the moving surface method. 

The analytical surface was constructed by Dr. V. Kratky of the Photogrammetric 
Research Section for a non-topographic application of photogrammetry. Profiles in 
x-direction through this surface form a repeating wavelike pattern with a wave
length of about 125 mm while profiles in y-direction are 160 mm long and vary 
over one such wave from a straight line to a convex curve. A set of 17 x 5 
reference points was selected in a grid pattern covering about 400 x 160 mm and 
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with a spacing of about 25 mm in x-direction and 40 mm in y-direction. The inter
polation was performed on a set of 17 x 17 points in the centre of this area, 
covering about 125 mm in x-direction and the full 160 mm in y-direction. The 
maximum variation in height is about 26 mm and the mean height is zero. 

This surface is clearly not a representative example of an isotropic stationary 
random function. Not only does it show systematic patterns, but the patterns in 
the x- and y-directions are different. Results obtained with this surface should 
be instructive because it corresponds to the situation often encountered in prac
tical applications. For instance, heights in a digital terrain model can hardly 
be regarded as such a function. 

2. MULTISURFACE METHODS 

The multisurface method was first used with correlation functions of the type 
proposed by Kraus and by Arthur: 

B(d) = exp(-ad 2/b 2) 

in which a and bare parameters whose values are specified in advance and d is 
the distance. This function actually has only one parameter, the ratio a/b2. 

When first using this method with correlation functions of this type and with 
various values of the ratio, very poor interpolation results were obtained. This 
can be readily explained by ~e markedly anisotropic behaviour of the analytic 
surface and the geometric interpretation of the interpolation as a summation of 
surfaces of revolution. 

Arthur (1972) remarked that the use of only distances in the correlation function 
is not very satisfactory if the distribution of reference points is markedly 
anisotropic and that the anisotropy should be eliminated by a preliminary affine 
transformation of the x,y coordinates. In the present case, this requires the re
duction of they-coordinates by a factor of about 0.62. With Arthur's specifica
tions, the parameter a in the above equation equals 2.5 and bis the average 
distance between adjacent reference points. After the scale reduction of the 
y-coordinates and taking into account all directions, the average distance lies 
between 25 and 30 mm. 

Accordingly, experiments were performed with various scale factors applied to the 
y-coordinates. Table 1 displays results obtained with the factors 0.62 and 0.25, 
and varying the ratio a/b2 by varying b. With the factor 0.62, a local minimum of 
the R~S error is reached with Arthur's values (a= 2.5, b = 27 mm). However, if b 
is increased beyond 35 mm, the results improve very significantly until the value 
b = 100 mm is reached. At this last value, the inversion of the matrix B begins 
to deteriorate, even with the 15-digit double precision arithmetic that was used. 
This is demonstrated by the occurrence of non-zero errors at the reference points. 
Beyond this value, the deterioration becomes progressively worse, and finally the 
inversion process breaks down altogether. 

As Table 1 shows also, the use of the scale factor 0.25 consistently gives much 
better results than that of the factor 0.62. This, again, can be explained by the 
geometric interpretation. In practical applications, however, it will often be 
difficult to provide a criterion that is better than the isotropic distribution 
of reference points and therefore in further experiments only the scale factor 
0.62 was used. 

When using the multisurface method with Hardy's correlation functions, the choice 
of unit for the distanced is important. The decimeter was chosen as the unit 
because this makes all distances roughly of the order of unity and avoids the 
occurence of very large numbers in the computations. The correlation function of 
Eq. (10) gives no solution for negative values of C because this makes the ele
ments on the main diagonal of the matrix B imaginary. The results that were ob
tained with nonnegative values are shown in Table 2. The inversion of the matrix 
begins to deteriorate at C = 0.6 and it breaks down at C = 1. The use of Eq. (11) 
did not produce any results because the inversion fails for all values of C. 

Figure 1 shows the graphs of some of the above correlation functions. Evidently, 
good results can be obtained with very different correlation functions, provided 
that suitable values of the parameters in these functions are chosen. Best 
results were obtained with the choice of parameters that caused a near-breakdown 
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in the inversion of the matrix B. 

Table 1 Results of multisurface method of interpolation with the 
Gaussian curve exp(-2.5 d2 /b2 ) as correlation function 
(Kraus and Arthur); dis distance in decimeters, bis a 
constant. 

y-scale factor 0.62 y-scale factor 0.25 
value of b RMS error max. error RMS error max. error 

0.20 dm 1.50 mm 5.3 mm 
0.25 0.61 2.4 
0.27 0.56 2.5 
0.30 0.61 2.5 0.43 mm 2.2 mm 
0.35 0.69 2.5 0.25 1.1 
0.4226 0.63 2.2 0.10 0.42 
0.60 0.35 1.2 0.04 0.14 
0.80 0.16 0.61 0.02 0.12;0.02* 
1.00 0.12 0.35;0.06* no solution 

> 1.00 rapid 
deterioration 

*Errors occur here at the reference points; the largest one is listed. 

Figure 1 

Table 2 Results of multisurface method of inter
polation with Hardy's correlation function 
l(d2 + C) and y-scale factor 0.62; dis 
distance in decimeters, C is a constant. 

value of C RMS error maximum error 

< 0 no solution 
0 0.40 mm 1.35 mm 
0.20 0.15 0.49 
0.40 0.09 0.30 
0.60 0.07 0.22;0.03* 
0.80 0.17 0.45;0.18* 
1.00 no solution 

*Largest error at the reference points. 

Correlation f~nctlons used in Tables 1 and 2 
a: cxp(-2.5 d2 /0.27 2) 
b: cxp(-2.5 d2) 
c: <l,---,c----
d: l(d 2 + 0.6) 
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It is interesting also to per
form the interpolation with 
the acutal correlation function 
of this analytical surface. 
Values of this function at 
5 mm intervals were computed 
from the known heights of the 
interpolated points and 
normalized. For distances 
larger than 75 mm these 
values show increasingly lar
ger discrepancies among each 
other and a smoothing is 
necessary. Over the first 
100 mm, the computed cor
relation function can be 
approximated rather well by 
a function of the tape of 
Eq. (7). From the value - 1/3 
at d = 80 mm and the first zero 
at d = 45 mm it follows that 
this function must have para
meters a= 1.6 and b = 3.5. 
The value b = 4.0 gives a some
what less good fit. The graphs 
of these functions are shown 
in Figure 2 and results are 
listed in Table 3. It ts note
worthy that the function of 
Eq. (7) with b = 3.5 gives con
siderably better results than 
the computed correlation curve 
but that a small change in the 
parameter bis sufficient to 
make the results worse. Although 
the results obtained with these 
three functions vary and they 
are much inferior to the best 
results obtained in Tables 1 
and 2, it appears that the 
danger of very large errors 
or non-existence of a solution 
has here been avoided. 

3. MOVING SURFACE METHOD 

The interpolation was perfor
med also by the moving sur
face method. A second-degree 
moving surface was used in 
combination with they-scale 
factor 0.62. Figure 3 shows 
the graphs of the selected 
weight functions while table 
4 lists results obtained with 
maximum distances of 75 and 
100 mm. A smaller maximum 
distance tends to produce 
rather large errors in a few 
of the interpolated points 
and an increase in the varian
ces of the interpolated values. 

•I 
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Figure 2 
Correlation functions used in Table 3 
a: the computed correlation function 

of the surface 
b: (exp(-l.6d 2)) cos(3.5 d) 
c: (exp(-l .6d2 )) cos(4 d) 

Table 3 Results of multisurface method of interpolation 
using the. actual correlation function and Eq. (7); 
y-scale factor 0.62, d is distance in decimeters. 

I
-~---·-·--·--== ·---~- ==---~~--~--·=~~--

correlation function RMS error m~x. er:or 

actual correlation function 
(smoothed at d > 0.75 dm) 

(exp(-1.6 d2 )) cos(3.5 d) 

{cxp(-1.~ d2)) cos(4,0 d) 

Figure 3 

0.41 mm 

0.29 

0.47 

Weight functions used in 
a: Eq. (17), a= 14, b = 
b: Eq. (17), a= 14, b = 
c: E q. ( 17) , a = 20 , b = 
d: E q. ( 17) , a = 20 , b = 
e: (1-r)3(1-r2)3/r 
f: (1-r)3(1-r2)3/r2 

1.35 mm 

0.98 

1.55 

Table 4 
1 
0.2 
1 
0.2 

As the table shows, the selected weight functions produce varying degrees of 
smoothing. The selection of larger values of the maximum distance produces a much 
stronger smoothing. It is noteworthy here that over a large range of weight func
tions the results are better than those obtained with the multisurface method 
using the actual correlation function or its approximation by Eq. (7). 
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Table 4 Resu1 ts of moving surfar:e method of interpolatio~ w1t11 a second-degree 
moving surfnr:e; the y-scnle factor is 0.62, and 1 is the ratio Df 

distance nnd maximum distance . [-c~----- . - - ·-==-·------==-::-::.;+ -~=:c-=·= 
max. distnnce 75 non ~ max, c!}slnnce 100 mm 

weight function RMS error maxiJT1um errors RHS error maximum errors 

Eq. (l 7) with n = 14, 

b = 1 (= Eq. (16)) 0.11 mm 0.30 nun 0.30 mm* 0. 26 r.m 0.81 nnn 0.81 f.i!Tl* 

b = 0.5 0.12 0.33 0.01, 0.14 0,33 0.25 

b = 0.2 O. ll, O.lil 0 0.16 0.44 0.02 

Eq. (17) with a = 20, 

b = 1 (= Eq. (1 6)) 0.11 o.:io 0.11 0.15 0.46 0.46 

b = 0.2 0.12 0.35 0 0.12 0.35 0 

(l-r)3(J-r2)3/r 0.12 0.35 0.01 0.19 0.51 0.06 

(1-r) 3 (1-r 2) 3/r 7 0.12 0.36 0 0.16 O.t,6 0 

*Lnq:;est error nt the reflerencc points 

4. TREND SURFACE 

An additional measure that should be taken is to bring the data in a form that is 
more representative of an isotropic stationary random function. This can be done 
by means of the concept of referring the data to a trend surface, and not simply 
to the horizontal plane at mean height. Simple formulations for such a surface 
are polynomials and harmonic functions of low degree. 

In the present case, the wavelike form of the analytical surface does not make it 
possible to fit a polynomial of low degree. A harmonic function could fit rather 
well but it would have required additional programming. As an interesting alter
native, a trend surface was computed by the moving surface method. Moving surfa
ces of the first and second degree were used with a maximum distance of 100 mm 
and the weight functions of Eqs. (16) and (17). 

After reduction of the data to a trend surface, the interpolation was performed 
with the multisurface method, using Eq. (6) with a= 14 as correlation function. 
Results are shown in Table 5. Comparison with the comparable case of b = 42.26 mm 
in Table 1 which has an RMS error of 0.63 mm shows that the introduction of a 
trend surface greatly improves the result of the multisurface method. 

There is no reason why, after the reduction of the data to a trend surface, one 
should restrict oneself in the interpolation to the multisurface method. Interpo
lation with the moving surface method, and using the same specifications as for 
the construction of the trend surface, gives results which are shown also in Tab
le 5. These results are not as good as those obtained with the multisurface 
method but, as the relevant cases in Table 4 show, they are an improvement upon 
the trend surface itself. Perhaps, different specifications with a reduced smoot~ 
ing effect should be used for the interpolation. 

Table 5 Results of interpolation after reduction of the data to a trend surface; 
y-scale factor 0.62. 

Construction of moving Interpolation by 
surfaces with Eq. (17); multisurface method., Interpolation by 

max. distance 100 mm correlation function moving surface method 
exp(-14 d2 ) 

parameters degree RMS'error max. error RMS error maximum errors 

a = 14, b = 1 2 0.04 mm 0.11 mm 0.07 mm 0.21 mm 0.21 mm* 

a = 14, b = 0.5 2 0.09 0,24 0.10 0.25 0.02 

a = 14, b = 1 1 0.18 0.52 0.53 1.6 1.6 

*Largest errors at the reference points. 
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CONCLUSIONS 

The experiments show that the method of prediction and filtering which is based 
upon correlation theory can give excellent results even if the data has a very 
systematic character. The one measure which appears to contribute most towards 
this is the reduction of the data by a trend function. If this is not done, the 
method can give rather mediocre results even if the correlation function is 
properly derived from th~ data. 

If the correlation function is not derived from the data one cannot properly 
speak anymore of a method of prediction and filtering. In this case, a method of 
height interpolation in a two-dimensional field of reference points may be called 
a multisurface method of interpolation. If here a Gaussian curve or the first one 
of Hardy's two functions is used, good results can be obtained if their parame
ters are well-chosen even though the use of a trend surface is omitted. However, 
with an unfortunate choice of parameters they may give poor results or even lead 
to no solution. Possibly, the best values of the parameters are here the extreme 
ones which do not or do hardly cause deterioration of the solution. Deterioration 
is here shown by residuals left at the reference points. 

With the moving surface method of interpolation, it is not difficult to specify 
parameters that give reasonably good results and to obtain a desired degree of 
smoothing. However, in the experiments the results obtained with this method are 
not as good as the best ones obtained with the multisurface methods. 

In these experiments, trend surfaces were computed by an interpolation method 
which employed considerable smoothing. A second interpolation method was then 
used for the actual interpolation. This procedure of using two successive inter
polations may well be the procedure that should be followed to obtain the best 
results in practical appl{cations. 
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EXTENSION OF STUTTGART CONTOUR PROGRAM TO TREATING TERRAIN BREAK-LINES 

by E. ABmus, Stuttgart and Vienna 

During the last three years a program system for processing of digital height 
information has been developed at the Institute for Photogrammetry of the Stutt
gart University by W. Stanger. This program, which was developed for large size 
computers starts with randomly distributed terrain points and interpolates the 
heights of a rectangular grid of high density. From this "digital height model" 
(OHM) the contour-lines are computed and stored on a magnetic tape for the sub
sequent automated plotting. 

By the present program the terrain breaks are only considered to some extent. 
Therefore we have been working at an extended version. In this lecture I want to 
present the first results of our endeavours. 

The structure of the old version has been published several times Ill; 121, 131. 
For a better comprehension of the extended version the most important steps of 
the old program shall be repeated. 

For computing the grid heights the 
map sheet is divided in rectangular 
computing units (figure 1 ). In or
der to avoid gaps additional over
lapping zones are used for the 
interpolation of the grid heights 
in the computing unit itself. The 
computing unit is given such a 
size, that about 70 reference 
points are situated in each gross 
computing unit (= computing unit 
+ overlapping zone). 

Through these points an approximat
ing polynomial surface of the first 
or the second order is fitted (fi
gure 2). The remaining height
differences between the terrain 
and the polynomial surface are the 
reference values for the now follow
ing computation of the grid heights. 

The interpolation uses the method 
of the linear least-squares inter
polation(= linear prediction) 141, 
151. For this statistical inter
polation-method we must know the 
correlation (covariance) of the 
heights of any two points Pi and Pk 
(figure~- In our program we assume 
that the covariance is only a 
function of the distanced between 
points. That means that in every 
interpolation area (= computing 
unit) homogenous and isotropic 
statistical conditions are pre
sumed (independent of location 
and direction). 

The magnitudes of the covariances 
can be taken from a covariance 
function (generally a Gaussian 
function is used, see figure 4). 

By means of the above mentioned 
method of the linear least-squares 
interpolation the heights of the 
rectangular high density grid are 
produced for each computing unit 
(figure 5). 
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The values of the polynomial surface are added accord
ingly. The resulting grid heights are arranged in the 
form of profiles over the entire map sheet and stored 
on a magnetic tape. This digital height model is the 
input for the interpolation of the contour lines. 
Contour points are computed between the grid points 
by linear interpolation. The points are sorted along 
the contours and stored accordingly. Later, during 
plotting, the automatic plotting table will connect 
the points by curves of third order. 

We have been rather successful in computing and 
drawing quite a number of map sheets with this pro
gram. Our automatically produced contour lines are of 
about the same accuracy as the conventional contours, 
as various analyses proved. Figures 6 and 7 are to 
demonstrate the cartographic quality of our results. 

Figure 6 shows a section of a contour map at a scale 
of 1 : 24 000. The given data for the whole map sheet 
which is about seven times the size of figure 6 are 
12 000 reference points produced by photogrammetric 
profiling. 133 700 grid points and 153 000 contour 
points were computed. 
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Figure 7 is an applica
tion for road construc
tion (scale 1 : 1000). 
The input coordinates 
came from about 400 
tacheometrically measu
red points. This example 
shows some units in 
which no contours were 
computed because of too 
low density of given 
points. 

Both examples demonstra
te the standard of con~ 
tours reached by the 
present version of the 
program. They also show 
where improvements ought 
to be made, if highest 
cartographic demands are 
to be satisfied: in the 
latter example several 
erosion features can be 
seen, appearing somewhat 
smoothed out, although 
sequences of points were 
m ea s u r e d a 1 o n g t h e 1 i n es. 
Another example is to 
demonstrate better that 
our standard program can 
not yet meet all demands 
in a complicated area. 

Figure 8 is a section 
from a "Deutsche Grund
karte" at the scale of 
1 : 5000. The critical 
areas are the escarp
ments represented by 
linear hachures. In 
collecting the data by 
photogrammetric measure
ment, reference points 
were recorded along the 
lower and upper break
lines. 
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The contoufs resulting from the standard 
program version are not satisfactory in the 
slope-areas (figure 9). The interpolation, 
based on a Gaussian curve as a covariance 
function, does not accomodate sufficiently 
break-lines in the terrain surface. There
fore the slope discontinuities are 
smoothened out. In addition it is evident 
that the points on the break lines are used 
as separate points without enforcing the 
edge conditions. As a result the contours 
appear oscillating. 

figure 10 

In order to avoid such difficulties we ex
panded the standard contour program. The 
main alteration refers to the linear 
least-squares interpolation, according to 
a proposal of K. Kraus, Vienna, who de
signed ori~inally the Stuttgart Contour 
Program J61. The standard program version 
smoothenes out breaks, see figure 10 which 
represents a simulated vertical profile. 
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The reason is that the covariance is treated only as 
a function of the distanced of any two points. In 
this example, however, the covariance depends on the 
location: two points on different sides of the break 
are less or even not at all correlated in comparison 
with two points on the same side. 

Therefore in the well known equation of the linear 
prediction covariances between points which are 
separated by a break-line are set to zero (figure 11~ 
In this way the inhomogenity is taken into considera
tion and the smoothing of the break is prevented. 

In the two-dimensional case (figure 12) the break
lines subdivide our computing units into separate 
regions. Between points from different regions the 
covariance is set to zero. Within a region the co
variance is, as before, a function of the distanced. 

According to this principle we interpolate the heigh~ 
of the grid points (figure 13). However, we don't 
want to drop the geomorphological information given 
by the break-lines. So the density of points on the 
break-lines is increased by interpolating the inter
sections of these lines and the grid. The condensed 
point series of the break-lines are stored on the 
magnetic-tape directly after the grid heights. In 
this way the interpolation adheres very strongly and 
directly to the geomorphological features, therefore 
a grid with wide meshes is sufficient for the OHM. 

The contour points are usually computed by linear 
interpolation between two neighboured grid heights 
(as it was done in the former program). In addition, 
break-lines intersecting the grid meshes are taken 
into account accordingly (figure 14). 

Also contour points are interpolated on the break
lines. 
The program has also been enlarged in that part which 
sorts the interpolated points by contour-lines. When 
a break-line is reached, the contour-line is inter
rupted, then restarted at the same point. Thus the 
plotter will produce the intended break in the con
tour. 
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During the last few weeks the first 
complete map sheet was computed with 
this new program. The data of the 
tacheometric survey, the result of 
which is shown in figure 7, were 
used once more. In figure 15 the 
new digital height model of one 
computing unit is presented (full 
lines= grid lines, dashed lines 
= break-lines). The interpolated 
surface clearly shows the required 
break. 

Figure 16 shows a section of the map 
sheet composed of four computing 
units. The contour-lines break at 
the edges of the ravine as they 
ought to. 

In figure 17 this new result is 
compared with the result of the 
standard contour interpolation in 
which the edges were disregarded 
(dashed lines). 

Figures 18 and 19 show another 
section of the map sheet and the 
comparison with the standard inter
polation. 

The results of the first experiment 
prove that the extended program can 
properly present difficult geo
morphological features. A striking 
increase of the quality of the com
puted contours is evident. 
Naturally the refined method 
requires slightly increased 
computing times. 

In the following months the pro
gram will be completed and 
optimized. 

It is felt that it will constitute 
a useful tool for the automatic 
production of contour maps of 
heigh cartographic quality. 
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figure 18 

figure 19 
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THE THEORETICAL ACCURACY OF POINT INTERPOLATION ON TOPOGRAPHIC SURFACES 

by E. Clerici and K. Kubik, Delft, Netherlands 

1. INTRODUCTION 

This report documents an investigation into the theoretical accuracy of point 
interpolation and volume computation for topographic surfaces. For this purpose 
the type and roughness of the terrain are described by a covariance function of 
exponential type (cf. Grafarend 1971, Koch 1973). Based on this model for the 
surface, the accuracy of interpolated points and of volumes is derived by the 
application of the law of propagation of errors. 

The results of the investigation proved that the spacing of the control points 
and the roughness of the surface are the governing factors influen~ing the iTiter
polation and volume accuracy. The method of interpolation is of minor importance 
for the accuracy as compared to the above mentioned factors. In the following 
sections, the model for the topographic surface is outlined, the problem of 
interpolation is defined and the interpolation and volume accuracies are stated 
for various interpolation problems. 

2. A MATHEMATICAL MODEL FOR THE TOPOGRAPHIC SURFACE 

During the last years it has been proved that a topographic surface can be 
properly described by a stochastic function z = z(x,y), whose undulations and 
smoothness are characterized by its covariance function K(i ,j). The indices i and 
j define two values z(xi,Yi) and z(xj,Yj) of the function. Let us agree to call 
the variable z 11 hei9ht", although it may just as well represent depth, geophysical 
variables, etc. 

The covariance function K(i ,j) measures, similarly to a covariance matrix, the 
variation of the heights about some mean level and their mutual correlation. The 
concept of the covariance function can be derived from that of the covariance 
matrix by allowing infinitely many stochastic variables Zi, which together define 
the surface z(x,y). 

figure 1 
Characterization of 
surface Profiles 
by the covariance 
function 
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Figure 1 shows a number of examples of covariance functions for common surface 
profiles, it also demonstrates the ability of this-covariance function to describe 
the properties of the profile. Smooth stochastic functions possess a covariance 
function, which slowly dampens out to zero, while with rough functions z,K will 
dampen out quickly. 
The magnitude of the local undulations of z is represented by K(i,i). 
For our investigation we assume the covariance function to be of the type 

K(' ') er e-d(i,j)/a (1) 
1 'J = 0 
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with o and a denoting scalars and d(i ,j) denoting the planimetric distance bet
ween ° (xi,Yi) and (xj,Yj), This assumed function is independent of the absolute 
position and of the azlmuth of the pair of points. This type of covariance func
tion can be used for local regions of the surface until its unsuitability for 
describing the topographic surface is proved+). 

Cov(d)/cr 2 
0 

1 • 0 ', ~ Theoretical covariance function e -a/a 
',,, 

Oo5 ''~--

2 3 4 5 6 
d 

figure 2 
Fitting of an exponential type 
covariance function to 
empirical data 

Figure 2 demonstrates the suitability of this type of exponential covariance 
functions to describe the properties of actual topographic surfaces. 

3. THE PROBLEM OF INTERPOLATION 

In the interpolation problem a set of surface heights Zoc = z(xoc,Yoc) oc = 1 ... n 
(control points) is given, it is then the task to compute an approximation h for 
the surface height at a given position (xp, Yp), Various interpolation rules are 
possible, an example is given by the linear interpolation rule between two con
trol points in a profile: 

or the local quadratic or cubic inter
polation etc. All these commonly known 
interpolation rules may be formally written as 

u1 
X 
·p 

( 2) 

where Zc denotes the array of control heights, Zc = lzoclT,oc = 1 ... n and A de
notes an array with elements laoc(xp,Yp)I depending on ~he position (xp,Yp) of the 
surface point to be interpolated. The error e of the interpolated height will be 
equal to 

( 3) 

and the variance of this error is equal to 

) ) T T ++ Qee = K(p,p + A.K(a,S A -A.K(a,p) - K(p,a).A , a,S=l ... n ) ( 4) 

The accuracy formula (4) is used for the accuracy computations in the following 
sections. 

+) Our assumption implies that the regions of similar surface type must be care
fully selected based on geological information, and that a proper coordinate 
transformation may be necessary to ensure the independence of K from the 
azimuth. 

++) ·There exists an interpolation method which minimizes this variance, namely 
the method of prediction (cf. Wiener 1949). The coefficient matrix A for pre
diction interpolation is equal to 

A= K(p,a)K-l (a,S) 
and the error variance equals 
Q e e = K ( P , P ) - K ( p , a) K - 1 ( a , S ) K ( s , p ) 
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The accuracy results listed in the following sections are based on the covariance 
function K, given in formula (1). The theoretical results can be readily applied 
to practical cases as is demonstrated in section 8 of this paper. 

For studying the accuracy of interpolation the standard deviation CT= IOee of the 
interpolation error, its maximum CTmax and its mean CTmean = (sum of all inter
polated points CT divided by the number of interpolated points) are used. The 
standard deviation CT is expressed in units of CT 0 , 

4. THE ACCURACY OF POINT INTERPOLATION IN PROFILES 

At first we will investigate the accuracy of height interpolation in profiles. We 
assume that the error free control points are located at equal spacings in a pro
file of the topographic surface, and intermediary points have to be interpolated. 

The accuracy of the interpolated heights was computed for both linear and pre
diction interpolation. Since these two methods are expected to yield the lowest 
and highest accuracy among the commonly used interpolation methods, the inter
polation errors of all these methods will be within the computed bounds. 
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Figure 3 shows the standard deviations a for the interpolated heights for linear 
interpolation depending on the location of the points in the profile. Figure 4 
holds for prediction interpolation. These figures show that the standard devia
tion of the interpolation error increases towards the centre of the interval bet
ween the control points, where it reaches its maximum value. This maximum crmax is 
for linear interpolation independent, and for prediction interpolation practical
ly independent of the length of the profile and the position of the interval in 
the profile, it is only dependent on the control spacing. 

For both linear and pre&iction interpolation the standard deviations crmean and 
crmax depend on the control spacing. The increase of both crmean and crrnax is 
relatively large for very short control spacings (cf. figure 5) and becomes in
creasingly smaller for larger control spacings. By approximation it holds 

crmax = cr 0~ ; crmean = cr 0 l(f;' for small D/a. 
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figure 5 
Dependence of inter-
polation accuracy 
on control spacing 
for both linear and 
prediction inter
polation 

The accuracy results for prediction and linear interpolation are practically 
identical. This is a very important result indeed, because it tells us that -
within the range of validity of our model - the accuracy of interpolation hardly 
depends on the interpolation method, which consequently may be selected according 
to other criteria, for example convenience and speed of computation. 
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total area extension: 0.3iH0,3a 
6 = 0.39 6 
amax = 0,35 ao 
mean o 

figure 7 
Accuracy of interpolated heights 
for bivariate prediction inter
polation 
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5. INTERPOLATION ACCURACY WITH GRIDS OF CONTROL POINTS 

In this interpolation problem a grid of error free control is given, with equal 
grid spacing both in x and y direction. The accuracies were computed for bilinear 
and prediction interpolation in order to bound the accuracies of all commonly 
known interpolation methods. Figure 6 shows the accuracy results for linear 
interpolation, and figure 7 holds for prediction interpolation. 

The figures show that local maxima of cr appear in the centres of the meshes. 
These maxima are, for both linear and prediction interpolation, practically in
dependent of the extension of the grid and the position of the mesh in the grid. 

The accuracy parameters crmean and crmax increase with increasing control spacing 
in the same typical manner as we observed for profiles (cf. figure 8). Also with 
bivariate interpolation the difference in accuracy of linear and prediction 
interpolati~n is only marginal. 
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6. EFFECT OF LOCAL POINT DEVIATIONS AT THE CONTROL POINTS 

figure 8 
Dependence of 
interpolation 
accuracy on con
trol spacing for 
bivariate inter
polation 

Local point deviations at the control points may be due to measuring errors or 
due to irrelevant local surface undulations. These local point deviations with 
standard deviation crp cause a decrease of the interpolation accuracy which is 
most significant in the surrounding of the control points. There the effect of 
these errors is fully superimposed on the results of interpolation (cf. figure 9). 
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figure 9 
Effect of local point deviations 
at the control points 
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The influence is considerably smaller 
towards the centre of the control 
interval. For 1 in ear interpol at ion in 
the presence of points deviations the 
following accuracy relationship holds 
-2 2 2 
a = a + K.crp 

a standard deviation of interpolated 
height in presence of local point 
deviations at control points 

a standard deviation of interpolated 
height in absence of local point 
deviations 

K constant, 0.5 ~ K ~ 1 for profile 
interpolation (Kmean = 0.66) 

0.25: K ~ 1 for surface 
interpolation (grid of control 
points; Kmean = 0.36) 

In many applications also the volume has to be estimated between the surface 
z(x,y) .and the reference plane z = 0 for a pregiven, rectangular or square shaped 
area (block). For this purpose surface heights h(xp,Yp) may be interpolated in a 
reg~lar grid of points in the block as shown in figure 10. The volume V then 
follows to 

m 
V = s.t. E h(xp,Yp) = 

p=l 
S.T.hmean 
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interpolated 
height h 

area 

figure 10 
Principle of volume 
computation 

The standard deviations of the estimated volumes V and ot the values hmean were 
computed for a number of control point arrangements and block sizes, in an 
analogue manner as the interpolation accuracy. For studying the volume accuracy 
the standard deviation a of the error in hmean• its maximum omax and its mean 
omean are used. Figure 11 shows some examples of the computations. This figure 
demonstrates that the magnitude hmean becomes more accurate with denser control 
and with increasing block size (cf. figure 12). For a detailed discussion of the 
results cf. Dijkstra, Kubik 1974). 
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figure 11 
Accuracy of volume 
determination 
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figure 12 
Dependence of average standard deviationcrhmean on control spacing 
and block size 

8. CALIBRATION OF THE ACCURACY RESULTS FOR PRACTICAL USE 

In order to be able to apply the above accuracy results to practical cases, the 
parameters cr 0 and a of the covariance function (1) must be estimated from the 
actual surface. For profiles the covariance function can be estimated from the 
formula 

-
z = 1 . . . n 

n 

This covariance function is then best approximated by the exponential function 
-d/a cr 0 e through a proper choice of cr

0 
and a. Using the computed values for a and 

cr
0

, the interpolation accuracies crmean and crmax may be obtained from the figure 5 
for a given control spacing D. 

Figure 13 shows an example of these computations while demonstrating the validity 
of the theoretically obtained data by comparison with experimental results. 

The calibration of the theoretical accuracy results for bivariate interpolation 
proceeds along similar lines, but it is, however, somewhat more elaborate. 
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APPROACH AND STATUS OF GEOMETRIC RESTITUTION FOR REMOTE SENSING IMAGERY 

by G. Konecny, Hannover, Fed.Rep. Germany 

INTRODUCTION 

After declassification of military non-classical sensors, such as the infrared 
scanner and the side-looking airborne radar, remote sensing began to develop as a 
new field in the early 1960's principally through the interest created by the 
Remote Sensing Symposia at the University of Michigan and by the activities of 
the Remote Sensing Committee of the American Society of Photogrammetry. 

The International Society of Photogrammetry adopted the topic during the congress 
period 1968 - 1972 in commissions I, II, IV, V and VII. 

During the reorganization of commissions in 1972 the geometry aspects of remote 
sensing were allocated to commission III and a working group was established to 
work on geometric problems of remote sensing. The Stuttgart symposium 1974 offers 
the first opportunity to present the scope of the working group as well as pre
liminary results. 

AIMS OF WORKING GROUP "GEOMETRY OF REMOTE SENSING" 

The broad aims of the working group are to investigate geometrical aspects of 
non-classical remote sensing systems. There is no need to inv~stigate classical 
remote sensors, such as aerial photography within the group, since this is al
ready being done in several ISP commissions. Despite of this the task is still 
too large at the moment; therefore priorities must be set according to most 
urgent needs. 

Table l(a): sensor parameters 

sensor Film Resolution Angular Angular Angular ground range of 
Size Lin es I mm view view resolution pulse scale 

in X in y resolution factors 

ae ri a 1 ) 230 X 20 to 60 -60°to+60° -60°to+60° 0. 1 mrad 1000 to 100 000 photography 230 mm 

strip ) 230 to 70 mm 20 to 60 strip -60°to+60° 0. 1 mrod 100 to 10 ODO photography strip 
panoramic ) 115 X 20 to 60 -40°to+40° -90°to+90° 0.015 mrad 1000 to 100 ODO photography 1140 mm 
television 25.4x25:4 mm 40 in satellites camera enlarged to -5°to+ 5° -5°to+ 50 0.2 mrad 

230 x 230 mm enlargement ) 1 000 000 

multi spectral 70 mm strip 20 in satellites scanner enlarged to enlargement strip -5°to+ 50 0.5 mrad > 1 000 000 230 mm strip 
infrared 70 strip 5 strip -60°to+60° 3 mrad 1000 1 000 000 scanner mm -
microwave 70 strip 5 strip semi annulus 10 mrad 10 000-5 000 000 scanner mm at constant 

angle 

brute 
3 mrad force 70 mm strip 20 strip ~45°to 60° 25 m 100 000-1 000 000 

radar in azimuth 

coherent 70 to 2 X 30 strip ~45°to 70° 2 mrad 10 m 100 000-1 000 000 radar 70 mm strip in azimuth 

sonar graph paper 5 strip ~45°to 70° 5 ~1ra d 1 m 000 - 10 000 
strip in ~zimuth 
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Table 1 shows: 

- GEOMETRICAL ASPECTS: 

1) Aerial photography and TV imagery are the only sensors resulting in a real
time two-dimensional image. 

2) Platform movement and other time-varying calibration problems will cause de
terioration of geometric accuracy for the remaining "dynamic" sensors. 

3) Only the sensors in the visible range (photography, TV-imagery, scanning) 
have high angular resolution. They are therefore best suited for topographic ob
ject detection. 

4) Since radar is a pulse system, it limits the resolution to a linear, not an 
angular value, more or less independent of the flying height. It fixes the image 
to a rather small scale (e.g. 1 : 400 000). 

5) TV-imagery, panoramic photography, as well as multispectral scanning will 
despite of their inferior geometric characteristics be more suitable for mapping 
from satellites due to their extreme angular resolution. 

- SPECTRAL ASPECTS: 

6) The high spectral resolution of the multispectral scanner makes it preferrahle 
to filtered black and white or to color and false color photography as an object 
classification device. 
7) Due to its simplicity in acquisition and in geometric presentation color 
aerial photography is a more preferred sensor product for object detection via 
photo-interpretation. 

8) The thermal scanner can be seen in the light of a geophysical exploration or 
environmental monitoring tool. 

9) Radar is the preferred sensor, where clouds fog and light conditions do not 
permit sensing in other spectrals bands. 

The photogrammetric tasks of direct concern to the working group must therefore 
lie in the following direction: 

1. Geometric restitution for all cases where geometry is of primary importance: 
The prime requirement will therefore be in topographic map~. 
Since the primary tool, aerial photography, is not subject of the working 
group, the highest priority should therefore be directed to investigate 
radar as a mapping tool. It possesses acceptable ground resolution for small 
scale mapping requirements. 
Panoramic photography is of interest to the military user; it could be of 
interest for mapping from space platforms. However, imagery is so far available 
only from lunar missions. 

2. A second requirement is to produce geometrically correct thematic maps. These 
are important for graphical representation of earth resources surveys for a 
variety of purposes and disciplines (e.g. agriculture, land use, oceanography} 
Satellite uses have no doubt given a wider impetus to semiautomated and 
automated analysis, techniques, which were generally introduced through multi
spectral scanning. For this reason satellite imatery should also be investig
ated with high priority. 

3. So that change detection becomes possible by semiautomated or automated 
analysis techniques it is necessary to refer spatially, spectrally and 
particularly temporally different images to a common geometric base beyond 
the limits of resolution. The topic of change detection should be next in the 
order of priorities. 
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STEPS OF PROGRESS 

In pursuing the task of investigating the geometric aspects of remote sensing 
the following steps will be necessary: 

1) An analytical analysis including the formation of a mathematical model and a 
controlled testTn which image coordinates are measured and ground coordinates 
are determined by off-line digital computations to obtain sensor accuracies. The 
working group tests are principally in this stage. 

2) Mapping of visually interpreted features either by digital off-line mapping 
from images (Rijkswaterstaat) or by analytical plotter restitution (TU Hannover, 
University of New Brunswick). This stage is in progress. 

3) It may be appropriate to perform image gridding by digital-electronic/analoge 
image processing, as this has been done for Nimbus 3 satellite images. It is 
possible to investigate the accuracy of this procedure (TU Hannover). 

4) Differential rectification is the prerequisite for semiautomatic or automatic 
change detection operations. Geometric digital or hybrid corrections will no 
doubt in the future be part of any image processing system for non-classical re
mote sensors. The concern with these routines is within the scope of the working 
group (TU Hannover, Purdue University). 

5) Automatic Image Correlation has been suggested as a mean to perform change 
detection without previous geometric restitution (IBM, TRW). The state of this 
work is too futuristic at the moment to be of serious concern to the working 
group now. 

ANALYTICAL ANALYSIS 

The analytical analysis requires the setup of an analytical model, the obtaining 
and the measurement of appropriate test imagery on a simple coordinate measuring 
device. 
Already in 1970 strict analytical expressions were set up for conversion of 
ground coordinates to image coordinates for scanner and radar imagery. It has 
been shown that the orientation parameters and the image coordinates are functions 
of time. Only a line image is formed in real time Ill, 121, 131, 141, 151, 
Subsequently the formulations included instrumental parameters, such as squint 
for radar 161, or dealt with orientation procedures 171, and problems of inter
secting corresponding vectors of overlapping scanner or radar images, or de
termining positions from direction and distance of a radar interferometer vector 
I 8 I, I 9 I. 
A strict restitution becomes possible if the following parameters are known: 

1) - for scanners 

a) the 6 exterior orientation parameters (position and attitude) of the 
platform as functions of time 

b) among the interior orientation parameters, timing marks to count and cor
relate the image coordinate along the film strips with time and to check 
the film velocity; film edge marks to count the image coordinate in per
pendicular direction and to check mechanical translations of the film 
transport; the sensor constant. 

The relations yield collinearity equations which may be used for space inter
sections in the usual way. 

2) - for side-looking radar 

usually a ground representation is used. The recorded image coordinate per
pendicular to the direction of flight therefore nbt only becomes a function 
of the slant range, but also of the flying height set for the ground range 
reduction. In addition to this setting the following parameters must be 
known: 
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a) 5 orientation parameters (w has no influence on geometry) 

b) delay constants referring to electronically generated marks to count 
image coordinates in across flight direction and to check the functioning 
of the cathode ray tube 

c) timing marks to check the image scale and the film velocity in flight 
direction 

d) the squint angle 

An intersection can be formed by two spheres of the intersecting radii re
sulting in a circle, which intersects with the antenna squint cone to give 
2 points of intersection. The point with an elevation lower than the flying 
height is in general the proper point. 

3) - The commercially not available radar interferometer permits to determine 
distance and directior to a point of determinable phase. 

The knowledge of exterior orientation parameters, necessary for a restitution 
can be obtained by the following means: 

1) by ahproximation; usually a uniform straight and level flight is assumed. 
This is t e standard case of restitution at present, 

2) by recording of orientation parameters; navigation devices permit to deter-
mine a continuous x-y record of the platform. An airborne profile recorder in 
conjunction with a statoscope may monitor the z-coordinate. The platform orient
ation may be traced with inertial systems. Recording of orientation parameters is 
costly; moreover difficulties are encountered for coherent radar; there the re
cording of attitude parameters may be irrelevant since the image is formed by a 
summation of Doppler-frequencies over a finite period. 

3) by platform stabilization, the most convenient but most expensive solution 
may be obtained. Positional data are introduced to the autopilot; the attitude 
of sensor or antenna is maintained by an inertial platform. For radar (without 
interferometer) w-stabilization is only required to improve resolution. 

4) by orientation process; while an approximate relative orientation process 
for nearly flat terrain has been analyzed by Derenyi 17I, a strict and more pro
mising orientation possibility using a block adjustment using collinearity equa
tions for transfer and control-point is being investigated by Dowideit l10I. The 
orientation parameters may be expressed as Fourier-functions of time. Undesirable 
correlations existing between the chosen parameters may be appropriately con
strained. 

5) by interpolation; an interpolation procedure using polynomials, piece-wise 
p o l y n om i aTsor-re ast s q u a re s i n t e r p o 1 a t i o n i n c o n j u n c t i o n wi t h a s i m p 1 i f i e d 
mathematical model has been the standard application in previous tests and is 
continuing to be used. 

TEST RESULTS OBTAINED BY ANALYSIS 

While reference is made to the individual papers, wherever appropriate, a summary 
of test results obtained this far is given below: 

A - RADAR 

1) In 1972 results were obtained from an analysis of Westinghouse real aperture 
radar stereo imagery over New Guinea (scale 1 : 300 000, h = 6,5 km) at the TU 
Hannover 181: 
opposite side stereo 
(R.M.S. values of check points) 

0 X = + 

(5y = + 

68 m 

138 m 

0 = + 240 m z 

same side stereo 

ox 
(5y 

02 
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2) For opposite side imagery over Dutch flat terrain slightly better values were 
obtained in planimetry by Leberl \111: 

+ 62 m 

cry + 76 m and 

3) at the Rijkswaterstaat \121: 

cr = + 48 m 
X 

cry=+ 70 m. 

The difference is most likely due to extreme elevation differences (h = 1800 m) 
and interpretation difficulties in the Guinea imagery. 

4) Within the working group a test has been carried out for coherent, synthetic 
aperture radar imagery flown with a Goodyear GEMS 1000-radar (scale 1:400 000, 
h = 12 km) over Phoenix, Arizona. 

This imagery consisting of 6 parallel strips has been made available to the group 
by Goodyear and the Aeroservice Corp. It was reproduced in Hannover and distri
buted to all working group participants. The US-OMA-TC provided 1 / 24 000 topo
graphical maps of the area. On these 510 topographical features visible on the 
images were identified. The map coordinates of these points were measured with a 
digitizer. The selected points served as control or check points for the test. 
These values were distributed by the TU Hannover to 9 participants having shown 
an interest in the test. Results have sofar been obtained from three institution~ 

- at the Rijkswaterstaat (Clerici, Kubik) two section each in two strips were 
measured monocularly on a Kern PG-2. The measured data were subjected to a 
polynomial fit in planimetry: 

Table 2: Phoenix Test Results obtained at the Rijkswaterstaat 

strip section no of no of no of no of residuals residuals 
no. no. points control check points at at 

measured points points rejected control points check points 

cr X cry cr X (J y 

+ + + + - - -
1 1 33 17 16 2 3,2 m 3,2 m 54,4 m 23,9 m 

2 1 42 17 25 3 1, 1 m 5, 1 m 44,9 m 60,0 m 

1 2 19 10 9 2 1,2 m 0,9 m 60,6 m 25,7 m 

2 2 17 9 8 1 1 ,0 m 1,9 m 61, 1 m 22,6 m 

- at the University of New Brunswick (Derenyi 113\) two strips overlapping 
opposite were measured on a Zeiss PSK stereocomparator. Only well identifiable 
points were selected. They gave after polynomial transformation results of 
~ 27,4 min position and~ 30,7 min elevation. 

- at the Technical University of Hannover 3 overlapping strips were measured as 
4 image coordinate strips in a PSK stereocomparator. Strip 1 overlapped with 
strip 3 in the same direction; strip 1 overlapped with strip 2 in the opposite 
direction. Strip 1 was therefore measured twice. Radar parallaxes and radar 
shadow differences were larger in the combination of strips 1 and 2. The inter
pretation due to better stereoscopic viewing was better for strips 1 and 3. 
Considerable difficulty was encountered in proper identification of the chosen 
control. Street corner crossings, road forks, hill tops or creek bends chosen 
as control were sometimes misidentified. The 4 strips were subjected to a 
Helmert transformation in planimetry. Points with discrepancies larger than 
3cr were rejected. 
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They mostly coincided with points, which during measurement already had been ma 
marked as uncertain. The results obtained sofar are summarized as follows: 

Table 3: Phoenix Test Results obtained at the Technical University Hannover 

strip no. no of points no of points residuals after Helmert-Transform. 
measured rejected 

ax cry 

+ + - -
3 440 26 133 m 41 m 

1 436 23 60 m 38 m 

1 447 30 80 m 79 m 

2 417 29 46 m 65 m 

Further processing of these data with the Dowideit program llOI is intended for 
x, y and z. 

5) Leberl undertook to investigate a 360 000 km 2 planimetric block flown with a 
GEMS 100 Goodyear coherent radar over Colombia. His residuals after planimetric 
adjustment described in 1141 and converted into meters amount to 

a = + 220 m 
X 

cry=+ 280 m 

after adjustment with piecewise polynomials. 

B - SCANNERS 

1) An HRB-Sin~er Reconofax Infrared Scanner imagery test has been reported by 
the author in 181. The flight data were: h = 1500 m, 2 8= 120°, c = 28,5 mm. 
After space transformation, the following R.M.S. values were obtained at 36 check 
points: 

ax = + 13 m 

cry = + 7 m -

az = + 8 m -
2) The same imagery was remeasured with a larger number of points in a diploma 
theses at the TU Hannover (Liebig 1973): 

Table 4: Infrared Scanner Test TU Hannover 1973 

type strip ax cry no. 

single image 1 24 m 60 m 

single image 2 23 m 62 m 

model 1 / 2 16 m 12 m 

An attempt to improve the accuracy by computing orientation parameters from con
trol without imposing constraints on the orientation elements and then computing 
coordinates from these failed. 
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3) Investigations carried out at Purdue University with the University of Michi
gan multispectral scanner are reported in \15\. At h = 1500 m (ground resolution 
element 14 m) results of+ 36 m and+ 19 m respectively have been obtained, de
pending on the method of adjustment. 

C - SATELLITE SCANNERS 

Satellite scanner accuracy has also been tested. 

1) A diploma thesis at the TU Hannover (Schuhr 1973) investigated the gridding 
accuracy of Nimbus 3-Satellite photographs. Using a photo covering Europe with 
73 chosen control points a positional accuracy of+ 0,13 mm was obtained 
(= + 7 km; a resolution element is about 8,5 km). -

2) Investigations on bulk ERTS satellite scanner imagery have first been carried 
out by Colvocoresses and McEwen \16\, quoting check errors of crx = + 145 m 
after linear transformation. ,y 

3) Bahr and Schuhr from the TU Hannover I 17\ obtain comparable values. 

4) The accuracy may be considerably improved using second degree polynomial
interpolation or least squares interpolation to about± 50 to 60 m (Bahr I 18\ ), 
below the nominal resolution of 79 m. 

MAPPING 

After an analysis has led to the improvement of the mathematical level to the 
stated accuracy, mapping of point and line detail becomes possible on~line by an 
analytical plotter system. Any analytical plotter may be used if it is programmed 
accordingly. (AS-11 A at US D.M.A.A.C.) (AP/Cat University of New Brunswick, TU 
Hannover in progress). A special analytical plotter for the restitution of radar 
imagery has been built for the Engineering Topographical Laboratories of the US 
Army by Goodyear. 

Another possibility is off-line plotting using a di~itizer and an automatic 
drafting machine as used by the Rijkswaterstaat \121. 

IMAGE GRIDDING AND DIFFERENTIAL RECTIFICATION 

From the viewpoint of data handling or automatic processing it may be preferrable 
to use geometrically annotated or corrected images as a product. 

In order to make the operations of image gridding and differential rectification 
possible, as required for remote sensing, the images must first be available as 
scan records either in analog or preferrably in digital form. This is possible 
by a scanning microdensitometer or a drum read-system (e.g. Optronics 1700), 
a CRT or a laser reader. 
~atellite imagery or some multispectral imagery has the principal advantage that 
it can already be obtained in computer compatible tape form. Therefore one only 
needs to deal with the output. The output can be carried out by devices listed 
in table 5. 

Satellite imagery, as well as multispectral scanner imagery is available to the 
user generally in already partially processed from, the socalled "bulk image". 
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Table 5: Digital image Output Devices 
----

Principle Y.occl 

I 
Resolution Format Grey Speed Accuracy Remarks 

Scnlc 
Values 

loinc - 130 pixels 40 cm 4 to 13 1000 - nvnilnhlc 
printer p~r line chars 

p, sec. 

drum 

I 
Optronics i 12 ,5 m I 12,5 cm 128 t,80 0,02 7, relatively 

plotter p - 1700 I 10,000 RPM inexpensive 
Prnkln clements I ' ! 

rP.T I rn·1 i 4096 2,5 cm 64 27 sec 0,5 7, fast 
4481 I clements per 

I I element 
I 

1ink I 
c,;lor jct 

I 
5 lines 20 X 29,4 3 colors 60 sec 

lj ct A. B, per mm - inexpensive 
iv lotter Lu:,<l/!lwcden cm rcr rcpro,t uc t ion 

' 
! I picture 

;electron ' 
I 120 m/sec I 

l 
E. !\,T,S, 6000 5,7 cm 100 0,3 7. very fast, 

jlJC' ,'J:n lines per 

I 
annlor. use 

Jre-:-order I imnr,c possible 
! 

I i ~J Hf.Cr R,C,A, ' 20,000 12 cm JO o,r, cm 0,005 7. extremC>ly 
I I 

;bcmr. 

I 
pix,.,1s 

I 
per sec I ;Jccurntc 

J?:"ccor<lcr. 

' I 

Therefore only the deviation from bulk to prec1s1on image (as derived from the 
analysis) needs to be corrected. The geometrical processing scheme carried out 
for ERTS satellite imagery may therefore be considered as a model for any remote 
sensing processing scheme: 

1) Partial processing from the scanned records received is carried out according 
to the approximately known mathematical rectification model, as best as theory 
and known orientation or calibration data permit (for ERTS images this means cor
rection by position and attitude data and eventually the figure of the reference 
surface through the electron beam recorder). 

The rectification model should include the following options: 

a - transformation from ground reference system to ellipsoid to projection 
b - computation of image coordinates as a subroutine optionally for photography, 

scanning or radar 
c - the removal of image distortions known by calibration or reseau (timing) 

marks 
d the removal of terrain displacements if a (digital) terrain model is known 

(e.g. by model scanning or by the contours of a map). 

2) In the reconstituted bulk image recognizable features, whose ground coordin
ates may be determined from existing maps, standard aerial photographs or by 
ground measurements are identified (for satellite imagery the selection of such 
features may sometimes be difficult). 

3) The image coordinates of these features are measured and compared with the 
ground coordinates. If the initial image is available in digital form it is of 
course possible to substitute the measurement operation by the counting of 
pixels. The Jet Propulsion Laboratory enhances in Mars Mariner photographs digit
ally every 25th pixels and thus obtains a superimposed grid on the image for the 
purpose of counting. 

4) From differences between bulk image and ground coordinates correction func
tions may be derived: 

a - The simplest measure is to compute the coefficients of a correction poly
nomial. 

b - Other interpolation procedures such as least squares interpolation may be 
used. 

c - It is also possible to improve the orientation parameters of the image~y by 
an adjustment procedure. 
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5) According to the correction function the new positions of the image pixel 
centres are computed. The pixel center maintains the previous grey-scale value. 

6) Grey-scale values must then be assigned to the rectangular output pixel grid. 
While the theory of image processing is still uncertain about the most suitable 
grey-scale assignment, a method more suitable than interpolation (maintaining 
contrast) appears to be the nearest neighbourhood assignment of grey-scale 
values: 
Each output pixel obtains the grey-shade of the nearest rectified input pixel 
center. 

7) The sequence of grey-values for the output pixels may be used for producing 
the precision image. 

Programs of this nature are already in operation (IBM) or under development 
(LARS, TU Hannover). 

CONCLUSION 

The aims of the working group have sofar principally been directed to analyze the 
potential of radar as a mapping tool. While standard photography yields accura
cies of less than 1/3 of the resolution limit of aerial photography, the accura
cies obtained in the Phoenix Radar test corresponded to about 3 times the resolu
tion of radar images. While radar mosaics can be laid out to 1 : 250 000 mapping 
specifications. there is hope, at least geometrically, to map to higher specifi
cations. Particularly the height accuracy obtained looks promising for applica
tions in highly mountainous countries. For this special procedures need to be 
developed. 

With respect to satellite imagery a restitution to resolution limit is possible 
using simple correction functions. Also for multispectral and infrared scanning 
geometric accuracy of 1 to 2 times the resolution is obtainable after inter
polation to control. While this has been demonstrated in the analysis the imple
mentation of change detection to that accuracy requires the setup of a processing 
system using digital differential rectification in which the determination of 
interior and exterior orientation parameters, the interpolation to control and 
the consideration of terrain displacement is included. 

The development of these procedures will be the further aim of the working group. 
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GEOMETRIC PROBLEMS IN SIDE-LOOKING RADAR IMAGING 

by L.C. Graham, Phenix, Arizona 

PRINCIPLE OF OPERATION 

This paper describes the operation of airborne synthetic aperture side-looking 
radar systems, with emphasis on the geometric properties of the imagery. 

Side-looking systems produce images of terrain by transmitting short pulses of 
microwave energy through an antenna beam which is wide in the vertical direction 
and narrow in the horizontal direction, as shown in Figure 1. 

I 
h ANTENNA 

BEAM 

FORWARD VIEi', 

ANTENNA BEAM/ 

PLAN VIEW 

Figure 1 - Radar Operation 
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A portion of the energy scattered from the terrain is received bftck at the air
craft and used to construct a two-dimensional record of backscattered energy. For 
a given position of the aircraft the returns are plotted as a function of time 
from each transmitted pulse. The record is formed by causing the transmission of 
a photographic material to correspond to returned signal strenth and thus terrain 
backscattering strength, as shown in Figure 2. 

X = f {H) 

Figure 2 - Image Coordinates 
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Return data from each successive pulse are recorded alongside the data from the 
preceding pulses so that an area image is built up. Where the across-track time 
coordinate is linear, it is proportional to distance from the flightline R (slant 
range distance). If the velocity of propagation is c, then R = ct/2 and 
x = pR = pct/2, where p is the image scale and tis time measured from pulse 
transmission! In many applications, the across-track coordinate is made proporti
onal to ground range R , the distance from the flight track in a horizontal re
ference datum plane. g 
In this case, the coordinate is x = pR

9
. By triangulation, 

Rg = (R2 - h2)1/2 = (c2t2/4 - h2)1/ 2 

so that 

X = 

The along-track coordinate is made proportional to distance along the track, 
so that 

y pvt ( 2 ) 

where 
v = aircraft velocity 
t time measured from start of imaging pass. 

Image resolution is determined from radar technical parameters. The across-track 
resolution, measured always in the slant range direction, is proportional to the 
length of the transmitted pulse in nonchirped radars. Because of the two-way 
transmission, objects spaces greater than T/2 are separately discernible, 
so that 

( 3) 

where wR = slant range resolution and T = time duration of transmitted pulse. 

Usually, system bandwidth is made proportional to the band of signals required 
to from the pulse BW ~ 1/T 
so that 

,!. / Al l<CR:,FT 

wRg I---

Fi!("ur,, :J - Datum Pl:tne Tiesolution 

( 4) 

The resolution measured in the datum 
plane direction is degraded because ob
jects spaced along the datum plane are 
separated less in the slant range direc
tion as shown in Figure 3. 

From the fiqure, where WR = datum plane 
G resolution 

and 
0 depression 

angle, 

WR = wR/cos 0 ( 5) 
G 

Along-track resolution in older radars is determined by the antenna beamwidth S 
and range as: 

w = Rs y (6) 

The antenna beamwidth is determined by the length of the antenna L and signal 
wavelength A by the rayleigh criterion S = A/L. For wavelangths long enough to 
guarantee good weather penetration, i.e., longer than about 2 cm, fine resolu
tion at usable ranges requires that antenna length be greater than that conveniem 
t? carry on an aircraft. Therefore, modern synthetic aperture systems store the 
signals received along the flightpath using a short physical antenna and sum them 
vectorially to synthesize a long antenna or aperture, Ls , as shown in Figure 4. 
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In Figure 4, the path taken by a 
scatterer moving through the 
physical antenna beam generates 
a synthetic antenna whose maximum 
length is 

L =RB= RA/LP, (7) s p 

where Lp is the length of the 
physical antenna and Bp is its 
beamwidth. 

Fi;:,'11rc 4 - Synthetic Antenna formation 

The bestachievable resolution of 
this synthetic antenna is 

w = s (8) 

The factor of 2 is included because, with the two-way path, the vectors in the 
signal summation have twice as much successive phase shift as for a system with 
a one-way path. This factor of 2 should not be used to compare real and synthetic 
antenna systems because a focused real antenna of length, Ls, would be used twice 
once each for transmitting and receiving, resulting in comparable resolution. 

Also note that this values of half the physical antenna size is the diffraction 
limited, or theoretical best resolution. In practice, the limit is seldom reached 
for reasons which will be discussed later. 

IMAGE GEOMETRY 

- SLANT RANGE MEASUREMENT 

The most accurate measurement made by the radar system is that of distance from 
the flightline to objects which appear in the image. This is basically a time 
measurement. A crystal-controlled oscillator generates rangemarks which are re
corded along with the radar data and appear in the image. The basic measurement 
accuracy is on the order of the system resolution described earlier. In a part
icular system, such accuracy can be achieved only, however, if the internal time 
delays are calibrated (known). The relationship of the rangemark measurement to 
slant range distance is illustrated in Figure 5. 

Figure 5 
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As shown in Figure 5, the absolute distance to an image feature is determined as 
follows: 

TT+ ~R +TR= nlTRM + n2TRM + 6TRM 

where 

n1 = number of rangemark pulses before recording 

n2 
TT 
TR = 

TRM = 
6TRM = 

C 

R 

number of rangemarks recorded before feature 
transmit delay 
receive delay 
time between rangemarks 
interpolated time from rargemark to feature 
velocity of propagation 
distance to image feature in slant range. 

( 9) 

In case the recording time base is linear, then the final image across-track co
ordinate is proportional to slant range distance from the flightpath, R, as 
described earlier; and the measurement accuracy is in that direction. The limit
ing accuracy in ground range is degraded according to Equation (5). 

- ALONG-TRACK COORDINATE 

The basic along-track coordinate is determined by drivinq the signal and image 
film at speeds proportional to the velocity of the aircraft so that y = p (air
craft distance). 

- IMAGE ERROR SOURCES 
a - Aircraft Position 

Because all measurements are made with respect to the airborne platform, uncer
tainties in its position and velocity result in errors in the final image.· There
fore, accurate measurement requires the use of high quality navigation equipment 
in the aircraft. The basic navigation system normally used is the inertial 
navigation system (INS). This can be supplemented by doppler navigators, ground 
control, and/or radio navigation equipment such as SHORAN or HI RAN. 

In addition to the fact that uncertainties in the aircraft horizontal position 
along the average flightpath determine the overall position in the final image, 
errors in altitude and variations of position along the average flightpath pro
duce internal errors in the image. 

b - Altitude Uncertainty 

Equation (1) may be differentiated to produce 

2 dh -tan 0 11 

where 0 is the depression angle from the flightpath. 

(10) 

Thus, errors in aircraft altitude produce errors in across-track position which 
are small at shallow angles but large at steep angles. Errors of one-half percent 
or so are not uncommon in altitude measurement so that a nonlinear scale distor
tion of a percent or more might be expected. Of course, the rangemarks undergo 
the same distortion so that measurements with respect to them are not affect~d, 
except for a second order effect in interpolation accuracy. Rangemarks are 
normally spaced equally in slant range and this should be taken into account for 
accurate interpolation. Thus, altitude uncertainty need not affect accurate range 
measurement. 
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c - Elevation Displacement 

Equation (10) also predicts the amount of elevation displacement to be expected 
from objects above or below the datum plane. As in photography, the differential 
displacement from noncolinear flightpaths can be used to measure the elevation of 
terrain features. The accuracy of such a measurement is limited by system resol
ution and the knowledge of flightpath position. Also, a visual model may be ob
tained by viewing two such images stereoscopically, but an apparent overall 
warping is observed because of the differences between radar and optical eleva
tion displacement. 

d - Along-Track Errors 

1) Scale 

Several possible error sources in the total system can contribute to an error in 
the along-track scale. The principal error is in the knowledge of aircraft velo
city. Other possible sources are in converting this velocity to recorder signal 
film drive velocity and in synchronizing image film velocity to signal film velo
city in the optical correlator. Of course, if sufficient ground control or ac
curate navigation data are available, this error can be removed in data reduction 
or in image correlation. 

2) Pointing Errors 

Probably the largest source of error in side-looking radar is the accuracy of 
pointing the synthetic beam with respect to the nominally straight line flight
path. Formation of a particular synthetic aperture, i.e., integrating the return 
over a flightpath distance long enough to produce the desired resolution, is 
equivalent to forming a parabolic surface in space which would cause plane wave 
energy (coherent light in the optical correlator) to focus to a point at the 
image. 
Failure to achieve a straight line flightpath results in distortions in this 
parabolic surface resulting in various degradations to performance, depending on 
the nature and magnitude of the distortion. 

Because the flightpaths achievable in practice are in general not sufficiently 
straight to ensure adequate system performance, deviations are sensed and cor
rections made to secure the performance desired. The levels of residual degrada
tion after this correction, then, are the limiting performance parameters. 
Figure 6 shows the parabolic surface corresponding to ideal operation, an assumed 
surface, and a decomposition of the difference between actual and ideal surfaces. 

As shown in Figure 6, a 
general error in generation 
(or correction) of this sur
face can be decomposed int0 
a linear portion, a para
bolic portion, and higher 
order portions. The linear 
error results in a pointing 
error, the parabolic in a 
focus error resulting in 
loss of along-track resolu
tion, and the higher order 
terms cause noise. The 
linear errors are the ones 
of interest in the present 
discussion of accuracy and 
geometric fidelity. 
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Figure G - Synthetic J\ pcriurt' Dcgrncbtions 

Several kinds of equipment and techniques are available to effect corrections to 
the synthetic aperture errors. Antenna-mounted accelerometers measure the short 
term (high frequency) deviations from a straight line flightpath to maintain 
resolution and control noise and sidelobes. Usually, an inertial navigation unit 
is available to supply velocity signals and to stabilize the antenna in space. 
One or more antenna-mounted gyros may be used to supplement or replace inertial 
system stabilization signals. Doppler navigators sometimes perform some of these 
functions. Finally, the radar signals themselves can prov~de information about 
antenna pointing. 

Graham 5 



- 204 -

The use of the radar signals to provide synthetic antenna pointing depends on the 
fact that the radar can perform an accurate measurement of the doppler frequency 
shift of the signals caused by relative motion between the aircraft and terrain 
scatterers. As shown in Figure 7, the antenna beam will be in general misaligned 
by some angle 0. The doppler shift in the signal from a scatterer in the real an
tenna beam is fo = 2V/A sine . Electronic circuitry in the radar, referred to as 
a clutterlock system, effectively measures the energy in the signal having 
positive doppler shift and balances this against energy having negative doppler 
shift, providing a signal to either (1) drive the antenna so that the beam is 
aligned with the zero doppler line (normal to the flightpath) and/or (2) offset 
an electronic reference to receive and process signals in the center of the 
physical beam, thus steering the synthetic antenna. 

A limitation to this technique 
is that the process generates a 
certain amount of noise because 
of both high and low spatial 
frecuency variations of energy 
in the beam caused by the rough 
terrain. Therefore, the signals 
are averaged over several 
thousand feet of distance 
traveled. High frequency air
craft motions are corrected by 
signals from inertial 
components. 

VELOCITY-v 

ANTtNNA --~ O t ------r--------
..:JJ..llJ7J~- - -- - - __1 _ ZERO DOPPLER LINE 

Fii;ure 7 - Cluttcrlock 

An example of the application of these techniques is illustrated in Figure 8, 
which is conceptual only and does not illustrate the actual complex interconnect
ions between components. 
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Figure 8 - Synthetic Antenna Pointing Methods 
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With the particular arrangement, both real and synthetic beams are steered by the 
clutterlock to be maintained at a right angle to the average flightpath achieved 
by the inertially guided aircraft. High frequency flightpath errors affecting 
system resolution and sidelobes are corrected by the antenna-mounted accelero
meters. 

Thus, flightpath deviations having spatial wavelengths on the order of several 
synthetic antenna lengths and shorter are corrected by the accelerometers. Devia
tions having wavelengths from a few synthetik antenna lengths to several miles 
are corrected by the clutterlock in steering the synthetic beam to match the real 
beam. Lower frequency errors are corrected by using clutterlock signals to steer 
the physical beam to the normal to the averaged flightpath. 

Order of magnitude errors caused by the lack of precision of the components may 
be estimated as follows. If the inertial system performance is characterized by 
a velocity error on the order of oV, then an across-track error of ToV can occur 
in a distance along track of vT. The resulting angular error of the flightpath 
between these points is 60= ToV/vT = ov/V. For example, a 4-NM/HR inertial system 
in a 400-NM/HR aircraft could generate angular errors on the order of 1/100 rad 
or 0.57 deg. 

Clutterlock accuracies in beam steering are usually on the order of one-tenth the 
physical beam. For a one-deg beam, this amounts to about 0.1 deg. 

If a more accurate measurement or control of the flightpath can be established by 
ground control or a ground navigation system such as SHORAN, the INS velocity 
error can be largely removed by data processing. 

Both errors are RMS values averaged over a time period and may be exceeded for 
short periods. For example, the clutterlock errors can build up to be several 
times this value when land water boundaries or other large variations cause half 
the antenna beam to contain large scatterers compared to those in the other half. 
This can be minimized by proper choice of system time constants. 

The residual error after corrections from the use of ground control and flight
path measurement data is seen to be on the order of one-tenth the physical beam
width. In a system having a physical beam on the order of one degree, the linear 
along-track error at practical mapping ranges, say 50 kilometers, is then on the 
order of 

6y =Roe= (50 km)(O.l)(TI/180) = 90 m (lcr). ( 11) 

This is strictly an order of magnitude value, and actual values will depend on 
the particular system, the kind of control, the roughness of the flight, and 
other variables. 

If the flightpath is not horizontal momentarily, the synthetic beam will lie 
entirely ahead of or behind the normal to the average flightpath. This error is 
usually small compared to the others because the (pitch) angular error is of the 
same magnitude or smaller than the yaw error but the lever arm (altitude perhaps 
10 kilometers) is much smaller than the maximum lever arm for yaw errors; i.e., 
maximum range of 50 kilometers. Thus, the error would not be expected to be as 
high as 20 meters. 

Another error source which is normally small but occasionally must be considered 
is the fact that a clutterlock error or synthetic beam correction causes the 
synthetic beam to be on a doppler cone rather than in the vertical plane con
taining the radar and a terrain point. Because fd = 2V/A sin 0, the locus of 
constant fd for 0 ~ e is a cone whose axis is the flightpath and whose inter
section with the datum plane is a hyperbola. The geometry is shown in Figure 9. 

In the figure, line o-p is an element of the doppler cone whose semi-apex is 
a= TI/2 - 0. Point plies on a circle with center oat y = y parallel to the x, 
z plane r 

x2 + z2 = y2 tan 2 a , (12) 

which intersects the datum plane z = h, so that 
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I 
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l 

Figure 9 - Doppler Cone Geometry 

( 13) 

is a hyperbola in the datum plane. 

For large x, the hyperbola is asymptotic to the line y = x/tan a, so that the 
error between the position of imaged point p and the assumed position in the 
plane 0 = constant is 

2 2 1/2 
oy = (x + h ) /tano: - x/tano: (14) 

For example, for h = x = 40 000 ft, o: = 90 deg - 0.1 deg= 89.9 deg, so 
oy = 28.9 ft. 

It should also be noted that elevated terrain having the same range Rand dopp
ler angle o: as a point in the datum plane mus.t also lie on the same circle so the 
elevation displacement is always toward the flightpath and in a direction normal 
to it. 

CONCLUSIONS 

Synthetic aperture radar systems are now available for exploration and mapping 
under adverse weather conditions. With proper care in navigation and ground con
trol, accuracies of 100 meters or so over distances of 50 kilometers are 
realizable with equipment now available commercially. More precise measurements 
than those estimated here in connection with Equations (7), (8), (9) and (10) can 
be made by providing more precise measurement and control of flightpaths and 
antenna orientation. Improved performance can also be obtained by programming 
additional flightpaths to take advantage of the most accurate measurement made 
by the radar, i.e., slant range. Two flights at right angles can reduce the 
radar measurement error to the order of the range resolution for all points 
recognizable in both images. 
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RADARGRAMMETRI C PO I NT DE TERM I NAT I ON II PRORADAM 11 

by F. Leberl, Enschede, The Netherlands 

SUMMARY 

PRORADAM (Projecto Radargrametrico del Amazonas) is a Colombian reconnaissance 
type mapping project of about 360 000 km2, using airborne sidelooking radar 
(SLAR). The paper deals with the procedures used and problems encountered in a 
planimetric adjustment of the block of SLAR image strips, making use of 44 ground 
control points. The adjustment was split into 2 steps: block formation and exter
nal adjustment. Accuracies obtained could be evaluated by comparing the adjusted 
block with independent ERTS-MSS images. Root mean square discrepancies between 
ERTS and SLAR amount to+ 1.5 mm at image scale 1 : 400 000. 

INTRODUCTION 

The present paper reports on the Colombian mapping project PRORADAM. This name 
stands for 11 Projecto Radargrametrico del Amazonas 11 and refers to a reconnaissance 
type of mapping project using airborne sidelooking radar imagery, covering 
southern Colombia, about 360 000 km2 (see figure 1). The prime cartographic pro
duct was to be a set of mosaics in the Colombian Gauss-Krueger projection at a 
scale of 1 : 200 000. 

, 3oGorA 

P1-:RU 

Figure 1: P raj ect area PRO RA DAM 
within Colombia, 
covering nearly 400 000 km2 
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By now the entire Amazonas basin is 
covered by SLAR imagery. However, 
compared to the Brazilian, Venezuelan 
and Peruvian projects, the Colombian 
PRORADAM represented a novelty as for 
the first time the metric base for 
mosaicking was produced through a 
block adjustment with the SLAR 
imagery. In other projects, the 
Brazilian or Peruvian, precise 
auxiliary data (aircraft tracking by 
SHORAN) were considered to render 
such adjustment superfluous; or, as 
in Venezuela, mosaics were simply un
controlled. 

In Colombia the previously mentioned 
auxiliary data were not measured. But 
a 60 % sidelap between adjacent image 
strips, as well as the presence of 44 
ground control points, made it very 
logical to attempt an adjustment. The 
work was carried out by the Inter
national Institute for Aerial Surveys 
and Earth Sciences (ITC, Enschede, 
Netherlands) under a contract with 
Aero Service Corp. of Philadelphia. 
This company acquired the imagery and 
prepared the mosaics. 
In particular the paper will consist 
of an account of the procedures used 
and problems encountered in the ad
justment. The procedures were chosen 
in view of a rather severe time con
straint; this constraint resulted 
from the fact that an adjustment was 
not planned initially. The actual ad
justment was split into an internal 
and external one, preceded by initial 
strip formation and correction of 
systematic image deformations. 
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IMAGE ACQUISITION 

Goodyear's synthetik aperture radar was used in Aero Service's Caravelle jet. 
Image scale in this system is always 1 : 400 000. Flight lines were spaced 
13,7 km, directed NS, and imaging was always in the same direction (see figure 2i 

Offset 
6.:l "/4 

Side lap 

Figure 2: SLAR imaging geometry to obtain 60 % overlap 

'I 

Flying hight a.m.s. l. was 12.5 km. Seventy flight lines were planned but 30 re
flights were necessary (40 %!). These reflights had to replace images with 
serious defects due to electronic failure, heavy rain or turbulence 131. 

Due to resolution of the CRT, each image strip is presented in two parts. This 
would correspond in aerial photography to photography cut into two pieces. There 
is, however, a slight overlap of 5 % between the pieces of an image strip. One 
piece corresponds to the range nearer the flight line, the other piece to the 
range farther from the flight line. Therefore, the 2 pieces are called "near 
range" and "far range view". Geometrically, the 2 pieces can be considered as 
one unit. 

Apart from the NS fiight lines, 
there were 3 EW transverse flights 
flown, producing so called "tie-
1 ines". This was done at a time 
when it was expected that no 
ground control would be available. 
But in the progress of the pro
ject it turned out that the Inter
american Geodetic Survey was about 
to measure Doppler Satellite 
points in the mapping area. Con
sequently there were ground 
control points available for 
mosaicking as shown in figure 3. 

Figure 3: Distribution of ground 
control. The points marked by an 
arrow were only available in 
the ultimate phase of the comput
ations. The figures 7a and 7b do 
not use information frome these 
points. 

STRIP FORMATION 

Ii 
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The purpose of the adjustment was to interpolate radargrammetric points in betwe~ 
the given ground control points as a basis for mosaicking. The basic unit for the 
adjustment is an image strip. Since the mapping area is flat, there was no re
quirement to form stereo models. Tie points had to be selected to connect the 
individual strips to form a block. These tie points had to be transferred stereo
scopically, the ground control points identified, and all these image points 
measured. 
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A single SLAR strip, however, extends 
up to 250 cm. Measurement on a co
ordinatograph had therefore to be in 
parts. This and the fact that each 
strip was given as a near (NR) and 
far (FR) range view necessitated the 
i n i ti a l s t e p o f II s tr i p f o rm a ti on II i n 
which all the piecewise measurements 
of a strip are transformed into a 
common strip system. 

An effective selection of tiepoints 
was found to be in the small zone of 
5 % overlap between NR and FR views 
of an image strip (see figure 4). 
Due to the 60 % overlap between ad
jacent strips, each tiepoint had to 
be measured at least 4 times. 

Transformation of the piecewise 
measurements of a strip into a 
strip system was of course· always 
overdetermined. This enables an 
estimate of the combined error of 
point transfer and measurement, 
showing a root mean square value 
of+ 0.33 mm at image scale. 

Figure 4: SLAR strips with 60 % 
overlap, but split into 
near range and far range 
views through the use of 
2 cathode ray tubes 
(CRTs). Indicated are the 
locations of tiepoints in 
the common overlap between 
the two views of a strip. 

PREDICTABLE IMAGE. ERRORS 

Before block formation, it is 
essential to eliminate significant 
predictable image deformations from 
the individual strips. However, as 
the imagery of PRORADAM is in ground 
range presentation, and as the 
terrain is flat, the only predict
able deviation of an image from a 
desired map projection is just due 
to this projection. This poses an 
interesting problem which is 
illustrated in figure 5. 

Each SLAR strip represents an equi
distant cylinder projection. The 
flight line is the reference 
meridian of the cylinder. Across 
track image lines represent great 
circles on the sphere with this 
reference meridian as an equator 
and the intersection of the great 
circles as a pole. Each SLAR strip 
however, represents a projection 
onto a different cylinder. 
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Figure 5: Projection deformation 
in SLAR imagery 
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Necessary conversion of alongtrack coordinate x and acrosstrack coordinate y into 
a Marinus projection with coordinates X,Y amounts to: 

0 = k . (x-x
0

)/R tan ( A - >-
0

) = tano . cosn 

n = k . (y-yo)/R X = cp . R 

sin cp = c0so . sinn y = ( >- - >-
0

) . R 

where 

k = scale factor 
R = radius of earth 
cp = longitude 
>- = latitude 
>- = reference latitude 
XO = image X of equator 

0 image y of flight line Yo = 

Evaluation of these formulae reveals that corrections of SLAR image coordinates 
will always be less than 3 in 10 000. 

INTERNAL ADJUSTMENT 

BlocK formation, or internal adjustment 
should now produce a single pair of co
ordinates for each tiepoint, of which 
coordinates are at this point available 
in 3 adjacent SLAR strips. Due to un
predictable (random) image errors, there 
must be some discrepancies expected. 
Analysis leads to the conclusion that 
there are two main defects of image geo
metry: variation of along track scale 
and curvature of flight lines (see 
figure 6). 

Block formation was done by starting 
from an initial image and transforming 
successively each adjacent image into 
the previous one. One thus progresses 
from the initial image throughout the 
whole block. One can compare this with 
photogrammetric strip formation where 
the role of individual models is taken 
over by the SLAR images. 

(a) (b) (c) 

Figure 6: The grid of fig. (a) is 
deformed to (b) due to 
variations in along track 
scale, and to (c) due to a 
curvature of the flight line 

The transformation was basically linear conformal ,.with correction terms for 
differential scale and curvature. The correction terms were set up as spline 
functions. 

The fact that this block formation is sequential rather than simultaneous 
simplified numerical problems and was a consequence of the stringent time con
straints. It is expected that simultaneous internal adjustment will produce a 
slightly superior block. 

The result of the block formation can be evaluated to some extent from the dis
crepancies left in the tiepoints. These are shown as root mean square values in 
mm at photoscale (table 1). They represent discrepancies between internally ad
justed tiepoints and transformed tiepoints. 

four computational alternatives were computed for the block formation: with and 
without correction of projection deformation and with or without splines in 
addition to linear conformal transformation of strips. Table 1 shows clearly 
that discrepancies are much smaller using spline corrections but that projection 
deformation is not significant. 
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A 1 A 2 B 1 B 2 

RMSE X 1. 12 1. 13 0.66 0.65 
NS-LINES 

RMSE y 1. 17 1. 18 0.68 0.68 

RMSE X 1. 20 1. 20 1. 30 1. 30 
TIELINES 

RMSE y 1. 40 1. 50 1. 40 1. 31 

Table 1: Internal root mean square discrepancies in mm at image scale, after 
block formation 
A: without correction for projection deformation 
B: with correction for projection deformation 
1: without splines 
2: with splines 

An independent comparison of the block with the tielines shows that both are 
fairly consistent. It can be expected that the block deformation relative to 
ground control is of the same order of magnitude. 

EXTERNAL ADJUSTMENT 

Beginning external adjustment with a linear conformal transformation into the 
control point net reveals rather much larger block deformations than expected; 
and their order of magnitude does not vary, whether or not spline corrections or 
projection corrections are used (see table 2). 

RMSE X 

RMSE Y 

A 1 

4.07 

3.68 

A 2 

3.93 

3.50 

B 1 

4.89 

5.95 

B 2 

5.15 

4.75 

Table 2: External root mean square discrepancies in mm at image scale, after 
4-parameter similarity transformation of SLAR block into geodetic 
control 

An attempt to explain the obvious discrepancy between two independent evaluations 
of block deformation has initially and still focused on the fact that the complex 
inertial navigation was initialized at the airport of Bogota at 2700 m with 
rather unusual deviations of the local vertical. It is suspected that this led to 
a distorted frame for the inertial navigation above flat and low Amazonas. If 
this suspicion is correct, then this would explain why the tielines fit so well 
with the NS lines, and why, at the same time, the NS lines do not fit with the 
ground control. 

Error vectors describing the block deformations appear to be largely systematic. 
This is confirmed by computing the covariance functions for deformations in 
northing and easting. 

Correction of these deformations is an interpolation problem. Various methods can 
be and were used for the purpose. Only the results of two are presented here: of 
a polynomial, independent for errors of northing and easting; and of linear pre
diction. Application of linear prediction was by a combination of moving average 
and linear prediction proper. The moving average has the role of trend function 
in this application. 
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Figure 7: Corrections computed with polynomial (a) 
and linear prediction (b). In the North East 
and South West of the area, extrapolation 
leads to very large corrections with the 
polynomial 
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Two vector diagrams show an essential difference of the applicability of the two 
methods for the purpose (figure 7). Diagram (a) refers to the interpolated cor
rections using a 10 coefficient polynomial (3rd order). The other (b) uses 
linear prediction. It is obvious that in certain areas corrections obtained from 
polynomials degenerate to very large values. This is in areas of extrapolation. 
With linear prediction, no degenerated corrections are obtained. Table 3 
demonstrates that correction size is the same as of the original deformations in 
control points. 

RMS E X 

RMSE Y 

A 1 

0.56 
( 3. 7 5) 

0.70 
(3.39) 

A 2 

0.55 
(3.58) 

0.69 
(3.25) 

B 1 

0.56 
(3.96) 

0.71 
(4.52) 

B 2 

0.59 
(4.08) 

0.61 
(3.65) 

Table 3: Residuals at control points (without brackets) and corrections at 
radargrammetric points (in brackets), after external adjustment with 
linear prediction. Values in mm at imaqe scale. CJrrelation function: 
Gov (d) = 0.9/(1 + d2/500 2). 

ACCURACY OF SLAR BLOCK, EVALUATED WITH ERTS MSS IMAGERY 

From table 3 reliable estimate is possible of the actual prec1s1on of radar
grammetric points, but availability of ERTS-1-MSS imagery is used to obtain an 
independent estimate of this ac~uracy. ERTS images are available in about 50 % of 
the mapping area; only half of this is not covered by clouds. Therefore, only 
25 % of the area is also shown on ERTS imagery. For the simple reason of lack of 
time, these remaining ERTS data were only used as a check rather than as control. 

The check is only possible using drainage lines. From inspection of many ERTS 
images it can be concluded that at this state SLAR shows much more detail and for 
this reason is superior to ERTS imagery (see figure 8). The drainage lines are 
actually the only recognizable detail in most of the ERTS images of the Amazonas 
area but, due to a year's difference between taking ERTS and SLAR, some changes 
have occurred. 

NR RMSE X RMSE y NUMBER OF DA TE OF 
POINTS ACQUISITION 

1 1. 06 0.51 9 Oct. 1972 

2 0.80 0.69 10 Oct. 1972 

3 2. 77 2.85 11 Oct. 1972 

4 1. 32 1. 26 7 Oct. 1972 

5 1.08 0.71 18 Feb. 1973 

6 2.29 1. 35 12 Feb. 1973 

7 1. 15 1. 35 22 Feb. 1973 

Tota 1 1. 58 1. 41 89 

Table 4: Root mean square discrepancies between ERTS-1-MSS images and SLAR block 
PRORADAM. Va 1 ues in mm at scale 1 : 400 000. MSS-channel 7 used. 

Leberl 7 



- 214 -

(a) 

( b) far range near range 

Figure 8: Part of ERTS-1-MSS channel 7 (a) and of SLAR strip (b) 
at same scale. The images show the Rio Putumayo, at 
latitude SO 20, longitude W 720 
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This ~iqht to some extent make the ERTS imaqes of this area less reliable than in 
other cases. Reported ERTS image deformations are of the order of maqnitude of 
170 to 400 m (0.3 to 1 mm at SLAR image scale) (references Ill and l21). 

Table 4 shows the root mean square coordinate differences between seven ERTS 
images and the adjusted SLAR block. The overall root ~ean square discrepancy 
amounts to± 1.5 mm, representing the sum of deformations of ERTS and SLAR. 

This values allow the tentative conclusion that the relative accuracy of the ad
justed SLAR block is about equivalent, or perhaps a little inferior, to ERTS ac
curacy. This suggests for future work the ERTS imagery in SLAR mapping projects 
should not be desregarded. 

CONCLUSION 

An internal and external block adjustment for planimetry was numerically carried 
out with SLAR imagery for the Colombian project PRORADAM. The mapping area con
sisted of the Colombian Amazonas Basin (400 000 km2). Forty-four ground control 
points were available. 

Time constraint necessitated a rather simple solution for the. problem. After 
sequential block formation, the consistent SLAR block was transformed into the 
set of ground control points. Residual block deformations at ground control 
points were used to interpolate corrections in radargrammetric points. The inter
polation method was linear prediction. 

Comparison of the adjusted SLAR block with independent ERTS-MSS-images reveals 
root mean square coordinate discrepancies of 1.5 mm at image scale. 

The methods which were used for the adjustment were simple of necessity. It is 
expected that more rigorous methods of computation will improve results. ERTS 
imagery should be incorporated as external constraint in the adjustment. 
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A SIMULATION SYSTEM FOR THEORETICAL ANALYSIS OF RADAR RESTITUTION 
AND A TEST BY ADJUSTMENT 

by G. Dowideit, Hannover, Fed.Rep. Germany 

ABSTRACT 

Flight datas are mostly not available together with radar-images for geometric 
tests. To make a statement about relationship between flight situation and geo
metric radar restitution it is necessary to procure those data or to simulate 
them together with radar image coordinates. 

By use of Fourier-Series and Randam Values the program SIMUL simulates flights 
and produces radar image coordinates. 

The imagery equations used in SIMUL are the base for the error equations in the 
adj us t men t i n the program SL ARB ( 1 ) . Thi s ( not we l 1 tested ) program deter mi n es 
three-dimensional Gauss-KrLlger-coordinates of unknown image points by using a 
few control points. 

INTRODUCTION 

In the last years the geometric restitution of unconventional Remote Sensing 
imagery got more importance, as more and more data is preserved for thematic and 
topographic mapping. The advantage to have those quick data collecting systems 
requires new and fast methods to handle all the mass of those material. Remote 
Sensing systems are measuring the radiation of the electromagnetic spectrum in 
different but typical ways and store these values in special manners. Especially 
in the case of Side Looking Radar (SLAR) the geometric problems are complicated 
by measuring-situation, influenced by time-varying parameters. 

Many ways are possible to solve the reconstruction of terrain from the image-data. 
For example as BOSMAN, CLERIC!, ECKHART and KUBIK did by usin~ an approximate 
transformation for flat terrain Ill or DERENJY j3j or LEBERL J41 did by using 
polynomial fitting on single strips to get two-dimensional results. A more analog 
way had be done in Brasil by producing semi controlled mosaics of the Amazone
Region (RADAM) j5j. 

To get three-dimensional results for mountaineous terrain we used in Hannover 
some simple equations j61. All those tests depend on a few Radar images flown by 
different conditions. The flight parameters are always unknown or respectively 
unused. In most cases mathematical models are used, which are different from the 
physical situation during the flights. 

So it is possible to make a statement about the accuracy of results of each 
special test material by using those mathematical models. But it is not possible 
to make a statement about the relationship between the physical situation during 
the flight and the results of such models of mathematical approximation. 

SIMULATION OF SIDE LOOKING RADAR IMAGE COORDINATES 
- SIMULATION OF A FLIGHT PATH 

To have a base for controlled test situations it is useful to simulate image 
flights over well known digital terrain-models. By definition, a straight flight 
path should be a loxodrome on a Gaussian Globe. The platform - (airplane) - co
ordinates are defined as a function of time (Ti): 

(1. 00) 

By using a flight-starting-point (AFo' uFo' RFo)To the flight positions can be 
written as 

cos(AZ) 

cos 

sin (AZ} 

(uFo; uFi) 
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( 1. 03) 

In which means 

AZ 

k 

Azimuth, angel between the meridian and the flight path (loxodrome) 

Spherical distance between (>..Fo'uFo'RFo)To and (>..Fi'uFi'RFi)Ti 
in degrees 

factor for variation of the flight path elevation. 

With the known speed of the airplane over terrain the spherical distance can be 
written as 

with 

0 
S Fi 

VG 
RE 
HG = 

RE+ HG 

speed of flight 
radius of the globe 

(1.04) 

flight elevation above the surface of the globe 

./•F, 
AZAt 

,,,,.,,_ 

u,.7 - YG 
Fo / 

~ ------- -- AFl 

------'------~/ 
XG --------

By dividing the spherical distance Sf; into differential short pieces dS; con
cerning to timestep dT and by using time varying expressions for the flight para
meter 

VGTi fl (Ti) for flight speed changes 

AZT; = f2 ( T . ) for azimuth changes (for example readouts of a gyro) 
l 

o:Ti = f3 ( T. ) 
l 

for drift angel 

kTi = f4 (Ti) for elevation changes 

</>Ti = f5 (Ti) for pitch angel changes 

WTi f6 (Ti) for ro 11 angel changes and 

KT i = f7 ( T. ) for yaw angel changes 
l 

it i s possible after defining these time functions to describe varying flight 
path with 
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AZTi + aTi 

(direction of the assumed flight velocity) 

and 
VGTi dT 

dSFi = Po 

(RE + HGT i ) 

to write the flight positions as 

UFi = UFO + J cos ( KT i ) dSFi 

sin ( KT i ) 
).. Fi = ,l..Fo + J 

( u Fi ) dS Fi cos 

RF i = Rfo + J kTi dSFi 

(determination of the flight positions) 

~Ti = f5 (Ti ) 

WTi = f6 (Ti ) 

KT i = f7 (Ti ) 

(rotation of the airplane in each moment Ti). 

(1.05) 

(1.06) 

( 1. 0 7) 

(1.09) 

( 1. 20) 

(1.21) 

(1.22) 

The quality of approximation of a true flight with the additional aim of a con
trolled test situation depends on the definition of the time varying functions 
fl(Ti)' ... f7 (Ti). 

This could be done by Fourier-Series like 

fn(Ti) = anl + an2 sin (2 
(Ti-Ton) 

1r+bn 1) TPn 
(Ti-To )•1r 

+ an3 sin ( 4 n 
TPn 

(Ti-To )·1r 
+ an4 sin (8 n 

TPn 

+ ...... . 

in which 

ank = coefficients of amplitude 
bn(k-l) = coefficients of phase and 

TPn = length of the period time. 

+ bn2) 

+ bn3) 

(1.23) 

These functions f1 (Ti) ... f7 (Ti) should realize a mathematical model of the 
stochastic process of the flight parameters as good as possible. 

This is a reason to generate the coefficients ank and bn(k-1) by a random gener
ator with for example normal distributed values. 

If k is the number of terms of the Fourier-Series, the values of the functions 
fn (Ti) could be characterized by the limitations of 
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+ l I A I - l< · n max and + 1T 

in which IAn maxi means the maximum value with a random probability of P %. 

SIMULATION DER FOURIERKOEFFIZIENTEN AUS FLUGPA 

SIMULIERTE AMPLITUDENHOEHEN FUER 

V H ALPHA KAPPA 

2.3882 2.4723 \'; • 1 759 8.2137 

PHI 

2.3897 

LAGE DER PERIODENANFAENGE IN SEC NACH FLUGBEGINN TO FUER 

V H ALPHA KAPPA PHI 

84.9618 30.3292 78.9442 28.6183 78.9442 

SIMULIERTE PERIODENLAENGEN FUER 

V H ALPHA KAPPA PHI 

1,9.8341 76.9859 2.2571 48.8374 60.3299 

OME(;A KURS(AZ) 

9.3060 9.4078 

OMEGA KURS(AZ) 

94.7453 94.8069 

OMEGA KURS<AZl 

43.4).15 74 .1304, 

With a small loss of accuracy in approximation of a true flight path it is 
possible to use small real times:teps LIT instead of the differential expression 
dT for computer-compatible equations (see example of simulated airplane 
r o ta t i on s ). 
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SIMULIERTE FOURIERREIHENKOEFFIZIENTEN 

AV AH AAL AK APHI AAZ 

.1084 el=,c·~ ~2697 -$14,55 .0928 -.6075 .269C 
-.1304 .1293 .1057 -.2805 -.0191~ .4621 01604 
-.1652 -.1863 -.2422 -.548B -.0997 -.5781 -.1604 
-.1781 -.1087 ~3300 -.005,'? -.1304- ~ .4610 -.18?.5 
-.OllO -.05136 -.1022 -.3492 .1324 -~5308 -04719 
·-.1370 .1062 -.1599 .5858 • OL:-86 -.5403 -.576l 
-.0545 -.1268 ol 103 -.3121 00756 -02045 -00882 

• 0217 01047 -.0227 .4R60 .0958 -.1909 .6594 
-.1790 -.0305 -.1491 .0519 -.1816 -~1525 .3006 

.1815 -.1581 -.3836 .15t,6 -ol349 .5026 -.5052 

.0140 .0818 -.2642 .5458 -.1119 -.3645 -.1716 

.0547 .1185 -.0016 02037 ol686 .6373 .6259 

.0526 .1545 .1653 -.2302 -.0515 .0219 -.4506 

AV AH BAL BK BPHI BOM BAZ 

-.1673 1.0909 .6274 -.5tf37 -.8397 - • 7017 1.0194 
-.3024 -l.4425 1.1337 .?273 .1001 -1.4797 -.3720 

.2199 1.5161 -1.31813 ,7616 .2253 -1 .. 1990 lo3498 
-.5210 -.0768 -1.4549 .5669 -l.228i -.4099 -.6489 
1.2566 -.3501 -.0800 -.2268 -1.3555 -1.1900 .9918 

• 7 4-21 • 0671 .4000 .1478 -,3792 1.3318 -&5253 
1 • 1277 ... 5000 .2220 • L,l 72 .2755 -1.4221 1.2454 
-.4139 ,6550 .1961 1. 3271 -.3319 .0413 -} .L1877 
1.2566 .1587 -.9277 -1.5509 -.2814 .3609 -.0911 
-.4099 1~1468 -.2464 1.1686 -.4496 -1.284.:!,. 1.3612 
-.3340 -.9050 .4173 1.2754 1.0470 -.2888 -.8219 

-1.2747 • 46i} 7 • 7167 1,4335 .2458 -1.2170 l.3315 
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- SIMULATION OF IMAGE COORDINATES 

By using the definition of coordinate systems made by LEBERL in 121 combinated 
with the FLIGHT-SIMULATION-System (AFi, UFi, RF;) the RADAR-IMAGE-COORDINATES of 
a terrain-point could be determined by 

➔ 

sp A· B · (D"Ti · D'Ti · (TFp·Rp-TFFi,RFi) - a) (2.00) 

SR lspl 
2.SR = --

C 

= 

(Ti -

x' = mx' 

y' my' 

y' C 

l.(i 

Slant Range 

Signal time 

time delay of CRT-display 

To) flight time 

LIT 

(flt - Llto) for Slant Range 

( fl t 2 - flt fl t 0 ) for my' )1/2 ( fl t 2 - Llto 2 
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Definitions to equation (2.00) 

GOSA 

TF = sin>-
sin u 

cos u 
cos u = trigonometric function vector of polar globe coordinates 

R = distance between the centre of the globe and a point (air
plane or on terrain in the mean of the used index) 

DI Ti 

D11 

Ti 

= Vector between the airplane and the terrain point (in geo
centric rectangular coordinate system) 

= Rotation matrix of (Kr;, "Ti, ur;) which rotates this vector 
into a flight path 
oriented rectangular coordinate system 

= ~otation ~atrix of (¢Ti, wTi, Kr;) which rotates this vector 
into an airplane 
mounted rectangular coordinate system 

a= Translation between the origin of the airplane system into 
the origin of the sensor coordinate system 

B = Rotations matrix of (¢', w', K1
) to rotate the airplane 

system parallel to the sensor mounting system 

A = Rotation matrix of (¢", w", K") to rotate the mounting 
system parallel to the sensor coordinate system 

and the result 

➔ 

s = = Vector between the or1g1n of the sensor and the terrain 
point P. (In a rectangular sensor coordinate system). 

The condition for imaging 
Lp 

terrain point Pis 
! 

arc tan ( 2 2 112 
(Mp + Np ) 

) = ~ (2.03) 

in the meaning that the L-axis is parallel to the axis of the radar beam cone 
produced by the Squintangel ~-

This condition can be used to determine the time tT of imaging: 

( ~ - M) ~ arc 
Lp 

tan (-~--~--..----=-) !, ( ~ + M ) M/ + Np2) 1/2 
(2.04) 

The limitation t~ can be choosen as a function of the resolution W in azimuth: ·max 

pO (2.05) 

Enclosing a routine to control the stabilization of radar antenna against yaw, 
pitch (and roll) and an additional random generator to simulate errors in measu
rement of image coordinates and point identification these formulars are pro
grammed for a CDC-Cyber 76. 

The executions time of these program SIMUL differs between 1 second for a 
straight flight with 60 image points and approximately 60 sec per image point by 
using extreme flight parameters and a high azimuth resolution of 5.0 meters. 
An average execution time of 1 second per image point by simulation of a normal 
free varying flight can be expected. 
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RADAR EVALUATION TEST BY BLOCK ADJUSTMENT 
- IMAGE EQUATIONS, ERROR EQUATIONS AND NORMAL EQUATIONS SYSTEM 

The simulation program SIMUL was designed to supply controlled input data for the 
program SLARB. A just finished early test version SLARB (1) solves three-dimens
ional Gauss-Kruger-coordinates and corrections for some flight and imaging data. 

On the base of the IMAGE EQUATIONS (2.00) (2.01) (2.02) the Error Equation coef
ficients are found by derivation. 

These coefficients can be classified into three types: 

lJ coefficients corresponding to unknowns which are valid for all images with 
the same value as 

a) correction of time delay ~to and with some restrictions 
b) correction of the two image scales mx, my (interior orientation) 

2) coefficients corresponding to unknowns which are ~lid for each image flight 
with an other value as for example 

a) corrections of the flight starting point coordinates corresponding to the 
origin of the radar image (exterior orientation) 

b) corrections of the airplane rotations¢ and K (exterior orientation). 

In SLARB version (1) these corrections are realized in the meaning of average 
trend values, valid for the whole flights. 

3) coefficients corresponding to the unknown point coordinates. 

By using these classification system the ERROR EQUATIONS can be written as 

( 3. 00) 

This index numbers are equal to the type numbers. 

It is necessary to orientate the system of equations by introducing control 
points. In this case the statement (3.00) has no term of type 3. 

In SLARB (1) the used coefficient matrix A has the same structure 

( 3 . 01) 

A_, , 

X X X IX X X 
X X X IX X X IX IX IX 

I. point I. flight 

X X IX IX X X 
X IX X lX X IX lX X lX 

2. point I. flight 

X IX IX IX X IX 
IX ~ X lX IX IX IX X IX 

I. point 2. flight 

X X IX lX IX IX 
IX C>< lX lX IX IX IX IX lX 

2, point 2. flight 

lX X lX 
X IX X IX X lX 

control point 

IX IX IX 
IX ~ X X X IX 

control point 
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The resulting normal equation matrix is poor conditioned, so that the solution 
only could be found by iteratively repeited adjustments. As a test value to stop 
the repetition cycle the geometric average of the determined corrections of the 
unknowns should be less than a limitation value. In the actual program test phase 
of SLARB (1) this limitation value is set to 0.5. The test value is mainly in
fluenced by the corrections of the unknown terrain point elevations, so we could 
say that the repetition stops in that moment when all height corrections are 
smaller than 0.5 meters. 

- SOME RESULTS OF SLARB (1) 

Though the program SLARB (1) is designed to process up to ten radar image strips 
with up to 60 terrain points and 140 unknowns, the just now finished tests depend 
on only two parallel simulated radar images with about 30 terrain points at a 
scale of 1 : 200 000. 

The tests are made in three stages: 

1) Program Test for SLARB (1) using exactly straight flights, correct input data 
for the necessary flight parameters and in different configuration three, 
four, six and eight control points. 

2) Using the same straight flights with additional simulation of random measure
ment errors for the image coordinates (cr = + 10µ and cr = ± 20 µ). 

3) Using free simulated flights (flight parameters changes between+ 5,0) with 
additional simulation of ra~dom measurement errors for the image-coordinates 
(cr = + 20 µ). 

Naturally, these results have no strong declarative meaning, because they are 
mainly produced as program tests for SLARB (1). But two statements could be made: 

1) It is possible to determine three-dimensional point coordinates by using an 
adjustment for the image coordinates. 

Under comparable conditions of flight path configuration nearly the same 
relations could be found as LEBERL 171 expected for the cofactors of the un
known point coordinates. 
His declaration for scheme (b) by using by= 10 was: 

y = 1 y = 2.5 y = 5 

Ox 0.9 0.9 1.0 

Oy 1. 2 1.0 0.8 

Oz 3.2 11. 1 19.2 

The comparable data produced by SLARB (1) are (by = 11,5): 

X = 1 y = 2.5 y = 5 

Ox 23 22 19 

Oy 1 1 1 

Oz 11 12 14 

By considering the used equation system for adjustment with unknown absolute 
orientation of each flight path the differences in Ox seemed to be clear. But 
in relation to the values of Oy and 02 the values of Ox seemed to be contra
dictionary. So we must say: 

2) The actual version (1) of SLARB must be improved, because 

a - repetition steps are converging tooslowly, 
b - the equation system is very sensitive against too large differences be

tween the approximations of points coordinates and their true values, 
c - the weights of the error equations had to be solved with more accuracy 
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for example by using the determined cofactors of the unknown and their 
functional connections as shown in expressions (2.00) (2.01) (2.02). 

d - i t s e ems to b e h e c e s s a r y to u s e a b e t t e r t e s t e x pre s s i o n t h an t h e g e om e tric 
average 1s to stop repetition cycle. 

e - the cofactors of Ox seemed to be too large. 

The results are shown in the table below: 

Execution Test Stage I Test Sta1>e 2 Test Sta1>e 1 
umber 1.1 2.1 3.1 4.1 2.3 4.2 4-.3 1,,-,lf 4.S 

Flight Number I( 2 1,2 1, 2 f, z f, z l,2 f,2 1,2 1,2 

SIMUL-INPUT-DATA 

a) limits of flight 
parameters t 0 :I. (J ± I) to t tl ::!: 0 ±0 ±5 ;t 5 

b) simulated 25 of t (} =Z°/· t 2°/ 1 z°/' t 2~ image coordinates .f 0 1 0 -!. (} t ft?~ 

SLARB (I)- DATA 

a) Differences 
between 
SIMUL-INPUT and 
SLARB ( I )-INPUT 

al) Flight star- "YI .6~{4l A'//.dx/Ab 

ting point 0 0 0 0 0 (J 0 ?11/100/ 0 f'()<)/1atijo 

az) Speed of the 
~00/ 7f/ p 104/'lA/(1 

aircraft 0 0 0 0 0 0 (J -T.$°/-1-1,'_tJ -/. .r /-111-. (J 

a3) delay-time 0 0 () () (J CJ (1 C) 0 

b) Simulated flight 
parameters are ye.s y~s ye.s yes yes yes yes n<' ,J{> 

· used in SLARB ( I ) 
(yes or no) 

c) Number of control £1/2S J/RG fi/2.:, 8/ZI 3/!?G 8/Zt IJ/21 6/21 
,-;i'1 7/L" 

points/unknown e: $/ ,g 

points 
d) SLARB (I) repe-

(J.$" o.s- tJ. S' {l.S tJ. s tJ.s (J • .r (). s- tJ. r 
tition-limit 

e) Number of 
tions 

repeti-
~ ,; /.f ij 8 6' 8 2 2 

Results of SLARB ( I ) 

a) oo after t .3/' t~ ±'?" adjustment 
± ,y,- ±Ry :! iO ,A- :t 2-;,a :f 7.tlmr, -f. "6.1mm 

b) Mean square errors 
of terrain 
coordinates (,n) 

_fiy :!. ?. If frt,2 ± 8.6 f 9..F f 7. z t t.,; f.S-.6 171132 t ?'I.I'.(, 

6x ;t JS. 2 ± 18.f :t-13.6 t 1.r:0 -f: ttJ. ~ t /I. II- -!: 111 tlfJf.i :! ?b1.f 
6z ±. /,3 -! !.3 = 1.~ -f: 1. 1 t J.tl t3.G :!: 'I. 6 f 7/G.S :f !{JC'. 1 

c) maximum Errors (m) 

l.1y max/ I '1. '1 '26. -7 T{;.9 17-. 'J 16'.9 /fl.It 13.2 .!1222.0 µ'of. 6 

l4X max/ 2<?. 8 NI-./ Z//. 7 2'1. 0 ?r '7- Zif '1 28.F tcrs. tJ ,F/;G.8 

j<i z ma.xi 2.3 2.8 Z.3 1.8 fJ_II- (S',3 /J.11- :?&3".o 61.3.3 

--- -
Execution Time (.se.c) ~ 80 ~too ~ lo ...... ;.0 0 - /,:/S ~ tJ .- ,,,...,/ lTO ~ 6f> ~ 60 

Costs (JJ11) ~ zc.s·- -290,- ~ 2lfo,-I 
- 230,- - .no, - ~ .11°'- ,._ ~-01:1, - "- 200,- .,..__, 2ov; · 

- - ··---

Dowideit 11 



eXECl./T/tJN /V{J. 4'-. b 

,.v.,_ y >< z y 
Re SU /rs o/ '7<7/v5r1??2nr 

X .e ..:i.y A')( a..c 

59 520000.00 5825000.00 o.oo 520000.00 5825000.00 o.oo o.ou o.oo o.oo 
49 515000.0.0 5825000.00 I). 0 () 515000.00 5825000.00 o.oo 'l. 00 o.oo o.oo 
50 515000.00 5825000.00 1000.00 515000.00 5825000.00 1000.00 o.oo o.oo o.oo 
47 515000.00 5820000.00 o.oo 5143C/0.37 5820456.04 613.32 609.63 -456.04 -613.32 
48 515000.00 5820000.00 1000.00 514663.35 5820283.71 1378.36 336.65 -283.71 -378.36 
37 s10000.oo 5820000.00 I). i) 0 509361.66 5820546.78 o.oo 638.34 -546.78 o.oo 
38 510000.00 5820000.00 1000.00 50%39.11 5820379.29 1000.00 360.89 -379.29 o.oo 

CJ 45 515000.00 5815000.00 o.oo 51503S.36 5814882.18 -49.18 -35.36 117.82 49.18 0 
~ 27 505000.00 5820000.00 o.oo 505061.3b 5820175.60 -97.76 -61.38 -175.60 97.76 ~-
0. 28 505000.00 5820000.00 100(1.00 50S055.46 5820174.73 887.55 -55.46 -174.73 112.45 
CD 35 510000.00 5815000.00 :) • 0 0 510089.30 5815200.22 -53.10 -89.30 -200.22 53.10 ~-
c+ 36 s10000.oo 5815000.0U 1000.00 5098g0.85 5815081.96 1088.42 109.15 -81.96 -88.42 

26 505000.00 5815000.00 1000.00 5051?3.10 5815261.98 984.57 -123.10 -261.98 15.43 N ,_. 
N 

N 25 505000.00 5815000.00 o.oo S0501?.10 581:,160.56 78.55 -12.10 -160.56 -78.55 '--1 

34 510000.00 5810000.00 1000.00 s10136.0n 5810205.52 951.46 -136.06 -205.52 48.54 
33 510000.00 5810000.00 o.oo 510128.07 5810213.35 -56.93 -128.07 -213.35 56.93 
15 500000.00 5815000.00 o.oo 500105.35 5815230.83 -33.23 -105.35 -230.83 33.23 
23 505000.00 5810000.00 o.uo 505165.54 5810337.11 -44.31 -165.54 -337.11 44.31 
24 505000.00 5e10000.oo 1000.00 S05151.6H 5810313.56 946.12 -151.68 -313.56 53.88 
31 510000.00 5805000.00 i). U 0 510000.00 5805000.00 o.oo o.oo o.oo o.oo 
13 500000.00 5810000.00 0. 0 0 S00138.68 5810255.25 -47. 13 -138.68 -255.25 47.13 
14 500000.00 5810000.QO 11) I) Q • 0 (J SOOl?0.72 5810235.10 954.25 -120.72 -235.10 45.75 
21 505000.00 SBOS000,00 (). 0 0 5051)64.f,9 5805029.93 -96. 82 -64.69 -29.93 96.82 
22 505000.00 580'1000,00 lzJq.').01} c,oc:;000.00 5805000.00 1000.00 o.oo o.oo o.oo 
u sooooo.oo 5805000.00 '). 0 0 ':,00075.47 5605114,02 -':i0,o4 -7':5.47 -114.02 50.64 
12 500000.00 5RO"iOOO,OIJ l () il r) • 1~i U sonooo.oo 5805000.00 1000.00 o.oo o.oo o.oo 

1 49'5000.00 5 8 0 5 0 0 0 • t) 0 I• l) tJ 49c:;ooo.oo 5805000.00 o.oo o.oo o.oo o.oo 

20 20 18 1206097.80 1435082.78 588803.6t 

?. 0 20 l ts °,-d245.57 o><~t267.87 6z=tl80.86 
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Execution No 4.5 
VEKT0RPLAN - LAGEFEHLER -

eine Zeichenbreite 
entspricht 520.000 m 

t 

im Lageplan 
50.000 m 

Fehlervektorlange 

Execution No 4.5 
VEKT0RPLAN - H0EHENFEHLER -

eine Zeichenbreite 
entspricht 520.000 m 

im Lageplan 
1 mm= 10.000 m 

Fehlervektorlange 
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DEFORMATIONS OF SLAR IMAGERY - RESULTS FROM ACTUAL SURVEYS 

by H. Jensen 

This discussion relates to a system comprised of the following principal compon
ents: 

- Caravel le Twin-Jet Transport 
- GEMS-1000 Synthetic Aperture Side Looking Radar - manufactured by Goodyear 

Aerospace Corporation 
- Litton LTN-51 Inertial Guidance System 
- Stewart-Warner AN:APN-159 High Altitude Radar Altimeter System 

- Lear-Siegler L-102 Auto Pilot 
- RCA "SHORAN" Radio Positioning System 

Fundamental to SLAR imagery is the fact that the two image components - along
track and across-track - are determined with complete independence. Consequently, 
it is evident that error studies must treat separately with the two components, 
and not mix them in statistical analyses as if the circumstances were isentropic. 

This discussion will deal simply with the most prominent deformations, examining 
the consequences of system errors, noise, and resolution limits by following 
their effects upon a hypothetical square figure whose axis is parallel with the 
flight line, in a hypothetical level surface at ground level. 

A synthetic aperture SLAR system, operating "perfectly" will seek the zero dopp
l e r l i n e , w h i c h l i e s a t r i g h t a n g l es to th e fl i g h t pa th , f o r t he f o rm at i o n o f th e 
image elements. As a consequence, x and y, the cross-track and along-track com
ponents, will be orthogonal, and the transform of the ground square to image will 
result in a rectangular parallelogram (whose limiting shape will be a square). 

Since the synthetic aperture SLAR system in commercial use (the Goodyear GEMS-
1000 system) employs an excellently calibrated slant-range to ground-range con
version function; and since, as noted in Mr. Graham's paper ("Geometric Problems 
in Side Looking Radar Imaging" - GERA-2015, 1 August 1974), the most accurate 
aspect of SLAR imaging is the range (or x) component, it may be assumed, and our 
experience confirms, that the x measurement is of reasonably exact and constant 
scale (1 : 400 000) when the setting of the range conversion function reflects 
truly the difference in altitude of aircraft and ground (usually about 12 500 m). 

They scale is determined by the rate of data film advance; and this, in turn, is 
determined by the velocity output derived from a Litton LTN-51 Inertial Naviga
tion System. 

Two time-dependent aspects of inertial systems affect the accuracy of this 
velocity input: (a) drift and (b) an 84-minute oscillation (the "Shuler Oscilla
tion"). By manufacturer's specifications, the drift may not exceed a rate of one 
knot; and by selection of components and careful pre-flight adjustment, this per
formance can be improved to about one-half knot. Since the true airspeed under 
survey circumstances approximates 360 knots, it is evident that the drift error 
is of the order of one part in 720, or 0.14 %. 

The 84-minute oscillation is a far more serious contributor to scale error. In a 
number of surveys in the past three years, the velocity as measured by the iner
tial platform has been continuously compared with the velocity indication of a 
Doppler navigator, to determine the magnitude of this variation. The basis for 
this comparison lies in the fact that, though the Doppler output is noisy, and is 
often interrupted by heavy rains, smooth water bodies, and so on, it has no time
related variation, and thus is a valid yardstick. It has been found that velocity 
variations of six knots or so occur with some frequency; and that variations of 
ten knots occur from time-to-time. These errors represent errors of more than 
± 1.5 % of velocity indications when the true airspeed is of the order of 360 
knots. The image scale variations of they component are thus also often of the 
order of more than+ 1.5 %. 

A simple diagram shows the consequences of the above discussion: 

Jensen 1 



CURVATURE 

- 231 -

aircraft - appr. 360 knots~ 6 knots error 

1 400 000 + 1 1/2 % 
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The 84-minute oscillation is random in its time and azimuth phases. Therefore, it 
imposes a cross-track cyclical error of the same magnitude as its along-track 
error; that is, an 84-minute sinewave of as much as six to an occasional ten
knot velocity. The cross-overs of maximum effect will, therefore, have an angle 
with the desired great-circle flight path of one to one-and-a-half degrees, et 
a ground separation of about 420 kilometers (the aircraft velocity approximates 
10 kilometers per minute), representing a curvature roughly of two to three de
grees per half-cycle (420 kilometers), or one degree per 140 to 210 kilometers. 

Since the image is offset from the aircraft flight path, at its mid-point, by 28 
to 37 kilometers, the effect of curvature will also impose a y error, by shorten
ing or lengthening the offset path. 

image 

iMage 

If the variation in direction is+ 1°, then it can be seen that the length of the 
mid-point of the image may be stretched or shortened by roughly 2 x 37 x tan 10, 
or approximately one kilometer in 420 as a consequence of the cross-track compon
ent of the 84-minute oscillation, or about+ 1/4 %. 

VERTICAL OSCILLATIONS AND ERRORS 

Vertical errors are great in SLAR surveys. In the first place, the area imaged is 
offset 18 to 55 kilometers from the aircraft path, so altitude or ground clear
ance measurements of the aircraft have inexact application to the trigonometry of 
image formation. In the second place, local variations of some extent will always 
exist on the ground surface. The trigonometric functions are relatively simple, 
and the variability of the assumption very great, so no attempt will be made here 
to examine the consequence of height error (which really means the consequences 
of an improper setting of the slant-range to ground-range conversion function for 
the area in question). 
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Instead of trying to outguess these matters, it seems more fruitful to minimize 
the functions. This can be done, in the case of stereo coverage, by mosaickinq, 
whenever possible, the far-range imagery, which suffers distortion from these 
trigonometric functions to a far lesser degree than does near-range imagery, In
tegrated scale over the far-range will vary only by amounts approximating the 
following expression: 

0.07 X t,h 
18 

which, for a height error of 1 kilometer will equal: 

oi~ 7 km~ 0.004 or 0.4 % 

whereas, scale errors in the near-range for the same vertical error will be five 
to eight times as great. 

Short-term oscillations of the aircraft path will, in general, be of the order of 
+ 10 to 15 meters, too small to affect scale significantly, or cause short-term 
variation of image forms. In general, aircraft angular motions have periods cor
responding to about one kilometer of flight. 

PROCESSING AS A SOURCE OF ERROR 

Synthetic-aperture SLAR has two occasions for film travel in which there exist 
the possibility of film wander in the x-direction. The first occurs in the recor
der itself, and the second in the correlator. In both cases, reduction of y scale 
by a factor of 72 to 1 will occur in the making of the image film, so that 
relatively long-epoch wandering of data film becomes short-epoch wander in the 
x direction on the image film. Careful engineering is reducing the amplitude of 
this variation, but films made so far have occasions of wander of as much as 
0.5 mm. This variation appears, of course, as x-parallax, and it accounts for the 
"galloping" terrain often noted in SLAR stereo studies. If it occurs in the 
original recording, it cannot be removed; but if it occurs during correlation, 
re-correlation may well get rid of the difficulty. 

AIRCRAFT GUIDANCE 

Certain constraints are imposed on the aircraft flight profile which result in 
constraint on geometric errors possible in the final film. A firm realization of 
these constraints should simplify the analysis of image errors. 

For example, aside from a possible start-up ramp which careful operations will 
avoid, there should be no cyclical y variation of a period shorter than 84 min
utes, and no non-cyclical variations. Nor should a full cycle of cross-track 
effect on flight direction ever occur in less than 84 minutes. 

The aircraft is controlled on its entire mission by auto-pilot linkage to the 
inertial guidance system, so the cause of deformations which can be caused by 
lateral variations of the flight path should always first be sought in the air
craft flight control. Cyclical or episodic variations of shorter periods should 
be sought in the "edge-wander" phenomenon, altitude control erratics, of inter
nal hunting of the SLAR circuitry. 

ACCUMULATION AND CORRECTION OF ERRORS 

Since the cost of accurate radio-positioning of a single SLAR image strip would 
be economically infeasible, and since single strips are involved almost solely in 
reconnaissance for military targets or geologic evidence, it is evident that the 
positional errors on a single strip of synthetic-aperture SLAR are essentially 
trivial in the context of resolution limits, distortion due to elevation change, 
inaccuracy of location of control points, and other such errors. It is only when 
SLAR images are made over large areas and joined to make mosaics that the accumul
ation of errors causes difficulties which require either corrective measures or 
willingness to abandon all pretense of geometric exactitude. 
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A fundamental problem arises from the inability, by a one-step photoqraphic pro
cess, to achieve individual scale chanqes in two orthogonal axes. If a succession 
of images displays a bias in scale relationship between x and y, this bias must 
express itself in a difference between the ultimate scales for x and yin the 
assembled mosaic. 
For these, and other reasons, it would seem that the theoretical potential and 
the actual experience in the matter of assembling of SLAR imagery over large 
areas is far more indicative of the cartographic potential of SLAR images than 
would be the detailed examination of single strips. 

The rather crude practices employed in mosaicking images contribute to the pro
blem in a forceful way, whose consequences must be anticipated and corrected. For 
example, the most common practice in assembling photo mosaics is to expose dry 
photo-sensitive material on a paper base and then to process it by normal tray 
methods, after which the prints are made to fit a matrix of control, and while 
wet are glued with a water paste to a hard board substrate. Typically, this pro
cess results in a grouwth of the photo sensitive material of approximately 1 % 
in the direction of its grain and 2.5 % in the direction of cross grain. The 
residual bias approximates 1.5 %. 

It will be evident that an assembly of such prints, carefully matched so that 
there are no gaps or overlaps at the print junctures, will accumulate a differ
ential scale of 1.5 % if the input material is perfect and no corrective measures 
are made. 

As noted in an earlier part of this discussion, there are also cyclical scale 
errors in they direction of more than+ 1 % as a consequence of the Shuler os
cillation in the inertial platform. At scales of one-quarter million, or greater, 
it is possible to let the scale variations caused by the Shuler oscillation 
average itself out, as long as the paper shrink bias is corrected; but at scales 
of 200 000 or 100 000, this liberty cannot be taken, and corrections must be made 
for the cyclical variations as well as the bias. 

Fortunately, in the synthetic aperture SLAR system the correlation process by 
which the data film is transformed to the ultimate image film includes a step in 
which differential scale changes of as much as+ 5 % can be made. As a conse
quence of this anamorphic capability, it has become the practice of the user of 
the synthetic aperture system to incorporate a compensating bias in the cor
relation process, which anticipates the paper stretch bias and corrects for it. 
In other words, the standard correlation scale provides that they dimension will 
be long by approximately 1.5 %, so that the assembled photographs which suffer 
from the paper stretch bias of 1.5 % will come out with equal scale. 

The transverse component of the 84-minute oscillation can also be corrected by 
the ability to deform paper strips processed by wet chemistry to correct the 
curvature which is its consequence. Hence, it is clear that the capability exists 
within the synthetic aperture SLAR systems to correct for process system biases 
and cyclical variations of scale or path. 

Practice has led to the conclusion that the improved photographic quality and the 
ability to achieve image fit which inhere in the conventional wet processing 
method provide more advantage than the manipulation of either pre-wet prints or 
stable base prints to avoid the,stretch bias. Photographic quality usually suf
fers from these alternate methods, and the inflexibility of the paper prohibits 
the fitting which is a necessary attribute to mosaicking problems. 

SCALE CONTROL 

Two methods have been employed to achieve the knowledge of ground positions which 
correspond to the image, which is required to correct for the bias and cyclical 
scale variations. In Colombia, a matrix adjustment devised and carried out by 
Franz Leberl has been employed to prove a prescription to the correlator operator 
which permits a continuous variation of scale to achieve a fit with his matrix of 
interpolated points from a relatively sparse system of control. The scaled prints 
are then printed and mosaicked so that the set of positions will be met in co
incidence by the corresponding mosaic images. 
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In Peru, the aircraft was monitored by a Sharan triangulation system such that 
its position was always known within 100 meters or so. Since the data-recording 
system was so arranged that the coordinates and positions were recorded on 
digital tape at 10-kilometer intervals, as sensed by the inertial navigator, it 
was a relatively-simple matter to instruct the computer to record the difference 
between the assumed 10 kilometers and the actual distance as measured by the 
Sharan. From this difference, a prescription for differential correlation scale 
could be made, which permitted continuous _correction of the cyclical variations. 
Compilation in this case was achieved by matching "range marks" with their tri
gonometrically computed position. 

SUMMARY 

A synthetic aperture system flown over an ideal flat surface, with proper guid
ance, should have sufficiently good slant range-ground range correction to 
provide an almost perfect balance of scale, and produce a distortion-free image. 
Those distortions which arise from cyclical variations can be corrected in the 
correlation process in company with the opportunities for corrections, which lie 
in the mosaicking process itself. 

It is suggested, therefore, that an analysis of scale and position errors in SLAR 
imagery should be made not solely from the raw strips, but instead from final 
mosaics, and in view of the correction potentials available in this process. 
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INTERPOLATION AND FILTERING OF ERTS-IMAGERY 

by H. P. Bahr, Hannover, Fed. Rep. Germany 

ABSTRACT 

Least-squares filtering and interpolation is applied to an ERTS frame in channel 
5 and 7. Covariance functions are determined from residual errors of 4-parameter 
fit. Though there is only a small number of reference points, results come out 
well. Results from least-squares interpolation are compared with residual errors 
from second-order polynomial interpolation. 

INVESTIGATED IMAGERY 

An ERTS-1 bulk photo from September 21st, 1972, showing parts of northern Germany 
lowlands was investigated (scale approx. 1 : 1 000 000). Though there is 40 % 
cloud cover, it is the most cloud-free photo available of this region. 

Results by polynomial interpolation of this frame have been published (Bahr and 
Schuhr in Ill). Continuing these works, independent measurements have been 
carried out in channel 7 (0.8 ... 1.1 m) at 41 new points, which again are all 
related to water bodies. Additional observations were made at 20 points in chan
nel 5 (0.6 ... 0.7 m) which nearly all are related to forest features. Inter
pretation of reference points was a sophisticated task, as they are of no sym
metric shape; beside this, cloud cover in NE and SW and atmospheric haze prevent 
recording of more and better situated points. Image coordinates, measured at the 
Zeiss-PSK-Stereocomparator were related by a 4-parameter-fit ("Helmert-transform
ation") to terrain coordinates extracted from 1 : 50 000 scale maps. 

Fig. 1 shows the result of this transformation for channel 7. All observations 
have been introduced as reference points. The root mean square errors, calculated 
from the residual errors, are 

mx5 = + - 109 m (channel 5) 

my5 = + 127 m (channel 5) -

mx7 = + 131 m (channel 7) 

my7 = + 136 m (channel 7) -

The vector diagrams show similar behavior of error distribution in both channels 
including the independent results from Ill. Finite regions indicate character
istical trends. Reasons for this may be effects from data processing, from 
atmospheric refraction or from inaccurate orientation data, i.e. parameters, 
which are identical for all channels at first-order approximation 

DETERMINATION OF COVARIANCE FUNCTION 

The res u l ts i n Fi g . 1 i n di cat e presence of both corr el ate d ( l s , 11 system at i c 11 
) and 

uncorrelated (lr, "observational") error components, Summation of these compon
ents give the vectors shown in Fig. 1 

1-=(l +l). , s r , 

By least-squares filtering both parts can be separated; by least-squares inter
polation, both parts can be predicted at any point, if suitable reference points 
are available. 

To prepare filtering and interpolation, a covariance function is to be determined 
from residuals after the 4-parameter adjustment, where all 41 points were intro
duced as reference points (Fig. 1). This is the most appropriate way to find out 
the stochastic conditions of the ERTS-frame. After the covariance function is 
determined that way, it is used for all further calculations. Empirical determin
ation of covariance functions interval by interval leads to discontinuous func
tions. They must be approximated by a continuous function. 
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Fig. 1: ERTS Channel 7 
Residual errors after 4-parameter-fit 
Reference points shown by solid spots (41) 
Variances of residual errors: 

V 0,0171 v; = 0,0185 

Scale 1-----4 10 km (situation) 
100 m (vectors) 

In Fig. 2 covariance functions have been found independent for x and y in terms 
of 1,0 cm- and 2,0 cm-intervals. Size of the ERTS-frame was 18 by 18 cm. Fig. 2 
shqws that the extend of interval size may be of importance for the function 
which has to be determined, because of the small quantity of points. Though it 
is not absolutely necessary, a GauB function often is used to describe the co
variance conditions: 

C ( 0) 

Herein C(0) and k2 have to be determined. C(O), vertex of the curve, represents 
the v a r i an c e of the ls-components Vs. Theoretically, Vs is smaller 
than the variance of the total error component V by the amount of Vr, variance 
of the lr- components 
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n 
-
n 

E (l.l.)=V=V +Vr 
i=l 1 1 s 

In Fig. 2 the amounts of V, which may be calculated from residuals after the 
4-parameter adjustment, have been marked above the vertexes of the curves. The 
unit of the residuals is in kilometers. The k2-parameter influences on the "band
width" of the curve and indicates up to which distances correlation between 
error components may be found. 

c,: ( s) 

V½tt 0,018 

O,O!o 

0,002 

O,O!O 

0,002 

Fi g . 2 : De term i n at i on of co var i an c e fun ct i on s 
The dashed lines represent values for a 2 cm-interval. 
Fors > 10 cm the values can show large discontinuities. 

RESULTS FROM LEAST-SQUARES FILTERING AND INTERPOLATION 

5 

The covariance function includes the whole information of the error distribution. 
It allows to estimate the portion of ls-components by following equations 
(see 13/): 

t - l l . = c
1
. C 1 

S 1 

where 

C (pl pi ) V C ( p 1 p2) C (Pl f\) 

c. 
1 

= C = V C (P2 Pn) 

V 
C (Pn pi ) 

The C (P. Pk) elements may be calculated from the covariance function. This func
tion must be continuous. If we use the covariance values calculated for certain 
intervals, we get identical lines in the C matrix, i.e. singularity in case that 
2 points lie within the same interval. 

Vis known a priori from the residual errors in Fig. 1. Though the values for 
li li differ from point to point, the mean square value V has been introduced 
into C. Its amount is about 0,018 for both x and y. As the determination of the 
covariance function out of 41 points, which configuration is poor, remains 
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uncertain, investigations with different parameters have been carried out: 

-k2s2 
e F V = C (0) 

We call F the filtering coefficient. Regarding Fig. 2, we find Fx N 0.5 and 
Fy ~ 0.7. These numbers, empirically found, should give the best estimated values 
for ls. If we use F = 1.0, we get larger ls values: the whole 1 is interpreted as 
ls-component and is filtered away. If Fis smaller than the calculated values, we 
filter less than we should do. To improve the error distribution 0f the 4-para
meter adjustment, we subtract the estimated ls-components from the residual 
errors and get estimated random components lxr• lyr· Respectively, we have 
V , V and V , V for variances, which include values at the reference point~ xr yr xs ys 

V 

0, 'J 1 

0,5 

I 

o,o 

Fig. 3: 

Values of variances as a 
function of the filter 
coefficient F 

41 reference points 

F 

In Fig. 3 variances calculated that way show, that the behavior of errors is a 
function of F. In particular, we see the effect from F = 1, where Vrx = Vry = 0 
and the effect from F = 0, where Vsx = Vsy = 0. We find that the accuracy is not 
very sensitive down to values of F = 0.5 and does hardly differ in x and y. It is 
for this reason, that all examples for filtering and interpolation published here 
have been calculated with F = 0.75, both for x and for y. Beside this we read 
from Fig. 3, that Vr and Vs do not sum up to Vas it should do theoretically. 
This will not happen, because the ls-components have not been determined exactly, 
since the true variance-covariance conditions remain unknown (see 141). 

Fig. 4 shows the result after filtering the residual errors from Fig. 1 with 
F = 0.75. Fig. 5 gives the result from filtering and interpolation by l0reference 
points for channel 7. The result shown in Fig. 5 is similar to Fig. 4, for there 
is not much change in error distribution if less than 41 reference points are 
introduced. However, this is not true for isolated points (see lower and upper 
left), which are hardly touched by the covariance function. For channel 5, we get 
the same variances Vr as in mannel 7; this is because of accumulations of 
reference points. Error distribution after filtering is better in channel 7, 
where a larger number of points (41 versus 20) and a better configuration contri
butes to better stochastic conditions. 
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Fig. 4: ERTS Channel 7 - lr-components 
Reference points shown by solid spots (41) 
V2 0,018 
K = 0,05 
F = 0,75 
Variance of lr: V 

vxr 
yr 

Scale 1-----1 

0,0025 
= 0,0021 

10 km (situation 
100 m (vectors) 

In the diagrams, orientation is towards grid north, corresponding to the 
reference meridian of the 3rd Gauss-KrLlger-System. Consequently, the ERTS frames 
appear in oblique sense. 

To give a rough idea of the improved results, see Table 1. Here, residual errors 
from 4-parameter fit and from least-squares interpolation have been listed. We 
get the M values in meter by taking the roots of corresponding V values and by 
multiplication with 103. Though they can not strictly be interpreted as root 
mean square errors, they indicate the magnitude of the residual errors. 
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; \roil ._ 

~ 

~ \ 

Fig. 5: ERTS Channel 7 - lr-components 
Reference points shown by solid spots (10) 

V2 0,018 
K = 0, 1 
F = 0,75 

Variances of l : V 
r vxr 

yr 

Scale: 1-----4 

0,0063 
= 0,0077 

10 km (situation) 
100 m (vectors) 

a 

First, Mx, My, i.e. residuals after 4-parameter adjustment, show the excellent 
quality of the ERTS image, which has a theoretical resolution of about 79 m per 
image point. The more reference points introduced, the better is the result, 
which lies about the value of theoretical resolution. An interesting detail is 
the influence of the k2 parameter. For k2 = 0,01 the M values go down a little 
bit compared with the value M from k2 = 0.1. This is only because of the 2 isol
ated points at the left side of the frame. These points are improved if 
k2 = 0.01, whereas they don't get corrections if k2 = 0.1. 
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Fig. 6: ERTS Channel 7 
Residual errors after second-order polynomial adjustment 
Reference points shown by solid spots (10) 
Variances of residual errors: 
V = 0,00349 v; = 0,00759 

Scale: ~ 
10 km (situation) 

100 m (vectors) 

INTERPOLATION BY POLANOMIALS 

I 

Least-squares interpolation is just one method for interpolation. In Ill, poly
nomials have been sucessfully applied to evaluate ERTS imagery. Comparison of the 
results obtained by this two methods seems useful. 

For interpolation, we take second-order polynomials: 

x' = ao + a 1x + a2y + a3xy + a x2 
4 + a 5Y2 

y' bo b1x b2y + b3xy + b x2 + 2 = + + b5y 4 
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with 6 unknowns for each coordinate. The result of the adjustment for channel 7 
with 10 reference points is listed in Fig. 6. Comparison with results from the 
same point configuration after least squares interpolation in Fig. 5 show very 
good accordance. Differences can be observed at the 2 isolated points at the left 
side of the frame, where polynomials extrapolate, whereas least-squares inter
polation does not transfer any information, if the covariance function is deter
mined properly. 

Channel Reference Interpolated M M M ! M F k" 
points points 

X xr y i yr 
[m] [m] [m] i [m) 

I 2 3 4 5 6 i 7 8 9 

7 41 - 131 50 136 i 45 o. 75 0.05 
i 

31 10 I 34 57 134 I 58 o. 70 o. 10 ! 
: 

IO 3 I 138 79 145 88 0,75 o. 10 
71 77 0.01 

5 36 134 91 141 101 o. 70 o. 10 

5 20 - 109 41 127 60 o. 75 0,02 

9 11 134 80 122 88 o. 70 0.02 

4 17 152 103 126 96 o. 70 0,02 

Table I 

Table 2 lists the magnitudes of the residual errors after polynomial inter
polation corresponding to Table 1 (r stands for "residual"): 

; 
Channel Reference Interpolated M M M M i 

I points points 
X xr y yr 

I 
fmJ [m] [mJ fm) i 

7 10 31 138 59 145 87 

5 9 11 134 59 122 77 

Table 2 

In conclusion we find that both interpolation methods give roughly the same 
results. However, polynomials are easier to process than least-squares inter
polations. On the other hand, this method is more flexible and can be applied to 
a lot of further problems. 

More sophisticated error analysis like Kraus suggests in /4/ can not be carried 
out here because of small number and poor configuration of the reference points. 
Anyhow, the results obtained encourage to continue work into this direction. 
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TOPOGRAPHIC ACCURACY OF SIDE-LOOKING RADAR IMAGERY 

by E. E. Derenyi, Fredericton, Canada 

ABSTRACT 

The topographic accuracy of two strips of SLAR imagery, flown over Phoenix, 
Arizona by the Goodyear Mapping System at a scale of 1 : 400 000 was investigated 
Linear conformal-, affine-, and polynomial transformations were employed to test 
the planimetric accuracy. The best results obtained for the root mean square 
error (RMSE) was 27.4 m. Polynomial was also used for the adjustment of heights. 
The smallest value attained for the RMSE was 30.7 m. 

INTRODUCTION 

The objective of this investigation was to ascertain the accuracy by which the 
planimetric position and elevation of points can be determined from side-looking 
airborne radar (SLAR) imagery. The test material used consists of two strips of 
SLAR imagery of Phoenix, Arizona and vicinity, flown by the Goodyear Mapping 
System 1000 (GEMS) at a scale of 1 : 400 000. The lines were flown in a North
South direction at an altitude of 12,040 m. The positions and elevations of 
ground control points were determined from 1 : 24 000 scale topographic maps at 
the Institute of Photogrammetry in Hannover. 

These strips overlap in an opposite-side configuration. For Strip 1 the ground 
range de l ay i s 5 n au ti ca 1 mi 1 es ( 9 , 2 6 6 m) , w hi 1 e for St r i p 2 i t i s 15 n au ti cal 
miles (27,800 m). The first range marks appearing are those at 10.0 and 17.5 
nautical miles (18,532 m and 32,431 m) slant range respectively. The spacing of 
the marks is 2.5 nautical miles slant range and the presentation is in ground 
range. 

MEASUREMENTS AND PREPARATORY TESTS 

The image coordinates of the test points were measured in a Zeiss PSK comparator 
under 8 times magnification and in two independent sets. Stereo vision is extre
mely difficult on opposite-side overlaps, therefore, the measurements were per
formed monocularly. The standard error of one measurement as computed from the 
double measurements was 11 µm and 15 µm for the x coordinates, and 16 µm and l8µm 
for they coordinates in Strip 1 and Strip 2, respectively. This precision is 
regarded as entirely satisfactory, considering that the definition of the points 
was far less distinct than on conventional photographs. 

On each strip the image coordinate system was defined by the row of range marks 
closest to the ground track. A straight line was fitted to these marks by least 
squares adjustment, which was then adopted as the direction of the y-axis. 
Straight lines were also fitted to the other rows of range marks in order to 
ascertain the accuracy of their alignment. Table 1 lists the standard deviation 
of the fit for each line and Figure 1 shows graphically the deviation of the in
dividual marks from the fitted line. 

TABLE l - STANDARD DEVIATION OF STRAIGHT 
LINE FIT TO RANGE MARKS 

Range mk. a fit 
naut. mi. in mm 

Strip I 10.0 0.066 

12. 5 0.041 

15.0 0.035 

Strip 2 17. 5 0.024 

20.0 0.017 

22.5 0.010 

25,0 0.015 
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Figure 1: Straight Line Fit to Range Marks 
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In Strip 2 the fit is rather good and the deviations for the individual marks are 
in the range of the measuring accuracy of the image points. In Strip 1, however, 
the fit is poor and large deviations occur. Nevertheless, the lines are quite 
parallel to each other and the spacing between marks of adjacent lines remains 
remarkably constant. This systematic trend of the deviations is probably due to 
variations in the direction of the film movement during recording of the image. 
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MARK SPACING AND SCALE FACTOR 

Range m. Average Standard Average 
interval spacing deviation scale 
naut. mi. in mm in mm factor 

Strip 1 10.0-12.5 13,957 0.007 408 540 

12.5-15.0 13.004 0.008 404 891 

Strip 2 17.5-20.0 12.246 0.007 403 469 

20.0-22.5 12.083 0.005 402 784 

22.5-25.0 12.039 0.003 400 116 

Figure 2: Across-track Scale Change 
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Next, the image scale was computed for each available range mark interval. For 
this purpose the corresponding ground distances were computed from the average 
flying height and the given slant range values of the range marks, based on the 
flat earth assumption. As expected from the fairly equal spacing between range 
marks, the average variation in the scale is only 0.05 % within adjacent rows of 
range marks. However, it shows a systematic decrease across-track towards the far 
range as illustrated by Table 2 and Figure 2. 

TOPOGRAPHIC ACCURACY TEST 

The preparatory tests on the quality of the imagery were now completed and the 
topographic accuracy was investigated next. Normally, an inertial navigation 
system, a radar altimeter and a statoscope are on board during SLAR survey 
flights. From the data provided by these devices the space position of the radar 
air stations could be determined at frequent intervals, then slant ranges could 
be interpolated for the measured image points in between range marks and finally 
the ground positions of the test points could be intersected. Data from the above 
mentioned sensors were not available for the test imagery, therefore the plani
metric and height accuracy were investigated separately. 

PLANIMETRIC ACCURACY 

Essentially, the method of approach was to fit the radar record to planimetric 
control points by coordinate transformation. If the image is a faithful geometric 
representation of the terrain, in plan, then a good fit should result. Otherwise, 
large residuals will occur at the fitted points, but especially at the inter
mediate points. This approach, of course, disregards the effect of relief dis
placements and demonstrates the accuracy of single strips only. 

First the image coordinates were transformed into the ground system by linear 
conformal transformation. Two widely separated points were employed for this pur
pose. At all other test points the discrepancies were formed between the ground 
coordinates and the transformed image coordinates and the root mean square error 
(RMSE) of the fit was computed. The results are listed in Table 3. Strip 1 shows 
a remarkably good fit, considering the simple transformation technique employed. 

Table 3: ROOT MEAN SQUARE ERRORS OF DISCREPANCIES AT CHECK POINTS 

Transform- No. of Strip l Strip 2 

at ion 
check Ground Scale Image Scale Ground Scale Image Scale 
points µX µY µx µy µX µY µx µy 

in m in m in mm in mm in m in m in mm in mm 

Conformal 314 27.8 30.2 0.069 0.075 69.0 58.2 o. 174 0. 146 

Affine 300 27. 4 30,3 0.068 0.075 31. 4 46.4 0.079 0. 117 

Polynomial 300 27.6 29.5 0.068 0.073 29. l 45.9 0.073 0. l 16 

Next a polynomial transformation was employed to improve the fit. The polynomials 
had the form 

X 

y 

a1 + a 2x + a3y + a4xy + 

bl+ b2y + b3x + b4xy + 

where X, Y are ground coordinates and x, y are image coordinates. These poly
nomials were designed to compensate for changes in the exterior orientation and 
to reduce the effect of certain interior orientation errors (Derenyi, 1974). Six
teen points distributed regularly over the strips were used to evaluate the co
efficients. The RMSE of the discrepancies after transformation at the remaining, 
check points are listed in Table 3. The results obtained with the full length of 
the polynomials and when truncated at the third term, to form an affine trans
formation, are listed separately. 
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Affine transformation produced a marked improvement in the accuracy of Strip 2. 
The higher order terms in the polynomial, however, changed the RMSE only slightl~ 
For Strip 1, on the other hand, very similar results were obtained by the three 
transformation techniques. It appears therefore, that affine transformation is a 
satisfactory method to derive ground coordinates from SLAR images. 

HEIGHT ACCURACY 

The geometry of the height determination is illustrated on Figure 3. 

Figure 3: Geometry of 
Height Determination 
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It is assumed that the earth is flat and the two radar air stations are at the 
same height above the datum. Since the parallax was not measured directly, the 
heights were computed from the equation: 

h H H 2 + Gl 
2 -2 

= - - Gl 

Where 
B2 + GI 2 - G2 2 

Gl = 
2B 

or 
h H H2 G2 

2 -2 = - + - G2 

where 
B2 2 2 + G2 - Gl 

G2 = 
2B 

In the above equations, h is the elevation of a point above the datum; H is the 
elevation of the radar air stations above the datum; G1 and G are the ground 
ranges of a point as reduced from slant ranges, or obtained tram ground range 
presentations, for flights 1 and 2 respectively; G1 and G2 are ground ranges to 
the projection of a point onto the datum plane, for flights 1 and 2 respectively 
and Bis the air base. 

Some difficulties arose in finding the correct value for B, since the radar air 
stations coordinates were unknown. In conventional photogrammetry a change in the 
value of B leads only to an overall scale change. Therefore, one can proceed by 
using an assumed value for B to form model coordinates and perform the scaling 
later. For SLAR, however, the terrain height is a non-linear function of Band 
an incorrect, or assumed value leads to severe model deformations. 

One could determine Bas the sum of the two ground ranges of a point situated on 
the datum plane. However, the terrain elevation of the datum plane must be known, 
neither of which was available for this test. Therefore, the length of B was 
derived by a trial and error procedure as follows. 
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Sixteen points, well distributed over the strip, were selected as a test sample. 
Eight of these points, which ranged in terrain elevation from 318 m to 446 m, 
were then chosen as datum points one after the other and the height of the re
maining fifteen points was determined. Next, the discrepancies between the given 
and computed heights were formed and the RMSE calculated. When plotted, the 
RMSE's followed a second degree curve and reached a minimum value around one 
third of the way towards the high point from the low point. The range between the 
maximum and minimum discrepancies stayed approximately constant, but they were 
predominantly with a negative sign when the lowest point was used as the datum 
and all had a positive sign for the highest datum point. A near normal distribu
tion was reached again close to the one third mark. Figure 4 illustrates these 
findings. Consequently, a point with an elevation of 344 m was selected as the 
datum point. 

Figure 4: Effect of the Ah (m) µh (w,) 
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The height of all 318 test points was now computed. The RMSE of discrepancies 
between the given and computed heights was 55.7 m, with the maximum error being 
159 m. Thirty points had discrepancies larger than 100 m. However, the model still 
showed a somewhat systematic deformation as illustrated in Figure 5. 

Figure 5: Model Deformations Before Adjustment 

Therefore, four control points were selected near each corner of the model to 
evaluate the polynomial: 

LI h 

which then was employed to adjust the heights. Now the RMSE decreased m 30.7 m 
and the maximum value of the discrepancies to 77 m. The model deformation after 
adjustments is shown in Figure 6. It should be mentioned that a straight and 
level flight and parallal flight lines were assumed throughout the entire height 
computation process. 
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Figure 6: Model Deformations After Adjustment 

CONCLUSIONS AND RECOMMENDATIONS 

The procedures followed ,for the test are rather unsophisticated, as yet the 
results obtained are surprisingly good. For the scale of the image, the plani
metric accuracy of both strips is well within the tolerances prescribed by map 
accuracy standards for Class A maps in North America, which states, that the 
standard error for the position of well defined features should not exceed 0.3mm 
at map scale. Even two to three times enlargements would meet the accuracy 
standards. In this respect, this study underlined earlier claims about the 
suitability of SLAR for planimetric mapping (see for example Von Roessel and 
de Godoy 1974). 

For spot heights, the specifications for Class A maps require a standard error 
of not larger than one-third of a contour interval. Therefore, based on this 
test, it appears that 100 m contours are a definite possibility. 

Another yardstick by which the results can be evaluated is a comparison with the 
accuracies attainable by conventional photography. A recent test indicates that 
the planimetric accuracy of orthophotos produced of low and moderate-relief 
terrain is 0.03 mm to 0.06 mm in terms of RMSE at the scale of the original pho
tography (Fleming 1973). The same investigator indicates 0.056 mm to 0.120 mm 
for the planimetric RMSE in rectified photographs of the same terrain. In the 
light of these figures the planimetric accuracy of SLAR is excellent. 

The absolute accuracy of heights obtained by conventional photoqrammetric means 
ranges from 0. 1 O/oo to 0.4 O/oo of the flying height. The 30.7 m RMSE obtained 
from the SLAR is equivalent to 2.5 O/oo which is much larger than the above 
figures. One should note, however, that a flying height of 60,800 m would be re
quired to produce a photography with a ~ide angle camera, at a scale of 
1 : 400 000, whereby the 0.1 °/oo- 0.4 /oo accuracy would become 6.1 m to 24.3m. 
Now the SLAR results look much more attractive. 

Finally, the following recommendations are made to improve the topographic 
accuracy of SLAR: 

- Data from the on-board navigation sensors should be made available. This would 
enable the computation of ground positions in a more rigorous manner. 

- The use of crosses instead of dash lines for the range marks would provide con
trol over the scale in the along-track direction and could serve as reference 
marks. 

- Through a better understanding of the internal geometry, the observed image 
coordinates could be refined. 

Properly signalized ground control would remove the uncertainties in target 
identification. 
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In closing, it must be emphasized, that this investigation is being continued 
and extended to include more strips. Therefore, the results presented here should 
be regarded as preliminary. 
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ANALYSIS OF DIGITAL MULTISPECTRAL SCANNER (MSS) DATA 

by E.M. Mikhail, J.R. Baker and G.W. Marks, West Lafayette, USA 

ABSTRACT 

Treatment of single (non-overlapping) digital MSS data is performed using both 
parametric and non-parametric techniques. Parametric methods are based on the 
collinearity equations and applying polynomials to express the behavior of the 
sensor exterior orientation elements. The resulting expressions may include the 
object point elevations if they are externally available. 

Non-parametric procedures considered include: the arithmetic mean, the moving 
average, the meshwise linear transformation and linear least squares filtering. 

The results are given for the purpose of comparison. The paper is concluded with 
a discussion of the specific characteristics involved in the reduction of digital 
data. 

INTRODUCTION 

Single MSS data coverage is a two dimensional representation of a generally three 
dimensional (object) space. Therefore, it is not possible to recover all three 
dimensions from such data. One either assumes that the object is a plane (i.e. 
flat terrain), or utilizes information external to the MSS data (e.g. point 
elevations). Both these possibilities have been analyzed in this research. 

Methods for metric analysis of MSS data may be parametric where an attempt is 
made to functionally model the acquisition system, or non-parametric. Both groups 
of methods are considered hereafter. 

PARAMETRIC TECHNIQUES 

For every element in the MSS digital array a pair of collinearity equations may 
be written much the same as for a photogrammetric ray in frame photography. How
ever, in the case of MSS the exterior orientation parameters vary from element 
to element because of being time dependent. Since it is impossible to determine 
a different set of sensor parameters for each data element, or for that matter 
for each scan line, some functional form is used to model the behavior of these 
parameters. Although there may be others, this study concentrated on the use of 
polynomials for that purpose. 

There are two approaches to the use of polynomials: one is to rigorously apply 
the collinearity and substitute polynomials for differentials of the sensor para
meters; and the other is to use simplified formulae similar to Hallert's, sub
stitute for the sensor parameters, and continue to derive new polynomials. The 
first procedure is rigorous and relinearizations and iterations are applied. The 
second is simplified and is equivalent to multiple linear regression. 

The difference between the two procedures was not significant, particularly in 
view of the computational efforts involved. 

The collinearity equations are well known, and their form for MSS is given in Ill. 
Restitution Using General Polynomials; 
the MSS differential formulae are 

+ o X -
C 

hocj, - h tan0 oK 

Y =Ye+ oYc + h tane + tane oZc + h(l + tan 2 0)ow 

with h = Zc - Z 

X,Y restituted (or object) coordinates 
X ,Y ,Z = sensor position 

C C C 
0 = scan angle 

oXc' ... , oK = differentials of the sensor's six parameters. 
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Each of the six differentials in equations (la) and (lb) can be expressed as 
polynomials of varying degree in x, the data (scan) line number. When this is 
done, element elevation Z which is implicit in h, can be either retained as a 
known value, or assumed as a constant. To illustrate, consider the case of using 
linear functions of the form 

( 2) 

where P designates any one of the six sensor parameters. After substitution in 
equations (la) and (lb) and rearranging, one gets for the case of constant Z: 

X ( 3 a) 

Y B1 + B2x + B3y + (B 3/3c 2)y 3 + B4xy + (B 4/3c 2)xy 3 + B5y2 + (3b) 

+ (2B 5/3c 2)y 4 + (B 5/9c 4 )y 6 + B6xy 2 + (2B 6/3c 2)xy 4 + (B 6/9c 4)xy 6 

In these equations 0 = y/c, with c being the effective panoramic recording radius 
and tan0 was expanded to equal 0 + (l/3)e3. If the system is roll stabilized, 
i.e. w = O, the last six terms of equation (3b) will be zero. 

The polynomials in equation (3) apply to the x and y values as panoramically re
corded. If resampling, as explained in reference Ill, is performed such that y is 
replaced by y' which is on an equivalent recording plane and c by c' which is an 
effective principal distance, these polynomials would be considerably simplified. 

DATA SEGMENTATION 

It is not practical to assume that a given polynomials equation will represent 
the behavior of a certain sensor parameter during the entire data record. Since 
higher order polynomials are not safe to use, it is preferable to select a lower 
order form and divide the data record into segments. When this is done, suitable 
constraints must be enforced at the boundaries between segments. When writing 
such constraints, one must be careful not to use dependent equations particularly 
in the case when Z is included in the general polynomials. 

NON-PARAMETRIC TECHNIQUES 

Unlike the parametric methods, non-parametric techniques do not seek to determine 
a fixed set of parameters for a given data record. Instead, they apply the 
assumption that the differences between unrestituted and restituted array points 
are realization values of a two-dimensional stochastic field. Several of these 
techniques have been applied by Leberl 121 to SLAR imagery. With regard to MSS 
data the following methods have been considered: Arithmetic Mean, Moving Averages, 
Meshwise Linear Transformation, and Linear Least Squares Filtering. Each will be 
briefly discussed. 

ARITHMETIC MEAN 

Common to all techniques, is having known values tx, ty at a specified set of 
reference points, on the basis of which values are to be estimated (either inter
polated or filtered) at other points. In the present method, only interpolation 
is performed applying the equations: 

n n 
Z Wi £ , / Z Wi 

i=l Xl i=l 

n 
z 

i = 1 
w. £ . / 

1 y 1 

n 
z 

i = 1 
w. 

1 

(4a) 

(4b) 

where wi are weight factors which are dependent on the distances between the 
interpolated point and the set of n reference points. Because the arithmetic mean 
is a linear algorithm, the raw data values must be preprocessed before inter
polation. The preprocessing attempts to remove the panoramic effect and bring the 
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scale in both directions in the data to be nearly equal. 

MOVING AVERAGES 

This is a generalization of the preceding method, where the estimates are compu
ted using polynomials or other functions. One such functional form is the linear 
affine: 

£x = ao + alx + a2y 
h 

iy b
0 

+ b1x + b2y 

(5a) 

(5b) 

The ai, bi coefficients are estimated once for every point to be interpolated, 
using weighted least squares and the values of tx, ty at the reference points. 
The weights are evaluated from selected functions which use the distances between 
the interpolated point and reference points as arguments. 

It can be shown that if tx = a
0

, ty = b
0 

are used instead of (5a) and (5b), this 
method reduces to the arithmetic mean techniques. 

MESHWISE LINEAR TRANSFORMATION 

In this method the reference points are used to form a mesh of contiguous triang
les. The three reference points forming the triangle, in which a point to be 
interpolated lies, are used to uniquely determine the coefficients of the affine 
transformation given by (5a) and (5b). A variation of the method would be to use 
sets of four reference points to form a mesh of quadrangles. 

By comparison to the two preceding methods, this technique is less attractive for 
MSS work. This is because it requires having, as a minimum, reference points at 
the extreme corners of the data record, otherwise an extrapolation scheme will 
have to be applied. Furthermore, the formation of mesh units, and the search for 
the unit in which the point to be interpolated lies, makes it unattractive for 
automated reduction of MSS data. 

LINEAR LEAST SQUARES FILTERING 

In this method, each of the values tx and ty at each reference point, is conside
red to be composed of two components, one correlated sx (and sy) and the other 
uncorrelated rx (and ry), The latter components represent measuring errors or 
noise which can be filtered when computing an estimate at a new point. Details 
of this method may be found in reference 131. 

EXPERIMENTAL RESULTS 

Both parametric and non-parametric techniques were applied to two different MSS 
data strips. The particulars for the strip from flight No 208 are given in Table 
1, and those from flight No 218 in Table 2. First, the collinearity equation 
method was used. 

RESULTS FROM THE COLLINEARITY EQUATIONS 

For four different cases, three solutions were carried out: the strip as a whole, 
two segments with constraints, and three segments with constraints. The results 
are summarized in Table 3 for both flights 208 and 218. 
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H = 5000' (1524 m) y = 0.006 rad 
remote sensing unit (rsu) ~ 40' (14 m) 
A = 0.58 µm - 0.65 µm (Channel 6) 

Nominal Scale 1 : 58 000 

Area 1591 lines x 222 columns 
8 mi (13 km) x 1 mi (1.6 km) 

Relief 700' (213 m) to 750' (229 m) 
Low ground cover 
Cross-identification 1 - 2 rsu 
No. of Control (Reference) Points: 39 

No. of Check Points: 60 

TABLE 1: Flight 208 

TABLE 3: Collinearity Analysis 
Results 

Case l 
Linear Reference Variance 
w=$=o Positional Check Variance 

Case 2 
Quadratic Reference Variance 
w=$=o Positional Check Variance 

Case 3 
Quadratic Xc,Yc Reference Variance 
Linear Zc Positional Check Variance 
w=$=o K-const. 

Case 4 
Quadratic Xc,Yc Reference Variance 
Linear Zc,K Positional Check Variance 
w=<ti=o 

H = 5000' (1524 m) y = 0.006 rad 
rs u ~ 40 ' ( 14 m) 
A= 0.58 µm - 0.65 µm (Channel 6) 

Nominal Scale 1 : 54 000 

Area 1439 lines x 222 columns 
7 mi (11 km) x 1 mi (1.6 km) 

Relief 550' (167 m) to 850' (258 m) 
Area mostly wooded 
Cross-identification 2 - 3 rsu 
No. of Control Points: 23 

No. of Check Points: 9 

TABLE 2: Flight 218 

Flight 208 Flight 218 
Flat Terrain Hilly Terrain 
60 Check Points 9 Check Points 

Number of Sections 

l 2 3 l 2 3 

5.80 2.56 2.16 8,69 6.12 5.44 
6,63 3.53 2.88 5,98 4.81 4.15 

2.48 1.76 1.33 6.75 4.38 3.00 
3.25 2,53 1.94 5.05 6.80 6,75 

2,56 1.94 1.46 6.50 4,94 4.44 
3.30 2.67 2.05 5,50 5,13 11.22 

2.48 1.82 1.28 6,62 4.88 4.06 
3,27 2,63 l.99 5.15 4.84 4,47 

Extensive pairwise F-tests were performed with the following general remarks on 
the results obtained: 

1. the primary factor yielding significant improvement was the segmentation of 
the data from one to three sections. 

2. in general, significant improvement also resulted from the use of the quadraDc 
polynomials over the linear case. 

3. no significant difference was noted within the varying treatment of Zc and K 

in cases 2, 3 and 4, except those cases also involving segmentation of the 
strip from one to three sections. 

4. the few check points in flight 218 resulted in no significant indications from 
the analysis of its data. 

RESULTS FROM GENERAL POLYNOMIALS 

In a similar fashion, four cases were considered for the whole strip, for two 
segments with contraints, and for three segments with constraints. The results 
are s u mm a r i zed i n Tab l e 4 for both fl i g ht s 2 0 8 an d 218 . 
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General Polynomial 
Flight 208 Flight. 218 

TABLE 4: Flat Terrain Hilly Terrain 
Analysis Results 60 Check Points 9 Check Points 

Number of Sections 

l 2 3 1 2 3 
Case 1 
Linear Reference Variance 7,91 3,29 2.87 10,20 7,94 6.80 
'Flat Terrain Positional Check Variance 6,62 3,50 2.88 6.41 5,64 4,13 

Case 2 
Linear Reference Variance 7,92 3,29 2.86 9,11 7.02 6,33 
Z included Positional Check Variance 6.64 3,52 2.89 6,02 5.61 4.47 

Case 3 
Second Degree Reference Variance 3.16 2.41 1.82 8.88 5,52 4,19 
Flat Terra.in Postiional Check Variance 3.22 2,55 1.94 5,76 6,99 7.17 
Case 4 
Second Degree Reference Variance 3,16 2.40 1.83 7,78 5,07 3,56 
Z included Positional Check Variance 3.24 2.56 1.96 5,80 7,07 7.26 

Extensive pairwise F-tests were also performed, the results of which led to 
essentially the same remarks as those for the collinearity method. In addition, 
the inclusion of the element elevations did not materially affect the results. 

RESULTS FROM NON-PARAMETRIC TECHNIQUES 

As mentioned previously, four non-parametric techniques were applied to the data 
from both flight lines. The initial feeling was that linear least squares 
filtering should lead to good results. However, a number of problems arose when 
the method was used. This led to more experimentation and analysis, but unfortun
ately with inconclusive results as of the time of this writing. Therefore in 
Table 5, only results from flight 208 are given for linear least squares filter
ing. In the mean time effort is continuing to find out how best to apply the 
method to remote sensing data in general, and to MSS arrays in particular. 

Method 

Collinearity -

Flight 208 
Flat Terrain 

60 check points 

First degree polynomials (w,$ stabilized) 
one section 
two sections 
three sections 

General Polynomial -
First degree (Z included) 

one section 
two sections 
three sections 

Arithmetic Mean 
Moving Average 
Meshwise Linear Transformation 
Linear Least Squares Filtering 
(x separate from y) 

6.63 
3.53 
2.88 

6.64 
3.52 
2.89 

1.86 
2.79 
3.26 
1. 92 

TABLE 5: Comparative Results 
Positional Check Variances (rsu 2) 
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Flight 218 
Hilly Terrain 

9 check points 

5.98 
4.81 
4.15 

6.02 
5.61 
4.47 

5.76 
5.52 
6.05 

(inconclusive - sma 11 
sample size) 
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To properly evaluate the results from the non-parametric techniques (each of 
which represents only one case), an appropriate case is included from each of 
the two parametric techniques, i.e. the collinearity and the general polynomials. 
The most obvious observation from Table 5 is that in qeneral the results from 
flight 208 are better than those from flight 218. This should have been expected, 
since 208 is over flat terrain and the concern here is with single coverage data. 
Furthermore, the area recorded in 208 is relatively clear while that recorded in 
218 contained a high percentage of ground cover which made the identification of 
control and check points relatively more difficult. 

Another comment about the results in Table 5 concerns the relative accuracy of 
the different methods. Again, in general terms, the parametric methods yield re
sults comparable to the non-parametric techniques only when the strip is divided 
in segments. This is more true for the relatively flat terrain in flight 208 than 
for flight 218. Finally, until more definitive results are obtained from linear 
least squares filtering, the simple arithmetic mean procedure seems to be an 
optimum non-parametric method. 

DIGITAL DATA PROCESSING CONSIDERATIONS 

The nature of the digital MSS data is such that the arrays are expressed in 
integer units (rsu), both the original x,y sensor space data, and the restituted 
X,Y (object) space data. There are two possible procedures for transformation 
from one of these spaces to the other; one direct and the other inverse. Fiqure 1 
is a schematic for both of these transformations. 

DIRECT TRANSFORMATION 

In this transformation, one computes X,Y for each pair of x,y as shown in Figure 
1. Since in general the computed values of X,Y are no longer integers, some 
scheme is required to determine the proper element of the X,Y array in which the 
spectral values belonging to x,y should be stored. A possible scheme would be to 
roundoff simply to the nearest integer. 

FIGURE 1 

l 
y 

ARRAY TRANSFORMATION 

X 

l 
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b f 
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y d h 

UNCORRECTED ARRAY 

X---- X----
a• 

b' f' 

g' l 
a" r" 
b" f" 

b" g" 

c' h' 
y 

c" h" 

DIRECT TRANSFORMATION INVERSE TRANSFORMATION 

X = F (x ,y) 
X 

Y = F (x,y) 
y 

GAPS 
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Regardless of the scheme, it is likely that gaps may occur; that is, there will 
remain some X,Y array positions which will not have any spectral values stored. 
These gaps may be filled using either the nearest neighbor technique or an inter
polation procedure. Other X,Y array elements may receive more than one set of 
spectral values. In that case, some selection technique is required, the simplest 
of which is to retain the last set stored. 

INVERSE TRANSFORMATION 

This transformation is performed by incrementing along X,Y and computing the cor
responding x,y from which to obtain the set of spectral values. Since the compu
ted x,y are again likely to be non-integers, either the nearest neighbor or line 
linear interpolation should be used to obtain a unique x,y for each X,Y position. 
This occasionally leads to having an x,y set of spectral values assigned to more 
than one position in the X,Y array as depicted in Figure 1. 

Both types of transformation utilize a buffer area within the computer to handle 
either the position assignment of the spectral set in the direct method, or to 
search for the x,y in the inverse method. In the case of parametric restitution, 
the inverse approach would require more numerical effort. This is because the 
equations are not directly invertible and an iterative scheme is usually needed. 

CONCLUSIONS AND RECOMMENDATIONS 

The results of the analysis performed so far, though not extensive point out to 
the following remarks: 

1 - Segmentation of data, coupled with constraints, yields in general, better 
results on check points. 

2 - In general, the use of quadratic terms yielded better results than when 
linear polynomials were used. However, it is felt that one should not 
necessarily expect continued improvement with still higher order polynomials 
without proper investigation. 

3 - The non-parametric methods applied to the data available gave results which 
were comparable to or better than the two parametric procedures. 

4 - The arithmetic mean and linear least squares filtering, which assume isotrop½ 
require preprocessing such as resampling and scaling. 

5 - From the results obtained the arithmetic mean appears to be rather promising. 
Not only is it simple and computationally fast, but it also yields as good a 
result as any other method. 

6 - The moving average method is similar to the arithmetic mean except that it 
does not require preprocessing. This is balanced, however, by the fact that 
the method requires more computational time due to estimating a new parameter 
set for each point interpolated. 

7 - The meshwise linear transformation appears to be unsuitable for the re
stitution of MSS digital data. 

8 - Linear least squares filtering is the only procedure attempted which allows 
for filtering of noise (measuring and other uncorrelated random errors). How
ever, to the date of this writing the results obtained are so inconclusive 
that further research and experimentation is necessary. It would perhaps be 
better if testing is performed on simulated data, not only for this method 
but also on all other techniques which have proven feasible from the tests 
on real data. 
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SPACE OBLIQUE MERCATOR - A NEW MAP PROJECTION OF THE EARTH 

by A. P. Colvocoresses, Reston, Virginia, USA 

ABSTRACT 

The Earth Resources Technology Satellite (ERTS) Multispectral Scanner (MSS) is 
producing imagery of rather amazing geometric fidelity. The positional errors 
(rms) of points on a properly controlled image are less than the 80-meter in
stantaneous field of view (picture element) of the scanner. Such accuracy is 
attributed to the stability of the scanner and spacecraft and to the corrections 
that are being made by NASA before each image is printed. The image is in fact 
formed on a cylindrical surface in space which can be defined as a specific map 
projection which results in the mapping of the world (between the 82° parallels) 
every 18 days. Moreover the projection is mathematically definable and thus has 
the potential of developing into an automated mapping system in which the picture 
element (pixel) can be discretely related to its position on the figure of the 
Earth. 

INTRODUCTION 

Historically map projections have been based on static conditions. The figure of 
the Earth, perspective center (if there is one), and projection surface are all 
fixed with respect to one another. As long as the Earth is imaged by a framing 
camera that records a scene instantaneously, the static condition holds, and film 
returned from aircraft or spacecraft generally fits into this category. Moreover 
video systems that transmit recorded scenes such as those on the Lunar Orbiters 
and the Return Beam Vidicons (RBV's) on the Earth Resources Technology Satellite 
(ERTS-1), also represent the static mode, in which the image is considered to 
have been obtained instantaneously. In all such cases a perspective image of the 
Earth is recorded in a unique but definable form, and the image can then be fit
ted or transformed to one of the conventional map projections. However, we now 
have orbiting spacecraft equipped with scanning devices that are imaging the 
Earth scene continuously. Such satellites have mapping capabilities that open the 
door to an entirely new concept of map projections in which relative motion, and 
therefore time, becomes a mapping parameter. Thus the conventional static concept 
of map making is replaced by a dynamic concept. The basic conditions for this 
dynamic concept of mapping are found in the polar-orbiting weather satellites, 
such as Nimbus, ITOS, and DAPP (Data Acquisition and Processing Program, which 
utilizes U.S. Air Force weather satellites). Imatery rrom these satellites has so 
far not been defined with respect to the figure of the Earth with the precision 
expected of a map projection. The multispectral scanner (MSS) of the ERTS-1 
satellite, however, creates an image of sufficient resolution and geometric 
fidelity to warrant definition as a true map projection. 

DEVELOPMENT 

The ERTS-1 MSS has an instantaneous spot size (pixel = picture element) on the 
Earth of 79 m and therefore is considered a relatively low-resolution system for 
Earth sensing. The effective resolution (in optical terms) of ERTS is no better 
than 200 m. Nevertheless, ERTS imagery has high geometric fidelity, which results 
in cartographic products that have spatial errors on the order of 50 to 150 m 
(rms). This is the basic imagery, referred to by NASA as bulk or system-corrected 
which has in turn been related to the Earth's figure through ground control 
points (see Ill). 
With such control and the a~plicati?n of appropriate procedures, geographies 
(lat/long) or a plane coordinate grid such as the Universal Transverse Mercator 
(UTM) can.be fitted to the ~RT~ imagery. The UTM grid unit is not a true square 
when so fitted, but the deviations are so small that grid anomalies are not de
tec~able w~en measurements are made with reference to the nearest lines of a 
nominal gr,? square. The procedure for gridding ERTS imagery was developed by the 
U.S. _G~ologica~ ~u'.vey under NASA sponsorship, with the Ohio State University 
prov1d~ng the 1n1t1al computer programs (see 121 ). The small size of the spatial 
a~omal~es_obs~rved when a geodetic grid was applied to tr.e MSS imagery was the 
first 1nd~cation that s~ann~r imagery as corrected and printed by NASA is in fact 
on a continuous map proJection of definable form. Further information relative to 
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the procedures used in grid fitting are available in reference 141. The NASA ERTS 
Date Users Handbook (ref. Ill), pages G-17 and G-18, describes the 14 basic geo
metric corrections applied to ERTS MSS data before printout as bulk imagery. (Un
fortunately these corrections have not, as yet, been applied to the digital 
computer-compatible tapes produced by NASA). When all 14 corrections have been 
applied, a pseudocylindrical map projection of rather curious characteristics 
results. Maximum distortions of the Earth figure due to the projection are on the 
order of only 1 : 1 000, which makes it acceptable for mapping purposes. The 
corrections were designed to give MSS imagery geometric characteristics similar 
to those of the ERTS RBV's, which are frame cameras and thus have perspective 
geometry. The MSS does have geometric fidelity comparable to that of the RBV's 
and thus warrants its own optimized map projection, which would have maximum 
distortions of only about 1 : 10 000. A further discussion of projections is con
tained in reference 151, in which a Space Oblique Mercator projection is describ
ed and recommended for ERTS-type imagery. The projection could have any one of 
several characteristics, but precise mapmakers generally consider the character
istic of conformality as dominant. Conformality retains equal scale locally in 
all directions and preserves angular relationships. The conformal cylindrical 
projection was conceived by Mercator and in this case is defined in Space and it 
is Oblique to the polar axis. Def1n1tion of the projection is given in non
rigorous but nevertheless geodetic terms in the following section. 

GEODETIC CONSIDERATIONS 

Conceptually one can start with a spherical Earth and then develop the elliptical 
modifications which - unfortunately - cannot be ignored. The diagram illustrates 
a cylinder defined by a truly circular ERTS orbit with the projection surface 
tangent to the Earth's spherical figure. 

SCANNER 

TANGENT 

\ I 

CYLINDER 

EARTH 
ROTATION 

ORBIT f\N J 
PRECESS!,., 

CYLINDER OSCILLATION 
◄ ... 

SPACE OBLIQUE \j MERCATOR PROJECTION 

Images the Earth from N 82 ° lo S 82 ° every 18 days 

MOTIONS INYOL YEO 
• Scanner sweep 

• Satellite orbit 

• Earth rotation 

• Orbit precession 
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Although four motions (scanner sweep, satellite orbit, Earth rotation, and orbit 
precession) are involved, the imagery can be recorded on the simple cylindrical 
surface - which, when developed into a continuous plane, is in fact a map pro
jection. To keep Earth rotation from distorting the image, the cylindrical sur
face oscillates along its axis at a compensating rate which varies with latitude. 
Motion is otherwise uniform and symmetrical with respect to the orbit, and thus 
every orbit exactly repeats its path on the projection plane even though the 
Earth scene changes nearly 26° in longitude with each orbit. Thus the projection 
coordinate values are repeated each orbit even though a different portion of the 
Earth's surface is mapped on each successive orbital pass. This means that the 
Earth figure coordinates A,~ are related to the projection coordinates x,y as a 
function f of time t. That is, A,~= f(x,y,t); t must expand through the 18 day 
system and then revert to zero for the next cycle. 
The diagram (exaggerated) shows how the image (if continuous) is cast on the 
developed projection surface. 

One orbit of ERTS 
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The fact that the orbit has precessed in space by a few minutes of arc with each 
revolution does not affect the projection surface, which is defined by the orbit. 
Orbit precession, which retains the orbit's angular relationship to the Sun, does 
slightly modify the effects of Earth rotation. 

Since the Earth's figure is an ellipsoid instead of a sphere, several modific
ations must be considered. First, the Earth's polar radius is over 20 km less 
than the equatorial radius. An orbit which is at a fixed height above the Earth's 
figure and thus always images the Earth at the same scale would in fact have to 
have an elliptical orbit with two perigees which remain at the 81° points of 
maximum inclination, and this is contrary to the laws of physics. In practice, a 
truly circular or prescribed elliptical orbit is impossible to maintain, but NASA 
must (and does) consider the Earth's ellipticity as well as orbital ellipticity 
in computing satellite altitude. 

A second consideration is that the scanner, controlled by horizon sensors, is 
referenced to the local geometric vertical rather than the direction to the cen
ter of mass of the Earth, which is the computational center for the orbit as well 
as the Earth's figure. The maximum difference between these directions approaches 
12 minutes of arc. Since the orbit is only go off the pole, the angular difference 
is principally along track and thus slightly affects the time relationship of the 
satellite to the Earth's figure. The slight cross-track angle (3.6 min of arc 
maximum) between the local geometric vertical and the vector to the Earth's cen
ter does, in effect, deform the projection surface. The deformation constitutes 
a deviation from the concept of a uniform map projection and also disturbs the 
precise conditions of conformality in the projection. These considerations are 
probably academic and will never be found by the map user, but for the mathemat
ician who defines the map projection in rigorous terms they are important. At 81° 
latitude the 3.6 minute of arc subtends nearly 1 km on tne Earth's surface. As 
the orbit approaches the Equator, the cross-track deviation steadily decreases 
from 1 km to O. 
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The actual path of the satellite on the Earth's figure as defined by the local 
geometric vertical is also of interest. To see this, we should first forget the 
Earth's rotation and merely consider the figure generated by the local geometric 
vertical from the orbit as it intersects a fixed figure of the E~rth. This is not 
the true ellipse (great circle) that would result from passing a plane obliquely 
through the center of an ellipsoid, and it is not a geodesic - which is the 
shortest distance between two points on the elliptical Earth surface. Regardless 
of what the actual figure is, it must be defined in mathematical terms because 
it creates the locus of image centers. NASA probably could define ERTS imagery 
with respect to the direction to the center of mass of the Earth and thus simpli
fy the computational problem. However, this solution would create a slightly 
tilted imag~ with respect to the Earth's figure that is probably undesirable for 
any analog portrayal. Once a comprehensive mathematical analysis has been made, 
the various conditions stemming from the Earth's ellipticity can be fully 
evaluated. Only then can the decisions be made as to which conditions and terms 
must be considered or ignored. 

SPECIFIC PARAMETERS 

Certain parameters, assumptions, and nomenclature relative to the ERTS system 
must be defined before a mathematical model and transformation equations can be 
rigorously defined. Recommendations with pertinent values provided by NASA/ 
Goddard are as follows: 

- Earth figure (see diagram): 

a= semimajor axis= 6,378,165 m 
f = flattening of the ellipsoid 1/298.3 
R = nominal radius of curvature in the cross-track direction= 6,388,000 m 

- Orbit, nominal: 

Circular radius= 7,294,690 m 
Altitude, computational = 918,592 m 
Inclination= 99.092° 
(This is the angle of the ascending node with respect to due East. The 
maximum latitude of the orbit is 80.9680. Imagery is taken on the des
cending (daytime) portion of the Sun-synchronous orbit). 
Period= 103.267 minutes 
Time of descending node (equatorial crossing) = 9:42 a.m. local Sun time 
Coverage cycle duration = 18 days (251 revolutions) 
Distance between adjacent ground tracks at Equator= 159,380 m 

- Imaging System= Multispectral Scanner (MSS) (see following diagrams): 

8 = viewing angle of scanner with respect to nadir has a maximum value of 
0.100749 rad, about 5.76°. The plane of the scanner motion is now de
fined as perpendicular to the plane of the orbit. 

y = angle of Earth curvature (max~ 0.83°) 
f = effective focal length of scanner. Based on mirror size and f number 

this is 730 mm; however, this dimensions is immaterial with respect to 
the projection 

N = nadir point, based on local geometric vertical 
p = point on Earth imaged by MSS sensor 
C = cylindrical image surface, develops into image plane 
T = cylindrical projection surface, develops into projection plane 
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Geometry of ERTS, MSS (orbital plane is perpendicular to plane on left). 

(optical center of scanner) 

Skewed image on 
projection plane 

X = i COS 't 
or 

t = x sec -r 

X 

Projection Plane (T) 

X 

X = distance in instantaneous orbital direction on Earth figure along 
orbital path+). This orbital path would be a great circle or ortho
drome on a spherical nonrotating Earth 

Y = distance normal to instantaneous orbital direction on Earth figure 
from nadir Y = yR +) · 

x = distance on projection plane in instantaneous orbital direction 
y = distance on projection plane normal to x 
i = actual orbital path as imaged 
, = skew angle (varies with latitude) 

5pace Oblique Mercator projection basic formulas (scale factor= 1): 

X = X 

ind based on origin at nadir 

y = RJsecy dy = R loge (secy+ tany) = R loge tan ( f + i) 
y will generally contain another term to take care of the cylinder 
oscillation due to Earth rotation. A false value of perhaps 1 600 000 m 
should be given to the x axis as shown on page 3 in order to eliminate 
negative values of y. 

-) If one disregards the small error introduced by Earth rotation during the scan 
sweep (the maximum displacement in the x direction is only about 200 m for the 
185 km scan length), they direction on the image is that of the scan lines 
(as now configured). However, the orbital path is skewed on the projection by 
as much as 40 with respect to the instantaneous orbital direction, again due 
to Earth rotation (see diagram p. 3). 
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THE PAYOFF 

To make ERTS MSS-type imagery fully suitable for mapping, several steps must be 
taken, as follows: 

1 - Parameters for the system must be set and adhered to within stated limits. 

2 - The projection must be rigorously defined, and system corrections must be 
aP,plied with results comparable to or better than those now being achieved 
with ERTS-1. 

3 - The mathematical relationship between the projection (model) and the figure 
of the Earth must be rigorously defined. 

4 - Image-identifiable control must be cataloged and used for system calibration. 
The density or form of the control is not known at present, but there are in
dications that spacing may be on the hundreds or even thousands of kilo
meters, with a few test sites of denser control (20 - 50 km spacing) for de
tailed system analysis. 

5 - System corrections to be applicable to tapes as well as imagery. 

6 - Precision (scene-corrected) processing to be of two forms: 

a. Precise application of geodetic indicators (lat/long or UTM coordinates) 
to the system-corrected imagery (and perhaps tapes) without altering the 
system-corrected structure or projection. 

b. Transformation of imagery (and perhaps tapes) to a conventional map pro
jection, such as the UTM or polar stereographic, and addition of appropriate 
geodetic indicators. Transformation should be required for only a small per
centage of the recorded imagery. 

Steps 1 and 2 can be based on ERTS-1 performance as it is assumed that the per
formance of ERTS-1 can be equalled or exceeded on future ERTS-type space-flights. 
The mathematical problem (step 3) is of paramount concern. I suggest that NASA, 
with technical input from USGS (and others), take the lead. Here is a real 
challenge to the cartographic community. As geodesists and photogrammetrists, we 
must carefully examine the problems and the various solutions possible. Then, as 
mapmakers representing the map users of the world, we should spell out exactly 
what we need. A considerable and dedicated effort will still be needed to develop 
the mathematical model and associated computer programs. Since the programs thus 
developed could be applied to Earth imaging systems other than ERTS, the programs 
should have appropriate flexibility and precision. 

Once the model and programs are developed, they should be tested against a varie
ty of ground control arrays, and thus the requirements for control (step 4) can 
be defined. Steps 5 and 6 require the providing of appropriate processing at some 
centralized point. With these 6 steps. made effective, we believe that ERTS-type 
images and tape in cartographic form and with geodetic precision can be produced 
in a matter of days after acquisition - particularly when the continuous and uni
form Space Oblique Mercator projection is employed. Perhaps the era of automated 
mapping, based on Earth-sensing space systems, is not far off. 
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GEOMETRIC CALIBRATION OF CANADIAN ERTS PHOTOREPRODUCTION SYSTEM 

by V. Kratky, Ottawa, Canada 

ABS TRACT 

T~o photoreproduction instruments used in the Canadian production of ERTS photo
graphs were experimentally tested to determine the magnitude and character of 
geometric image distortions caused by the reproduction process. Based on the re
sults, a suitable analytical formulation was found, which was used for the system 
calibration. The impleme~tation of the calibration procedure is described and 
relevant production aspects discussed together with an assessment of practical 
results. 

INTRODUCTION 

The Earth Resources Technology Satellite (ERTS) imagery is acquired by a four
channel Multispectral Scanner (MSS) which continuously covers a 185 km wide 
ground swath in a single orbit. The raw data, radio-received at a ground station, 
is recorded on video tape and transmitted to a data processing station where it 
is converted into photographs and computer compatible tapes. 

In the Canadian ERTS image processin~ system 141 which is in many respects dif
ferent from that adopted by NASA 131, the photographs are produced with the aid 
of two special reproduction instruments. An Electron Beam Image Reproducer (EBIR) 
converts the pictoral information from its digital record on video tape into a 
latent photographic negative on a 70 mm film. This is accomplished in the data 
processing facility of the Canada Centre for Remote Sensing (CCRS) in Ottawa. The 
exposed film is delivered to the National Air Photo Library (NAPL) reproduction 
centre where it is processed and enlarged to the final 1 : 1 000 000 photographs 
on a 230 mm film in a special Enlarger-Printer (E-P). 

The MSS image is distorted due to several physical, instrumental and geometric 
factors which may affect the imaging, recording and reproducing process, as 
analyzed, e.g. in 121. Most of the systematic distortions can be determined with 
the use of auxiliary information provided from satellite sensors, predicted from 
orbital parameters, obtained from geometric calibrations of instruments and also 
derived from suitable photogrammetric transformations based on the available 
ground control points. As a result, an analytical model of the distortions is 
derived, the parameters of which are used to control the reproduction process in 
the EBIR. Further details about the correction process developed for the Canadian 
ERTS program can be found in References I 11, 12 I. 
It is obvious that the performance of both reproducing units affects the geo
metric quality of ERTS photographs. It is, therefore, imperative to have these 
devices regularly calibrated, and to use parameters of the calibration, together 
with other correction parameters, for the control of the process. The present 
paper describes the way in which this is accomplished in the Canadian ERTS pro
gram in the CCRS. 

DESCRIPTION OF REPRODUCING SYSTEM 

The EBIR is a precision film recording device designed and built for CCRS by the 
Minnesota Mining (3M) Company. Basically, it is a modified cathode ray tube in 
which the face-plate is substituted by an ultra-fine grain film placed in a 
vacuum. Thus, the film is directly bombarded by electrons in a line-by-line mode 
reproducing the original line-scanning pattern of the MSS, retained in the video 
signal. A special unit, the EBIR controller, acts as an interface between a 
computer, and the EBIR, adding annotation, correction and calibration information 
which is provided by the computer, to the video signal. Data are directed from 
the video tape to the controller which controls the timing of the readout and the 
deflection of the electron beam in a way corresponding to the analytical model of 
those geometric corrections to be applied. 

The Enlarger-Printer developed by the International Imaging Systems (I 2s Company) 
provides an accurate optical scaling of images into the final format. The system 
is fixed to yield a 3.7x enlargement ratio and can be used in a semi-automatic 
mode to produce colour composite prints in different combinations of the four 
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available spectral images. For this purpose, a prec1s1on pin-registered framing 
mechanism is used to ensure an accurate image registration, identical to that in 
the EBIR, with respect to sprocket holes of the perforated film. 

GEOMETRY OF PHOTOREPRODUCTION 
Information flow 

The analog video outputs from the MSS sensors are converted into a digital signal 
which is radio-transmitted and received at the ground station. The received data 
are digitally recorded on a video tape in separate channels for each spectral 
band. The MSS system preserves an inherent registration of data in all spectral 
bands, which means that their geometric distortions are identical. The physical 
flow and transformation of information in the reproduction phase is presented in 
Fig. 1 and described in the following steps: 

- Digital video signal (VID) is input information; any geometric distortions 
caused by deviciencies in preceding operations are irrelevant to the calibra
tion of the reproduction system and thus disregarded. The x,y-coordinates of 
any image detail are implied in the position of the corresponding pixel within 
the video image stream. 

- Modified image stream (MIS) is derived by a transformation of the video signal 
(VID) in the EBIR controller. The effect of the control can be analytically 
described by a transformation TC. 

fig. 1: Information flow in the reproduction process 
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- The EBIR produces an intermediate photographic image (EBR). If the controller 
is set to support the standard printing function of the EBIR, without intro
ducing any additional corrections, the image should ideally be a true geometric 
representation of the scan-line format of the video signal VID. Any deviation 
from this pattern represents geometric errors in the EBIR function, analytical
ly characterized by a transform TEBR· 

- The final photographic image (ENL) is obtained by an optical enlargement of the 
intermediate negativ,e in the Enlarger-Printer. The inherent inaccuracy of this 
process also affects the final image geometry. The analytical relationship EBR
ENL can be represented by a transform TENL· 

Character of transformations 

Transforms Tc, TEBR• TENL represent analytical models of the individual phases in 
the photoreproduction process. In an ideal case the whole process should perform 
a simple scaling function simulated by a scalar transformation Ts= sI, where 
s = 3.7 and I is a matrix of identity transformation. The individual partial 
transforms would also be simplified to Tc= TEBR = I and to TENL = sl, In reality 
however, this can not be achieved and the above matrices are only crude approx
imations of more complex relationships for which linear transformations would not 
provide adequate definitions. 

For an analysis of the reproduction geometry, the controlling function Tc is dis
regarded first, and the geometric change due to reproduction process is formul
ated by a transform TR expressing the cumulative effect of transforms TEBR and 
TENL· 

Residual errors of the EBIR function are distributed in a fashion typical for the 
electronic geometric distortion J5J, 161. In general, a higher order polynomial 
transformation is considered suitable to represent the two-dimensional non-linear 
distribution of errors in this instance. The errors are subject to gradual chan
ges with time, which affect both their magnitudes and the character of their 
distribution. 
Proper functioning of the E-P is adversely affected by the optical distortion as 
well as by a mechanical misalignment of the system. The latter errors could be 
simulated by a projective transformation whereas the radial character of the lens 
distortion requires a polynomial formulation. 

Analytical formulation 

It is advantageous to describe both partial steps of the reproduction process as 
well as their cumulative effect with the same type of analytical formulation. 
Numerous experiments were performed at NRG and CCRS, utilizing an artificially 
generated video tape, which. represented an image of a 9x9 or 18x18 reseau grid. 
The grid was reproduced through both EBIR and E-P, and after digitizing x,y-co
ordinates of individual reseau crosses in a Zeiss PSK stereocomparator, different 
analytical transformations were applied and statistically tested for the presence 
of systematic errors in residuals. The most useful polynomial formulation was 
found wheQ keeping the maximum degree of a single coordinate even in mixed pro
ducts xiyJ, as in bilinear, biquadratic, bicubic etc. transformations. An nxn 
pattern of reseau crosses can accommodate a bi-polynomial transformation of 
(n-1)-th degree, built up according to the following, gradually expanding scheme. 

oo degree 1 Number of parameters 
1 

lo X XY y 4 

20 x2 x2y x2y2 xy2 y2 9 

30 x3 x3y x3y2 x3y3 x2y3 xy3 y3 16 

40 xL+ xL+y ,J!y2 xL+y3 xL+yL+ x3y4 x2y4 xyL+ ylt 25 

This formulation with n2 parameters gives complete freedom to express the errors 
in any row or column of the reseau grid with an independent x1 or y-polynomial of 
then-th degree. The x- and y~errors are defined independently by separate poly
nomial functions. 
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Figure 2 shows the decrease of residuals, related to the increase in the degree 
of polynomials used to represent the TEBR-transformation. The errors are expres
sed in the scale of the final, 3.7 times enlarged image corresponding to 
1 : 1 000 000 ERTS photographs. 

Fig. 2: degree of polynomial 
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Based on the results of the experiments the polynomial transformation of 4th de
gree was judged to provide the most useful definition of the reproduction errors. 
It can be conveniently defined with the use of a bilinear form 

dy = uTBv ( 1 ) 

where A, Bare (5,5)-matrices of coefficients aij• bij associated with products 
xiyj, and vectors u, v are derived as 

uT = (1 x x2 x3 x4) 

VT= (1 y y2 y3 y4) 

CALIBRATION 
General approach 

Once the calibration video master is reproduced by both the EBIR and E-P instru
ments the polynomial formulation (1) can be applied to determine the transforms 
TEBR• TENL• TR as well as their inverse functions. Since the symbols T represent 
non-linear transformations, the inverses can be practically determined only by 
numerical fitting of available data sets in the reverse order, and-not by analyt
ical inversion of the functions. Figure 3 graphically shows the combinations in 
which the given and digitized data are used. So far, the three transforms T re
present the distortions introduced by the system when the correction function of 
the EB)R controller is disregarded. This particular function can be determined 
indirectly when removing the effect of the reproduction errors from the hypothet
ical ideal scaling function of the system as illustrated in Fig. 3 and expressed 
in symbols by 

( 2) 

For the computation of Tc, the data set VID is fitted with the indirectly derived 
data MIS. 

Practical calibration of the reproducing system calls for a physical implementa
tion of the transform Tc, the coefficients of which can be supplied to the EBIR 
controller from the supporting computer. In this instance illustrated by a block 
diagram in Fig. 4, the composite effect of transformations Tc, TEBR and TENL 
would cancel out all errors of the reproduction process, making the resulting 
performance of the system identical with the desired scaling function 

( 3) 
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Fig. 3: Calibration 

Fig . 4: Production 

Practical considerations 

Both the reproduction devices at CCRS were designed. and built without any 
fiducial marks in their image fields. This introduces uncertainty into the trans
formations which are dependent on the choice of origins for the individual x,y
fields. Fortunately, this does not apply to the hypothetical plane of the video 
image VID where the origin is defined and preserved in an unambiguous way. How
ever, the actual fitting involving EBR and ENL images becomes more complicated. 
For this reason, the fiducial marks missing in the intermediate photographs EBR 
are substituted in practical calibrations by appropriate details of the sprocket 
holes securing the registration of the film. Because the final enlarged photo
graphs ENL do not contain projections of the film perforation, these images are 
always preoriented to the master grid with the use of a similarity transformation 
A scaling change, which is one of the parameters, is omitted in the implement
ation of this auxiliary transformation to preserve the original dimension of the 
digitized image. 

Coordinate sets in all the fields VID, EBR, ENL are numerically fitted using sub
stitutions 
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( 4) 

where dx, dy a re given in (1). The least squares fitting is performed in all 
combinations of fields and independently in both directions 

(x,y)l ➔ (x,y)2 or (x,y)2 ➔ (x,y)l 

which yields transforms T as we 11 as transforms -1 T . 

The calibration parameters are computed and stored in the computer memory for 
each of both EBIRs which are operational at CCRS, in combination with a single 
enlarger-printer. Regular updating of the parameters is required when a new set 
of MSS video tapes is handled. 

For practical reasons, the calibration process can be simplified and restricted 
to the determination of the total reproduction distortion TR without examining 
the contribution of the individual devices. This is particularly acvantageous be
cause the final ENL-image can be digitized in a faster and easier way with the 
aid of a Gradicon digitizer instead of using a stereocomparator. The digitizer is 
a part of the precision processing line at CCRS whereas a stereocomparator is not 
available. The accuracy of a Gradicon calibration is lower than that from a 
stereocomparator, but nevertheless still adequate for the purpose, as documented 
in the next section. 

Discussion of results 

The character of distortions within the reproduction process was studied in ex
periments extended over a period of more than one year. Although the values of 
distortion varied in the individual experiments, the basic distortion pattern re
mained stable for a period of a few months and was usually suddenly changed only 
by major maintenance adjustments. A typical example is shown in Fig. 5 where the 
distortion TR is plotted at an exaggerated scale for three calibration tests per
formed one week apart. Each of the plots is based on two independent digit
izations of test photographs. The example also indicates that the 4th degree 
transformation is really needed to compensate for the existing errors. 

Fig. 5 
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Not only does the full calibration distinguish between the errors introduced in 
the two basic phases of the reproduction, but it can also be used to separate the 
optical distortion of the E-P lens from the effect of mechanical misalignments. 
The latter effect can be numerically eliminated from the data by applying a pro
jective transformation. The resulting data, such as shown in Fig. 6, can be ac
counted for by the lens distortion of the enlarger-printer. Here the maximum 
radial distortion of a 3.7 times enlarged image at the corners was close to lOOµm 
whereas the RMS value of all x- and y-components were 27 and 25 µm, respectively. 
The RMS value for misalignment distortions amounted to 45 µm and the remaining 
random noise was 8 µm, for a coordinate measured in a PSK stereocomparator. 

The same test was repeated with the Gradicon digitizer, yielding RMS errors of 
26 µm for the lens distortion, 52 µm for the misalignment and 38 µm for the ran
dom residuals. The agreement in the systematic distortions, as assessed from PSK 
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and Gradicon measurements, is very satisfactory. The difference between the 
values for random errors is representative of results from numerous other ex
periments. 

Fig. 6 

----- --

In the long run of calibrations carried out at CCRS, the RMS values for the 
total reproduction distortion ranged between 300 and 400 µm. The RMS values of 
residual errors after transformation were always kept between 10 and 20 µm for 
PSK digitization and around 40 µm when digitizing with Gradicon. 
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CONCLUSION of the Symposium (summary) 

F. Ackermann 

During the closing session an attempt was made to summarize the results of the 
presentations and discussions of the symposium and draw conclusions as to the 
future research and development activities of Commission III. Also the available 
information was given and some tentative schedule for the technical sessions of 
the forthcoming ISP-Congress at Helsinki were discussed. 

Hereafter a summary is given of the views and recommendations which were 
expressed during the closing session about the technical and scientific situa
tion of the various fields of interest of Co~mission III: 

1st field of interest: Aerial Triangulation 

- Efficient methods for numerical strip- and block-adjustment are developed 
and to some degree successfully established in practical application. The 
computational strategies have not been compared. Requirements and specifi
cations for software packages and computers are not sufficiently established. 
There are no recent theoretical studies on the accuracy performance and 
comparison of the main methods of adjustment. Experimental results have 
raised new questions. 
Self-calibrating adjustment systems have been and are still developed. Their 
results are very promising and receive great attention. 
Similarly progress has been made with introducing auxiliary data into block
adjustment. The development and application of hybrid adjustment systems is 
still restricted to some special cases. 

- It can be considered a major result of the symposium that the high accuracy 
capability of aerial triangulation has been confirmed and established. The 
experimental results prove, that the conventional error threshold of 10 µm 
has been lowered to the level of 5 µm and may reach 2 - 3 µm. 
Theoretical tools and generalized adjustment methods have been developed 
to operate with and to realize such accuracy levels. The most promisinq 
progress is presently associated with the principle of self-calibration: 
This development is of utmost practical impotance. It will extend the range 
of application of photogrammetry. 

- The question of mono- versus stereocomparator has not been discussed. It 
remains in it's state of ambiguity. 

- Regarding the practical side of aerial triangulation the problem of point 
transfer does finally receive some attention, although conclusive results 
cannot be claimed as yet. Also the importance of automatic blunder detection 
in aerial triangulation has been recognized. Solutions are still in a 
preliminary phase. 

It is recommended to concentrate research activities on the following topics 
of immediate importance: 

- Development and assessment of self-calibrating systems 

Tests and experimental analysis of systematic and correlated image errors 

- Tests and experimental comparisons on the accuracy performance of aerial 
triangulation (integral and modular) 

- Better solutions for the problems of tie points and point transfer 

- Methods and programs for automatic blunder detection 

- Application of aerial triangulation to cadastral measurements and to 
densification of geodetic networks. 
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- Increased use of auxiliary data for small scale aerial triangulation 

In general the utilisation of advanced methods is recommended. 

2nd field of interest: Digital terrain models, digital contour interpolation, 
digital mapping, data banks. 

- This field is receiving renewed attention. The mathematical solutions and 
operations depend strongly on the data acquisition and on the intended tasks. 
For the time being the development towards complete automation seems not 
feasible. Interactive systems will be used. 

- For the digital interpolation of terrain surfaces and of contours several 
methods have been developed. A number of computer programs are operational. 
Little is known about the relative merits of the various methods and programs. 

- Although there are some studies systematic theoretical and/or practical 
investigations into the accuracy performance of interpolation procedures are 
still lacking. 

- The relation of interpolation methods and data acquisition has not been 
sufficiently clarified. More practical experience is to be gained by 
operational systems. 

- Digital Mapping of planimetry is emphasized. Commission III is only concerned, 
as far as mathematical and computational problems are involved. 

It is recommended 

- to continue the development of DTM- and contour interpolation procedures 

- to continue the accuracy investigation and the comparison of interpolation 
procedures 

- to encourage practical application and operational testing of digital 
interpolation and digital mapping procedures. 

3rd field of interest: Geometric aspects of remote sensing. 

The ranges and technical features of remote sensing are so very wide that 
concentrated research on certain aspects 1s warranted. Therefore a joint 
working group of the ISP Commissions III and VII has been established in 
1972 to deal with the Geometry of Remote Sensing. 

Attention is drawn to the report of Prof. Konecny, chairman of the working 
group. The experimental investigations concentrate at present on side-looking 
Radar and on Multi-spectral sensors, including scanners. 

The investigations deserve and receive great interest. Accuracy performance 
models have been established and confirmed. They form a clear and necessary 
basis for the evaluation of remote sensing imagery and have encouraged 
practical application. 
The working group is continuing its activities. 

4th field of interest: Digital image processing, digital image correlation. 

This symposium has not discussed topics of digital image processing. It is 
recommended to begin or to continue research in this field. It is expected 
that papers also on such subjects will be submitted for the forthcoming 
ISP-Congress in Helsinki. 
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SOME RESULTS CONCERNING THE USE OF AERIAL TRIANGULATION WITH INDEPENDENT MODELS, 
IN PRODUCTION 

by Gherasim Marton, Rumania 

1. INTRODUCTION 

Aerial triangulation method with independent models is used in production, since 
1970. Depending on the purpose in view, the method has been used in different 
variants; we can also see it from the concise description of the program. The 
method is chiefly used to up-to-date topographical maps at 1 : 25 000 scale. 
Photographs were taken with RC.8 11/18 wide angular Wild camera at 1 : 30 000 -
1 : 35 000 scale. PUG 4 instrument is used to mark and implement points. Unmarked 
aerial triangulation points and pass-points will be marked only on a photograph 
in the main zone, having triple overlapping, by using PUG 4 instrument. Photo
graph stereoscopic measurement including fiducial marks, is carried out on Zeiss 
Jena Stecometer. 

A concise description of the aerial triangulation program facilities, some pro
blems related to the precision of the input data for aerial triangulation compu
tation and, finally, practical aerial triangulation results, coming out from the 
present production works, are presented in this paper. 

2. AERIAL TRIANGULATION PROGRAMS 

Aerial triangulation programs with independent models are set up in a library on 
magnetic disk of Felix C.256 computer. From the photogrammetric stand point, the 
library consists of three basic programs: computation program for aerial triangu
lation in strips with independent models, computation program to obtain aerial 
triangulation planimetric block with free strips and program of block-space ad
justment. 

A) - Aerial triangulation program in strips with independent models is the basic 
program. Irrespective of the chosen adjustment variant method or the instrument 
u?ed in measurement, data processing begins with this program. Number of points 
in the model and the number of models in the strip is practically unlimited. 

1)- during the first computation stage systematic errors are eliminated from the 
measurements made in comparators and they are transposed in the coordinate system 
established by the fiducial marks of the aerial camera. The relative orientation 
elements are then computed independently, for each pair of photographs. Indepen
dent model coordinates, including projection centres, are computed in two ways: 
using two photographs or three photographs. So far, independent models made up 
by considering three photographs were used. In this case, models have longitudin~ 
and transversal overlapping like photographs and, at the same time, we can work 
without projection centres. 
2)- Tie points among models in the same strip are checked during the second stage. 
In the same process, independent models are transformed by rigourous relation of 
the space orthogonal transformation within the first model system. 
3)- When the aerial triangulation strips is not provided with control points 
necessary for adjustment, checked independent model coordinates are stored in 
file disk and the free strip coordinates are output on the punch card. 
4)- When the aerial triangulation strip is provided with control points, the 
computation is going and the control points are tested. During this process, 
independent models are transposed in the coordinate system of the control points. 
5)- Strip adjustment can be carried out in two ways: If the strip is provided 
with enough planimetric control points as well, the planimetric and height block 
adjustment is carried out. Otherwise only the height adjustment of the strip is 
accomplished. This last method is used more frequently in production. 
6)- During the last stage, space orthogonal transformation of models is carried 
out and triangulated point coordinates are computed by averaging tie point coor
dinates. In this last stage, according to the choice made, we can make up the 
files of the adjusted model points on magnetic disk and the adjusted strip coor
dinates can be output on punch card. 

B) - Program fDrming planimetric block with free strips is usad when the aerial 
triangulation block is provided with a reduced number of planimetric control 
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points. Tie points among strips and control points in block are tested plani
metrically, using this computation program. 

Finally, approximate planimetric coordinates of the triangulated points in the 
coordinate system of the control points are obtained. Control points list within 
each strip is completed with those approximate planimetric coordinates and 
computations of the aerial triangulation in strips are resumed from point 4 
and the height adjustment of the strip is carried out. 

C) - Block space adjustment program is based in the simultaneous determination 
of the space orthogonal transformation parameters by planimetric and height 
iteration 11[. This program consists of two mai~ stages: 

1)- Rigourous check of the tie points among strips is accomplished during the 
first stage. Tie points which have not the required precision are considered, in 
succession, only within the strips in which they appear. This check is carried 
out using the points of the individually adjusted strips. 

2)- Block-space adjustment is accomplished during the second stage of the pro
gram. When the block is not provided with enough planimetric control points, the 
adjustment is carried out using independently adjusted strips. When the block 
has enough planimetric control points, the adjustment is carried out using in
dependent models coming out after strip independent adjustment is accomplished 
without considering, in our computation, tie points among strips which have not 
the required precision. 

Adjustment method with independently adjusted strips is more frequently used in 
production, because of the method employed to establish control points. 

3. THE PRECISION OF THE MEASURED POINTS 

Usually, during aerial triangulation process, we consider three aspects regarding 
measurement precision of aerial triangulation data, namely: behaviour of the in
strument used to measure photographs, measurement precision of the model coordi
nates and precision to establish control points. 

1)- After each maintenance operation of Stecometer and at fixed intervals we make 
stereoscopic measurements of the control network in identical condition as for 
photographs. In our case, we use photographs taken with 11/18 wide angular 
cameras. In Table 1, we present the results of such control measurements for two 
models. They represent: 

a 0 = the mean square error of weight unit, computed in relative orientation 

Pymax the maximum parallax of the stereomodel 

Table 1 

a= the mean square error of weight unit, computed in tie points after 
adjustment was accomplished 

= mean square errors of coordinates computed considering absolute coor
dinate difference in all points of the network. 

i'1ode l Results a re in µm 

CT PYmax CT µx µy µz 0 

1 1 , 3 2,0 
3, 1 3, 5 3,8 4,3 

2 0,8 0,9 

Any operator doing common measurements can make this test; it is a general index 
of the instrument behaviour. Analysing results of many checks, we see that steco
meter precision is of± 3 to± 5 µm, in usual work condition. 

2)- Obtaining homogeneous precision of model coordinates used in adjustment is a 
very important problem within the aerial triangulation process with independent 
models. This is done in three stages during aerial triangulation programs. 
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When determining relative orientation elements, at last iteration, point having 
maximum vertical parallax is eliminated and the iteration process is resumed if 
the maximum vertical parallax PYmax exceeds the value of the established maximum 
Emax· Considering many production works, we can write the following ratio between 
Emax and CTomax 

::: 1,55 ( 1 ) 

Let Emax = 20 µm, the CToi < 13 µm . 
We present value groups ofCTi for Emax = 20µ m, i = 1.025, models, disposed in 
16 aerial triangulation blogks situated in hill zones, up to 1 000 m height, in 
table 2. 

Table 2 

Number of + CT in µm - 0 

the models ~ 7, 5 7, 5 - <10 10 - <13 

1.025 641 247 137 

Maximum vertical parallaxes established by considering ordinale differences when 
independent model coordinate computation is done, always satisfy the condition: 

( 2) 

Tie points among models of the same strip are tested during the second stage, 
using condition 

( 3) 

Checking photogrammetric measurements comes to an end when tie points among 
strips are tested. This problem is more difficult and we consider it is not well 
studied for the present production conditions. In the case of the works referred 
to in the introduction and if the control points are at a distance of 4 bases 
during the height adjustment with strips, we use the following condition to check 
tie points 

k k+ll Jz - z > 3 Emax ( 4) 

Points which do not satisfy condition (4) are eliminated from the adjustment 
computation as tie points among strips. 

3)- The use of aerial triangulation with independent models emphasizes this 
method as having an internal, high and controled precision. We may not say the 
same words about precision homogeneity of control points, established by differ
ent methods, instruments and operators, as well as other factors. 

Up to now, the best results were got when height control points were established 
using spirit levelling and when pre-marked points of the state triangulation net
work were used for block-planimetric adjustment with strips. 

4. PRACTICAL RESULTS 

_ Practical results were obtained in an aerial triangulation block in the national 
photogrammetric test field and in 16 blocks in the current production. 

1)- Aerial triangulation block within national test field consists of three 
strips of nine photographs each. Photographs were taken with RC.8 11/18 wide 
angular camera at 1 : 10 000 scale, 72 premarked points were uniformly located 
within the whole block. 12 points having complete X, Y, Z coordinates, spaced at 
4 bases in each strip were used during the adjustment. All tie points among 
strips were premarked points. Measurements were made with stecometer. Independent 
models were made using furee photographs. Obtained results were presented in 
Table 3. Mean square errors µx, µy and µz were computed, taking into. account 
coordinate differences for the 72 pre-marked points. CT andµ values are in µm 
at photograph scale 1 : 10 000. 
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Table 3 

Number of models o \.1 X \.ly ).1 z 
within the block 

3 X 7 = 21 11 , 3 13,8 12,6 15, 9 

2)- The 16 blocks used in production cover a 6 400 km2 area. RC.8 11/18 wide 
angular camera was used to take photoqraphs, at 1 : 33 000 scale. 45 points of 
the state triangulation network were premarked within the zone. Blocks consists 
of 5 - 6 strips each, having 12 - 14 photographs. Each strip had 8 - 10 height 
control points. Measurements were made using stecometer and independent models 
were made using three photographs. 

We used the program presented in section 2.A to compute 85 free strips and pro
gram described in section 2.8 to compute approximate planimetric coordinates. 
Approximate coordinate computation within coordinate system of the control points 
begins in blocks provided with 4 pre-marked points, at least, located in the four 
corners of the block. Tie point coordinates among computed blocks were used in 
the remainder of the block. 

Height adjustment with independent models in each strip was carried out indepen
dently using those approximate coordinates and height control points. OH and µ 2 
values spaced at 5 µm distance, at the photograph scale, for 85 photographs 
are shown in Table 4. 

OH and µ 2 values, at 1 : 33 000 scale, spared at 5 µm distance, were obtained 
during strip height adjustment. 

Table 4 

Interval Total of 

in µm 10-15 15-20 20-25 25-30 30-35 strips 

aH 15 33 26 11 -
85 

µz 11 23 27 16 5 

Block-space adjustment with height previous adjusted independently strips was 
carried out to get a single row of coordinates within each block and final coor
dinates. In Table 5, we find op, µx, \.ly and oH, µ 2 • We should mention that the 
x,y coordinate values have distortion errors of the strip, as a result of suc
cessive model transformations during free strip computations. o andµ values are 
in µm, at a scale of 1 : 33 000. 

Table 5 

Number of 
the block CTP µx µy OH µz 

1 35.6 49.5 26.3 24.6 29.3 
2 41.6 3 2. 1 38.6 14.6 20.1 
3 33.4 43.4 41. 2 18.3 19.8 
4 39.9 45.7 31. 8 18.8 21. 2 
5 35.8 55.5 26.7 15.2 18.1 
6 38.1 45.6 27.3 24.2 26.3 
7 29.4 21. 7 32.7 12.5 17.2 
8 39.8 46.2 41. 2 14.8 19.5 
9 35. 1 38.3 29.5 21. 2 24.7 

10 41. 3 48.5 36.9 2 2. 1 25.3 
11 37.4 46.2 38.8 20. 2 26.1 
12 41. 2 49.5 52.3 27. 1 31. 2 
13 32.5 41. 8 38.1 16.4 19.3 
14 39.4 38.5 37.6 15 . 7 17.8 
15 35. 1 42.6 43.7 19.4 23.9 
16 36.7 42.8 47.3 23.6 27.5 
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Ground tests of the contour lines and of the heighted photogrammetric points 
prove the high height precision of the aerial triangulated points. 

Two problems, however, are out of order in stereoplotting. On the first hand we 
cannot neglect the tz coordinate differences in the control points if they ex
ceed 20 µm, at photograph scale; so we must do either control point rectifica
tions after adjustment is accomplished or those deviation reductions using linear 
prediction method. The use of high weights for control points within the blocks 
is not a good solution because if P = 1 000, µz values are reduced a few and t 2 
differences in tie points can be doubled. 

The second problem is related to the tie points among the strips. Z coordinate 
of the tie points is obtained as their averaging during block adjustment. Points 
located along the strip axes can be corrected even in a different way. In this 
case, after stereomodel absolute orientation, an artificial curvature of the 
model appears, which can not be corrected. 
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ACCURACY OF STATOSCOPE-DATA RESULTS FROM THE OEEPE-TEST "OBERSCHWABEN" 

by F. Ackermann, Stuttgart, Fed.Rep. Germany 

1. INTRODUCTION 

Auxiliary data have been known for a long time to be highly effective in aerial 
triangulation, [1[ - [5[. Nevertheless they are not widely used in practice to 
this day. 

Amongst auxiliary data especially APR and statoscope are most effective with re
gard to vertical accuracy of strips and blocks. When jointly included in simul
taneous block-adjustment they are expected to improve accuracy and economy con
siderably beyond the present state of the technique [6[. 

There exists only scarce information about the accuracies of statoscope- and 
APR-data which are generally believed to be in the order of 1.5 m - 4 m, depend
ing on altitude and circumstances. Therefore, the European Research Organisation 
OEEPE included an investigation of the accuracy of statoscope data in the re
search program of the controlled aerial triangulation test "Oberschwaben" [7[. 
This paper presents a summary of experimental results as completed up to now. 

2. ACCURACY OF STATOSCOPE DATA 

2.1 - The test field "Oberschwaben" covers an area of 40.0 km x 62,5 km. It con
tains 540 signalized trigonometric points to be used as control points and check 
points. For about 470 of them the heights (Z) are known. In addition all tie 
points were signalized (as double targets) whence pin point flying was asked. 

Aerial photography was taken in spring 1969 by Firma Haussermann, with Aero Com
mander 560 F. The test field was completely covered by both wide-angle and super
wide-angle photography of scale 1 : 28 000 (with Zeiss RMK 15/23 and Zeiss RMK 
8.5/23), each mission giving a block of 15 strips of 60 % lateral overlap and 25 
models each, with simultaneous recordings of the Zeiss statoscope S 2 [8[. Thus, 
the statoscope investigation distringuishes 2 sets of data: 

- 15 strips of 62.5 km (25 models) each; wide-angle photography; flying height 
hrel = 4 285 m, habs = 4 990 m 

- 15 strips of 62.5 km (25 models) each; super-wide-angle photography; flying 
hight hrel = 2 380 m, habs = 3 085 m. 

There were 5 flying missions, on April 8th , 9th and May 12 th for wide-angle-, on 
April 10th and 26th for super-wide-angle photography. Due to initial difficulties 
with pin point exposures the original photo-coverage had some gaps left. Reflying 
of 23 separate exposures was done without statoscope. 

2.2 - Processing of statoscope data: The photographic statoscope recordings were 
·read off paper prints of the aerial photographs, and converted to height differ
ences ~hstat· The conversion factors, derived from the statoscope calibration and 
the reduction according to altitude, amounted to 1.05 m (w.a.) and 0.90 m (s.w.aJ 
respectively, per scale unit. Adding per strips a reference height H gave pre-
liminary statoscope-heights: 0 

( 1 ) 

No further corrections were applied, in particular no Henry correction (due to 
lack of drift angle recordings). 

The preliminary statoscope heights Zstat (1) still refer essentially to unknown 
isobaric reference surfaces. They are compared with the heights Tpc of the per
spective centres (camera stations) as obtained from independent model block ad
justments which utilized all given points as control (about 3 per model). The 
differences 

~z = ZPC - Zstat ( 2) 

have been plotted for all strips separately, see examples in fig. 1 
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Figure 1 OEEPE statoscope test "Oberschwaben" - Accuracy of statoscope data, 
6 examples (Differences Zpc - Zstat and residuals against linear 
approximation to isobaric surface.) 

' .,, 

2.3 - Accuracy results: To the graphs of 6Z-values (2) straight lines were fitted 
graphically, see fig. 1. They each represent a linear approximation to the iso
baric surface. The residuals between 6Z-values and straight lines 

( 3) 

are treated as errors of the statoscope measurements (against the isobaric re
ference), although they contain also the errors of the check-values Zpc which are 
barely negligible. The restduals dZ are reduced per strip to root mean square 

m = [dZ.dZ] (4) 
values ~ 

Stat n _ 2 
as collected in table 1. Altogether 23 values had to be excluded because of gross 
deviations, the causes of which are not known (such exclusion is permissible as 
gross errors would equally be detected in a practical case during the combined 
block-adjustment, see section 3). 
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The combined r.m.s. values of all strips amount to 

mStat = 0.89 m (altitude 4 990 m, w.a.) 

mStat = 0.79 m (altitude 3 085 m, s.w.a.) 

( 5 a) 

( 5 b) 

The values (5) represent the direct experimental accuracies of the statoscope 
measurements with respect to isobaric surfaces. They refer to strip lengths of 
62.5 km, and still contain possible error effects due to 

- check heights of camera stations (!) 
- non-linearity of isobaric profiles 
- statoscope-calibration. 

2.4 - Discussion of accuracy results: The first comment ought to point out that 
the obtained accuracy values are considerably better than originally expected. 
Also, they are rather representative, referring to 5 different flight missions, 
up to 5 weeks apart. 

The accuracy results (5) correspond to 0.85 (w.a.) and 0.88 scale units (s.w.a.), 
respectively, of the statoscope recordings. Reduced to sea level the equivalent 
values are 0.59 m and 0.62 m. Thus the results are consistent with respect to 
altitude, and extrapolation seems to be permissible. 

The accuracy results are close to the limits of resolution of the statoscope 
measuring system (involving stability of isobaric surface, pick-up of air-pressu
re, physical measuring process, registration and reading off dial). This is 
particularly true for some strips. 5 of the r.m.s. values mstat are equivalent to 
0.3 (!) scale units. Consequently, in future, the measuring performance of stato
scopes should be refined by, preferably, a factor of 2. Calibration values of 
less than 0.50 m/scale unit are desirable. 

Linear approximations to isobaric surfaces have shown to be sufficiently re
presentative, within the investigated distance range of 62.5 km. Although a few 
strips indicate a slight curvature in the order of 1 m there is altogether no 
significant evidence of curvature of an isobaric surface. This linear approxima
tion is likely to be effective up to distances of at least 100 km. 

The accuracy values mstat (5) spread over a rather wide range, for instance from 
0.26 ~ - 1.30 m for the s.w.a. strips. 10 of the 15 s.w.a. strips have values 
between 0.26 m and 0.82 m, with a r.m.s. mean of 0.51 m. Clearly distinguished 
are the other 5 strips with values between 1.08 m and 1.30 m and a r.m.s. mean 
of 1.15 m. Thus we have obviously 2 sets of values, not belonging to the same 
population. According to a F-test the difference is significant on the 1 % level 
of significance. A similar disintegration, although not as marked, in 2 separate 
groups of accuracy results can be observed with the wide-angle strips. The total 
range of mstat values from 0.58 m - 1.30 m can be subdivided in a group of 12 
values between 0.58 m and 0.94 m (r.m.s. mean 0.78 m) and 3 values between 1.18 m 
and 1.30 m (r.m.s. mean 1.23 m). 

A variance analysis gave no significant relation of the 2 groups of poor values 
of mstat with any of the relevant flight parameters (date, flight direction, 
altitude). The only significance fourd relates to the observation that always 
the first two strips of the four main flight missions are disturbed. They show 
the largest or large values of mstat• see table 1. Omitting those 8 strips the 
r.m.s. means of the remaining values are: 

0.80 m ~ 0.76 scale units (altitude 4 990 
0.60 

,. 
m = 0.67 scale units (altitude 3 085 

m, w. a.) 

m, s.w.a.) 
(6a) 

(6b) 

In this case, only two strips with large values of mstat (1.16 m, 1.18 m) remain. 
The assumption seems valid that the statoscope was not sufficiently ready for 
measurement at the beginning of the flights, whatever the cause might have been. 
Consequently, results (6) can be considered realistic for experienced handling 
of statoscope-equipment. 

A more detailed presentation of the accuracy results will be given in the com
plete OEEPE-report on the "Oberschwaben" statoscope investigation 191, 
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Table 1 OBERSCHWABEN flight missions and accuracy results of statoscope data 

strip flight mission flight 
no. 

date I time 1 ) direction 
(1969) 

wide-angle, habs = 4990 m 

1 8. 4. 12.09h N-S 
2 8. 4. 12.30 S-N 
3 8.4. 13.04 N-S 
4 8. 4. 13.30 S-N 
5 8.4. 13.54 N-S 
6 8. 4. 14.24 S-N 
7 9. 4. 12.54 N-S 
8 12.5. 12. 11 S-N 
9 9. 4. 13.18 S-N 

10 12. 5. 12.34 N-S 
11 12. 5. 14.07 S-N 
12 12. 5. 13.00 S-N 
13 12.5. 14.27 N-S 
14 12. 5. 13.21 N-S 
15 12. 5. 14.47 S-N 

super-wide-angle, habs = 3085 m 

1 10. 4. 11.29h N-S 
2 10.4. 11.50 S-N 
3 10.4. 12. 12 N-S 
4 10. 4. 12.33 S-N 
5 10. 4. 12.54 N-S 
6 10.4. 13.16 S-N 
7 10. 4. 13.36 N-S 
8 10.4. 13.58 S-N 
9 26.4. 11. 40 N-S 

10 26.4. 12.00 S-N 
11 26.4. 12.20 N-S 
12 26.4. 12.40 S-N 
13 26.4. 12.58 N-S 
14 26.4. 13. 17 S-N 
15 26.4. 13.36 N-S 

no. of 
exposures 
reflown 

3 
3 
3 
5 
1 
1 

5 
1 

1 
1 
2 
4 

30 

1 

2 

3 

statoscope investigation 
re'.erence I gross I accuracy 
he1ght H0 errors mstat 

[rri] [nil 

4995 
4995 
4990 
4965 
4970 
5011 
5045 
5001 
4965 
5014 
4960 
5012 
4993 
4989 
4957 

4991 

3077 
3064 
3043 
3040 
3005 
3028 
3029 
3015 
3155 
3121 
3095 
3136 
3172 
3113 
3121 

3081 

3 
1 
1 
1 
1 

2 
- 2) 

1 
3 
1 
2 

1 

17 

1 
2 

3 

6 

0.94 
1. 20 
0.59 
0.79 
0.63 
0.72 
0.65 
1.30 
0.58 
0.87 
0.91 
1. 18 
0.80 
0.91 
0.80 

0.89 

1.08 
1. 12 
0.26 
0.30 
0.31 
0.27 
0.79 
1. 16 
1. 30 
1. 10 
0.67 
0.82 
0.47 
0.44 
0.34 

0.79 

1) The times indicated refer to the first exposure of a strip. 
2) Change of the reference height for the last 5 registrations by -28 m. 

3. COMBINED BLOCK-ADJUSTMENT WITH STATOSCOPE DATA 

I 

3.1 - The method: In the second part of the investigation the original statoscope 
data are introduced into combined adjustment with the photogrammetric block, 
using minimum height control. Comparison with check points allows estimation of 
the resulting vertical accuracy. 
The version S (statoscope) of the Stuttgart computer program PAT-M-43 for block 
adjustment w1th independent models has been used. It allows introduction of 
statoscope-data or APR-profiles (apart from level conditions of shore-lines) into 
the combined simultaneous adjustment. The method and the program have been descri
bed in 161, It is expected to improve the vertical accuracy of adjusted blocks by 
extending bridging distances considerably. Adjustment results also allow analysis 
of corrections v to statoscope data and empirical weight dttermination. 

Statoscope data are used as weighted observations, with the following observatio
nal equation for an exposure station i in strip k : 
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( 7) 

The term (ak+bkXik) provides a constant shift and a tilt correction of the iso
baric surface along the flight line k. ak, bk are unknown orientation parameters, 
to be simultaneously determined by the combined adjustment. The strips k can be 
subdivided in several separate lines. 

The unknown heights Z~~ of the camera stations ik appear also as unknowns in the 
photogrammetric block-adjustment. They provide the connection of statoscope- and 
block-data in the combined adjustment. 

3.2 - Results of controlled tests: A number of combined block-adjustments with 
statoscope data have been performed with the Oberschwaben material. The absolute 
vertical accuracy after adjustment is obtained from the check points of the test
field. The total research program has not been completed. The available test 
results are presented in table 2. They refer to 2 blocks of 200 models (one w.a., 
one s.w.a.), each of 8 strips with 20 % lateral overlap. Bridging distance is 
varied from 25 models (62.5 km, two chains of vertical control points) to 12.5 
models (31 km, three chains) and 8 models (21 km, four chains). 

The weights used for the combined adjustment were: 
1 for z coordinates of model points and perspective centres; 0.11 = 1/9 for 
statoscope data, oo for terrestrial control; o for check points. 

Table 2 : OEEPE statoscope test "Oberschwaben" - Vertical accuracy of combined 
block-adjustment (independent models+ statoscope data) 

n n n I (; v <:.•at VPC j p.., 
I 0 ..... l,t. 

vertical 
control 

bridg.dist.i 
(base lengths) 

vert. check s t a i o -'v e r t . 
s C Ll pr.: le\ dj . 

/ch ~ck pts. 
I 

cont r. pt s . 
[c ,ii\: Lt~ n~l [cnD [cnQ \.v h 

-------

Wide-angle-block Frankfurt 

8 strips, q=20%, 200 models; 1:28.000, hrel=4285 111, h ,.,4000 abs ·- m 

2 ch a i 1; s 25 1) 18 434 180 23 38 12 84 O.?O 
+ 2 bord2r pts. 25(12.5) 

1) 20 432 180 23 38 12 
r2------ ·7 
l69 0.1.6J 

3 chains 12.5 1) 27 4 25 mo 24 39 12 67 O.Hi 
J cha·ins 12.5 2) 27 4 25 180 23 36 11 '! ,-(, 5 o . TJJ 

+ 4 border p ts. 12.5(6) 
1 ) 31 421 U30 24 42 12 

I I __________ -·- -
56 0.14 

4 chains 8 
1) 36 416 180 24 41 ) 2 53 0.) 2 

4 ch,,.ins 8 
3) 36 416 180 23 34 11 14:i. 0.}0J 

+ G bo,der pts. 8 ( 4) 
1) 42 410 180 24 42 1 2 50 0. i 2 

Super-wide-angle-block The Hague 

8 strips, q=2U~, 200 models; 1:28.000, hrel=2380 111, habs=3085 m 

2 chains 25 
+ 2 border pts. 25(12.5) 

3 chair,s 12.5 
3 chains 12.5 

+ 4 border pts. 12.5(6) 

4 chains 3 
4 chains 8 

+ 6 border pts. 8 ( 4) 

1) linear isobaric correction -
2) linear isobaric correction -
3) linear isobaric correction -

1 ) 
1 ) 

1 ) 
2) 
1 ) 

1) 
3) 
1) 

18 414 193 21 
20 412 193 21 
27 405 193 21 
27 405 193 21 
31 401 193 21 

36 396 193 21 
36 396 193 21 
42 390 193 21 

not subdivided, 62.5 km 
subdivided, 2 x 31 km 
subdivided, 3 x 21 km 
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The symbols of table 2 which need explanation are: 

cr 0 : standard error of unit weight for the total (vertical) adjustment 

vStat' vPC : root mean square means of the adjustment corrections vStat of the 
statoscope data and vPC of the z-coordinates of the perspective centres. 

µ
2 

r.m.s. mean of the residual height errors at check points= accuracy 
estimate of the adjusted block. 

3.3 - Comment on the results: The results of table 2 demonstrate the effective
ness of the combined adjustment. With bridging distances of 25 models (62.5 km) 
and two additional control points at the open sides of the blocks absolute verti
cal accuracies of 69 cm (w.a., 0.16 O/oo h) and 57 cm (s.w.a., 0.24 °;oo h) have 
been reached, with photo scale 1 : 28 000. It is worth pointing out that the 
accuracy of the combined system is by 22 % and 28 % better than of the statoscope 
alone, if compared with (5). 

The use of two additional control points has small effects, mainly by controlling 
tilts and twists of long strips. 

Shortening the bridging distances to 12 and 8 models (31 km, 21 km) improved the 
accuracies to 58 cm (0.14 O/oo h) and 50 cm (0.12 °/ooh) for w.a. 

and to 52 cm (0.22 O/oo h) and 52 cm (0.22 °/oo h) for s.w.a., respect. 

When the accuracy level is reached which the block has without statoscope, no 
further improvement can be expected. (Without statoscope data the height accura
cies for 12.5 (6) and 8 (4) models bridging distance, respectively, are: 
w.a. 53 cm, 45 cm; s.w.a. 64 cm, 53 cm). For the same reason subdivision of the 
linear isobaric corrections gave no or only moderate accuracy improvements. 
Nevertheless, the accuracy of 45 cm/ 0.10 °/ooh of the wide-angle block, when 
bridging 8 models, is remarkable. 

The corrections vstat of the statoscope data, as obtained from the adjustments 
are of special interest. Their dependence on bridging distance indicates some 
systematic error effects. Nevertheless, the r.m.s. values of 38 cm (w.a.) and 
35 cm (s.w.a.) although only given weight 1/9, confirm again the unexpectedly 
high accuracy capability of statoscope measurements. The corrections vstat, when 
checked closely, do not show marked evidence of systematic error effects, 
appearing rather random. 

The tests will have to be completed before final conclusions are drawn. It is 
evident, however, that the accuracy capability of statoscope measurements is con
siderably higher than hitherto believed. Application for medium map scales (up to 
1 : 10 000) seems feasible. Statoscope supported block-adjustments are now ex
pected to bridge very long distances and still give vertical control accuracy 
sufficient for mapping with contour intervals of 10 m, 5 m, 10' and perhaps even 
2 m. With regard to reduction of control the statoscope with combined block
adjustment may achieve a similar breakthrough for heights as perimeter control 
did for planimetry. Additional tests and practical applications have to verify 
whether the unexpectedly good results of the Oberschwaben statoscope test can be 
obtained regularly and repeatedly. 
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SYSTEMATIC MODEL DEFORMATION OF THE OEEPE-TESTBLOCK "OBERSCHWABEN" 

by M. Schilcher and E. Wild, Stuttgart, Fed.Rep. Germany 

1. INTRODUCTION 

Recent theoretical and empirical investigations have been concerned very much 
with systematic image ~rors and their influence on the accuracy of aerial tri
angulation. Several methods have been suggested for considering systematic errors 
durin~ block adjustment both by the bundle and the independent model method (see 
I 1 I , I 2 I , I 3 I , I 41 , I 5 I ) . There i s , however , only very l i mi t e d i n format i on 
available about the systematic errors occuring in practical cases, in particular 
about the types and magnitudes of such errors and their dependence on various 
factors. 

In this paper the results are presented of an empirical investigation into the 
systematic model deformations of the testblock Oberschwaben, as appearing after 
block adjustment by independent models. It will be investigated whether systema
tic model deformations depend on the camera (wide-angle, super-wide-angle), 
flight direction, date of the flight mission and measuring instrument. Other 
points of interest are the influence of different distributions of control points 
on systematic model deformations and the question of how constant such errors are 
within certain areas of a block. 

2. THE TEST "OBERSCHWABEN" 

During spring 1969 aerial photographs were taken of 1 : 28 000 scale of the test 
area Oberschwaben which is located in southwestern Germany. The test area of 
40 km x 62.5 km was photographed with a wide-angle camera Zeiss RMK 15/23 and a 
super-wide-angle camera Zeiss RMK 8.5/23, each coverage resulting in a block of 
60 % longitudinal and lateral overlap with 15 strips of 25 models each. The 
strips run in north-south direction or vice versa. 

For the restitution each of the two blocks was subdivided in two blocks of 20 % 
lateral overlap. The four separate blocks were given the names of the 4 centres 
which undertook the stereocomparator measurements: 
- Wide-angle blocks: block Frankfurt, uneven strip numbers (1,3,5, ... 13,15), 

8 x 25 = 200 models; block Vienna, even strip numbers (2,4,6, ... 12,14), 
7 x 25 = 175 models. 

- Super-wide-angle blocks: block The Hague, uneven strip numbers (1,3, ... 13,15), 
8 x 25 = 200 models; block Delft, even strip numbers (2,4, ... 12,14), 
7 x 25 = 175 models. --

Aerial photography was taken on five different days by pin-point flying. Table 1 
for wide-angle and Table 2 for super-wide-angle display date and direction of the 
flight strips. Within the test area 548 trigonometric points were signalized, to 
be used as control-points and check-points. For 480 of them also the heights are 
given. Pin-point flying was necessary because also the tie-points were signaliz~d 
in the terrain by double targets, for test putposes. Therefore the models contain 
6 x 2 signalized tie-points located in the 6 standard positions. 

Stereocomparator measurements of the photographs were performed by 4 different 
photogrammetric centres (Zeiss PSK: Frankfurt, The Hague; Wild StK 1: Vienna, 
Delft). The image coordinates were corrected for radial symmetrical distortion, 
refraction, and earth curvature. Then independent models were computed, by 
analytical relative orientation. The independent models went into a number of 
block adjustments with the PAT-M-43 program the results of which have been 
published in 16}. The present study for systematic errors is based on the residu
al errors at tie-points and perspective centres as appearing after such block ad
justments. 

3. METHOD OF INVESTIGATION 

The systematic errors of the independent models are represented by the average 
residual vectors at the 6 standard positions and at the two perspective centres 
of the models after block adjustment. In order to obtain the systematic errors 
the models, as appearing after the block adjustments, were transformed onto a 
nominal reference model, specified by giving the perspective centres of each mod~ 
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the coordinates x1 = 0, YI= 0, x2 
according to the flight plan). 

2500 m, .v2 0 (2500 m was the base length 

The residual errors of the tie
points were referred respectively 
to the ideally located standard 
positions of the reference model, 
see fig. 1. Then for each of the 
standard positions of tie-points 
and of the perspective centres the 
arithmetical means of all residual 
errors in x, y, z of all models 
were computed. The mean values re
present the systematic planimetric 
and vertical model deformations. 

Figure 1: Reference model for 
representation of 
systematic model 
d e f o rm a t i o n s . 

X (North) 

t 
5 I } 3 

T [o---+---+--<0>-+-J ---·[7 l:k rn 

f-_1 k ~ 
2.5 km 

l (East ) 

5 km ----l 

The empirical investigation on systematic errors of indeoendent models refers to 
the four separate 0berschwaben blocks of 20 % lateral overlap which include 200 
and 175 models respectively. The following adjustments with different control 
versions are included: 

Block Frankfurt (w.a.) and block The Hague (s.w.a. ): 

- version 0: all planimetric and vertical control points 
- version 1: Planimetric control: perimeter, spacing i=2 base-lengths 

Vertical control: chains, bridging distance i=2 base-lengths 
- version 5: Planimetric control: 

Vertical control: 
4 corner points 
3 chains, bridging distance i=12.5(6) base
lengths, with 4 additional perimeter points 
(see J6J). 

Block Vienna (w.a.) and block Delft (s.w.a.): 
- version 0: all given planimetric and vertical control points. 

Version 0 gives 2 - 3 control points per model. Therefore the adjustment is more 
or less equivalent to absolute orientation of single models. Version 0 will give 
the best estimation of the actual systematic model deformations. The versions 1 
and 5 of the blocks Frankfurt and The Hague are intended to show the influence 
of control distribution on the apparent systematic errors. 

4. RESULTS 

The results of the investigation are summarized in the tables 1 - 4 and figures 
2 - 5. The tables 1 and 2 present, separately for each of the 15 wide-angle and 
15 super-wide-angle strips, the average residual coordinate errors at the 6 stan
dard model tie-point positions, referring to the adjustment version 0 (all con
trol points used). Table 3 presents the results of all adjustment versions trea
ted of all 4 blocks, by summarizing the strips in groups by common flight direc
tion. Table 4 displays accordingly the systematic residual errors at the per
spective centres. In addition, the essential results are graphically represented 
in figures 2 - 5. 
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Table l, OEEPE-Oberschwaben 

strip 

flight 

no. 

Systematic model. deform~t1ons after block adjustment by independent models, 
Wide-angle strips: Control version O; in units of pm 

l 2 3 4 5 6 7 8 9 10 11 12 

di rec ti or NS SN NS SN NS SN NS SN SN NS SN SN 

13 14 15 

NS ~s SN 

flight mission 8.4. 8.4. 8. 4. 8.4. 8. 4. 8.4. 9. 4. 12. 5. 9.4. 12.5. 12. 5. 12. 5. 12.5. 12. 5. 12. 5. 
standard 
position 

X 1 +1.6 +0.6 +2.1 +2.1 +l. 7 tl.O +2 .1 tl.6 + 3.3 +2.7 + 2.4 +2.0 +1.9 +0.3 +2.0 
2 -1. 7 -0.8 -2. 1 -2.1 -1. 7 -1.0 -2.1 -1. 7 - 3.3 -2.7 - 2.4 -2.0 -1. 9 -0.3 -2.0 
3 -0.8 +7.7 +0.0 +6.4 -2.4 +6.7 +0.1 +4.0 +10.3 • .; . 2 +11.4 +5.8 -0.6 -5.4 +7.9 
4 +4.1 -3.7 +4.1 -2.7 +5.1 -4.5 +2,6 -4.5 - ·6, 2 +3.9 - 6.3 -6.1 +3.9 +5.4 -7.9 
5 +6.0 -3.4 +4.6 -4.1 +4.6 -4.4 +5.0 -2.7 - 3.5 +9.4 - 5. 7 -2.1 +4.7 +7.1 -3.9 
6 -6.0 +3.9 -8.5 +0.0 -8.7 tl. 5 -7.9 +0.7 + 0.6 -9.2 + 1.9 +2.4 -8.0 -6. 2 tl. 2 

y 1 +2.8 +2.1 +3.4 +2.?. +2.7 +2.5 +3.0 +0.5 + 2.0 -1.1 + 2.6 -0.2 +1.5 -2. 1 +1. 7 
2 -2.7 -2.3 -3.4 -2.2 -2.7 -2.5 -3.0 -0.6 - 2.0 +1.1 - 2.6 +0.2 -1.5 +2. 1 -1. 7 
3 +0.4 +3.0 +0.8 + 1. 8. +0.4 tl. 4 -0.6 +0.7 - 1.5 -2.8 + 2.4 +0.4 -1.5 +0.5 +2.3 
4 -2.8 -5.6 -2.1 -4.8 -3.3 -3.4 -7.2 -1.5 - 2.8 -5.0 -·3.6 -0.7 -5.7 -0.3 -2.3 
5 +2.5 -0.1 +5.9 +3 .8 +3.3 +3.3 +2.7 -1.0 + 7.2 -0,2 + 4. 2 +1.5 +2.5 +0.6 +3.9 
6 -2.2 -0.2 -2.6 -0.7 -1.8 +0.2 -0 .1 +3.0 + 0.3 +0.6 + 0.6 +6.3 -1.4 -0.2 +2.5 

z 1 +2.6 +0.5 +3.5 -3.4 +3.4 -1.8 +3.8 -1.4 - 3.5 +2.7 - 0.8 -3.l +0.2 +3.3 -1.1 
2· -2.4 -0.0 -3.5 +3.3 -3.4 +1.8 -3.8 +1.6 + 3.5 -2.7 + 0.8 +3.1 -0.2 -3.3 +1.1 
3 -1. 2 · -3.1 +0.0 -1.8 +0.1 +l. 7 -1. 5 -1.0 + 2.8 -3.8 + 0.1 -1. 2 +o.o -3.9 so. 1 
4 +O.l +2.0 +1.3 -0.3 -0.0 -0,9 +2.6 +l. 9 - 1. 3 +3,8 - 0.9 -0 .1 +0,9 +3.6 +0.1 
5 -2.1 +1.0 -0.9 +2.8 -3.3 tl. 9 -2.3 +1.7 + 1. 6 +0.7 - l. 6 +1.8 +0.7 +1.7 -0.0 
6 +2.7 -0.7 +1.5 -2.2 +2.2 -o .1 +2.3 -2.4 - 2'.2 -1. 3 + 0.3 -1.8 +0.1 -0.4 -0.6 

r.m. s. differences of model-resfduals against mean of strip 

"" 
2.3 2.8 3,1 2.9 2.7 3. 9 3.1 2 ,') 2,8 2,6 2. 9 2.6 2,6 2.5 L9 

"y 3.3 3.0 4. 5 5. 1 3,3 4. 1 3,8 2.8 4.1 2.8 3.7 2.8 2.9 3.3 3.2 
"z 5, 2 4.1 4.7 4.6 4.6 5, 2 4. 5 3.9 4,5 3,7 4.1 3.4 3.2 2.4 3.6 

Table 2. OEEPE-Oberschwaben 

strip no. 
flight 

Systematic model deformations after block adjustment by independent models. 
Super-wide-angle strips: Control version O; in units of pm 

1 2 3 4 5 6 7 8 9 10 11 

SN NS SN NS 

12 

SN 
dfrcction fiS SN NS SN NS SN NS 

f 1 i ght 

X 

y 

z 

r.m. s. 

mission 10.4. 

standard 
position 

1 +3.1 
2 -3. 1 
3 +6.3 
4 -4.9 
5 -1. 1 
6 +l. 1 

1 +1.0 
2 -1.0 
3 -2.8 
4 -2.0 
5 +4.0 
6 -4.0 

1 +4.2 
2 -4.2 
3 -1.5 
4 tl. 4 
5 -0.8 
6 +0,8 

differences of 

"x 
"y 
"z 

2.8 
4.9 
3.6 

10.4. 10.4. 10.4. 10.4. 

+l. 4 +3.0 + 3.5 +3.7 
-1. 4 -3.0 - 3.5 -3. 7 
-0.3 +8.5 + 0.9 +6.9 
+3.8 -5.3 + 1. 1 -4.4 
+7.1 -1.0 + 5.8 -0. 1 
-7. 1 -0.9 -10.0 -2.5 

+0.7 +3.0 + i.o +2.0 
-0. 7 -3.0 - 1.0 -2.0 
+1. 9 -5,5 + 1, 4 -5.9 
-6. 1 +l. 2 - 7.6 -0.2 
+0.4 +7.4 + 4.2 +8.2 
-0.4 -1. 6 + 0.6 -3.7 

-4. 3 +l. 9 - 2.3 +2.2 
+4.3 -1. 9 + 2.3 -2.2 
+O.l +0.9 - 1. 2 tl. 1 
+0.3 -0 .1 + 1.1 -0.5 
+2.9 -0.8 + 1.7 -0.4 
-2,8 +l. 4 - 1.8 -0.1 

model-residuals against 
3.3 4.0 3.6 3.8 
3.7 5.3 4,3 4.9 
3.5 3,9 3.2 4.5 

10.4. 10.4. 10.4. 

+2.9 +4.8 + 4.3 
-2.9 -4.8 
+0.7 +5.9 
+l. 9 
+5.6 
-7.7 

+ 1. 1 
-1. 1 
-1. 1 
-4.5 
+5.0 
+0.9 

-3.5 
+3.5 
+1.5 
-1. 9 
+0,9 
-0.8 

mean of 
3.9 
4.6 
3.3 

-4.3 
tl. 6 
-3.0 

+0.7 
-0.7 
-2.8 
-2.8 
+7.4 
+0,4 

+3. 5 
-3.5 
-3.0 
+2.4 
+0,8 
-0.8 

strip 
3.8 
5.7 
3.9 

- 4.3 
+ o.o 
+ 1.9 
+ 8.0 
-l0.5 

+·1.0 
- 1.0 
+ 0.5 
- 5.4 
+ 2,7 
+ 2,8 

- 2.9 
+ 2,9 
+ 0. 6 · 
-
+ 
+ 

0 .1 
0,2 
0.2 

3,2 
4.6 
3, 2 
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26.4. 

+4.3 
-4.3 
+8.7 
-4.0 
+1.0 
-2.6 

+l. 9 
-1. 9 
-4.8 
-0.8 
+8.6 
-2.1 

+4.4 
-4.4 
-0.8 
+1.6 
.-o, 2 
+0.0 

3.4 
5,1 
4.4 

26.4. 

+1.8 
-1.8 
-1. 4 
+5.0 
+6.0 
-7.8 

+2.0 
-2.0 
+2.9 
-6.9 
+4.1 
+0.6 

-3.8 
+3.8 
+l. 6 
+0.2 
+l. 3 
-1. 7 

3,9 
4.7 
3.3 

26.4. 

+ 4. 3 
- 4. 3 
+ 8.8 
- 4.9 
- 2.8 
- 2·. 1 

+ 4.5 
- 4.5 
- 3.4 
- 0.8 
+10.8 
-

+ 
-----

3.7 

4.7 
4.7 
1.0 
0.3 
1.1 
0 .1 

3.8 
4.3 
4.0 

26.4. 

+2.8 
-2.8 
-1. 7 
+4.8 
+4.9 
-8.0 

+2.2 
-2.2 
+5.6 
-8.6 
+0.4 
+3.1 

-3.0 
+3.0 
tl. 4 
-1.0 
-0.7 
-0.4 

3,6 
6 .1 
4.6 

13 

NS 

26.4. 

+2.3 
-2.3 
+8.2 
-5. 2 
-3.9 
-0.3 

+1.8 
-1.8 
-2.2 
-0.4 
+7.0 
-2.6 

+3.5 
-3.5 
-1. 3 
+0.5 
+0.4 
+1.1 

3.7 
4.1 
3 .1 

14 

SN 

26 .4. 

+l. 2 
-1.5 
-5. 1 
+4.8 
+4.7 
-8.3 

+l. 6 
-1. 6 
+4.9 
-4.8 
-0.2 
+2.4 

-1. 9 
+2 .1 
+1. 1 
-1. 2 
-0, 5 
+0,6 

3, 3 
3.7 
3.2 

15 

NS 

26.4. 

+1.7 
-1. 7 
+5. 1 
-5. 1 
-2.4 
+0.9 

-o.o 
+o.o 
+0.7 
-0.7 
+5.3 
-2.8 

+2.3 
-2.3 
-2.2 
+2.2 
tl. 7 
-1. 2 

3.5 
5.1 
3.0 
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Table 3, OEEPE-Oberschwaben 

Systematic model deformations after block adjustment by independent models, 

Dependence on flight direction and control version (in units of pm) 

block I Frankfurt (w. a,) Vienna (w. a.) The Hague ( s .w, a.) Delft 
(S,\La.) 

control version 0 0 1 l 5 5 0 0 0 1 5 0 

f 1 i gh t direction NS SN NS SN NS SN NS SN NS NS NS SN 
avera~e of 
n strips 11 = 5 3 5 3 5 3 2 5 8 $ 8 7 

standard 
position 

X 1 +1.9 + 2, 6 +I. 6 +1.6 +O.l -0.1 +1.5 +1. 5 +3.4 +2.7 +0.2 +2.6 
2 -1. 9 -2,6 -1. 6 -1.6 -0,1 +0.1 -1. 5 -1.5 -3.4 -2.7 -0.2 -2.6 
3 -0,7 +9.8 -1. 2 +8.5 -3.9 +5.6 -4.8 +6.1 +7.3 +6.3 +3.0 -0.9 
4 +4.0 -6.8 +4.0 -6.0 +3.9 -5.2 +4.6 -4.3 -4.8 -4. 3 -2.8 +3.3 
5 +5.0 -4.3 +4 ·. 9 -5.0 +4.3 -5,1 +8.3 -3.3 -1. 2 -1. 7 -2.9 +6.0 
6 -7,9 +l. 2 - 7. 1 +2.3 -4.4 +4,8 - 7. 7 + 1. 7 -1. 2 -0. 1 +2.6 -8.5 

y 1 I +2.6 +2, I +2.2 +1.8 +0.3 +O,l -1. 6 +l. 4 +1.8 +1. 3 +0.0 +1. 4 
2 -2.6 -2. 1 - 2. 1 -1.8 -0.3 -0. 1 +l. 6 -1. 5 -1.8 -1. 3 -0.0 -1.4 
3 -0.1 +1.0 +0.4 +1.0 -0.3 +0.2 -1. 2 +1.4 -3.4 -3. 1 -2.6 +2.2 
4 -4.2 -2.9 -2.8 -2.6 +0.3 -0.3 -2. 7 -3.0 -0.8 +0.1 +2.7 -6.3 
5 +3.4 +5.1 +2.9 +2.9 +0.4 -0.1 +0.2 +1.6 +7.4 +6.1 +3.2 +2.4 
6 -1. 6 +1. 1 -1. 1 -0.2 -0.3 +0.2 +0.2 +1.8 -2.5 -2.5 -2.9 +1.4 

z 1 +2.7 -1 .8 +2.7 -1 . 7 +2.8 -1.8 +3.0 -1. 9 +3.4 +3.5 +3.4 -3.1 
2 -2.7 +1.8 -2.7 +1.7 -2.7 +1.8 -3.0 +1. 9 -3.4 -3.5 -3.4 +3.1 
3 -0.5 +1.0 -0.4 +0.7 -0.3 +0.6 -3.8 -1 . 0 -1.0 -0.9 -0.9 +0.7 
4 +1.0 -0.7 +0.9 -0.7 +0.8 -0.6 +3.7 +0.5 +0.8 +0.8 +0.8 -0.3 
5 -1. 6 +O. 1 -1. 7 t0.4 -1.8 +0.5 +1. 2 +1.8 -0. 1 -0.2 -0.3 +0.8 
6 +1.8 -0.8 +1. 7 -0.8 +1.6 -0.9 -0.9 -1. 4 +0.2 +0.2 +0,3 -1.0 

Table 4. OEEPE-Oberschwaben 

Systematic errors of perspective centres after block adjustment by independent models. 

Wide-angle-strips: Control version 0. in units of pm 

strip no. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
flight 
direction NS SN NS SN NS SN NS SN SN NS SN SN NS NS SN 

flight mission 8.4. 8.4. 8.4. 8. 4. 8.4. 8.4. 9.4. 12. 5. 9 .4. 12.5. 12.5. 12. 5. 12. 5. 12.5. 12. 5. 

X +7.7 +2.0 +2. 1 +1.1 +7.6 +6.3 +6.2 +3.9 +4.3 +0.7 +4.6 +2.8 +5.1 +3.5 +5.0 
y -6.4 -2.0 -2.7 -1.9 -5.4 -2.2 -5. 8 -1 . 6 -3.5 -0.3 -1.5 -0.3 -3.8 +0.9 -3.0 
z +1.5 -4.2 +2.7 -3.0 +0.8 -1. 3 -o. 1 -2.5 +0.1 +0.7 -2.1 -4.1 -0.3 +0.9 -2.4 

Super-wide-angle strips: Control version 0; in uni ts of pm 
-

strip 110. 2 3 4 6 8 9 10 11 12 13 14 15 
flight 
direction NS SN NS SN NS SN NS SN NS SN NS SN NS SN NS 
flight mission 10.4, 10. 4. 10.4. 10,4, 10.4. 10. 4. 10.4. 10.4. 26.4. 26.4. 26. 4. 26.4. 26. 4. 26.4. 26.4. 

X +0.4 +0.7 -1. 5 + 1. 3 +1.8 +3.5 -0.0 -1. 7 -0.7 -0. 2 -0.3 +1.8 +2.6 +3.3 +3.0 
y +0.7 -1. 1 -0.8 -1.6 -2.2 -2.0 +0.7 -3.9 -1. 2 -3.7 +0.1 -1. 2 -0. 7 -2.4 +1. 7 
z +3.0 -3. 2 +4,5 -3.0 +4.7 -0,6 +2.8 -2.4 +3.6 -3. 1 +5.8 -4.5 +4.0 -3. 3 +1.8 

D epen ence on 1 g 1rection fl'htd' an contro version in units of µm 

block Frankfurt (w.a.) Vienna (w. a.) The Hague ( s .w. a.) 1~e!fi 1 
control versior 0 0 1 1 5 5 0 0 0 1 5 0 
flight 
direction NS SN NS SN NS SN NS SN NS NS NS SN 

~v;m~s of n = 5 3 5 3 5 3 2 5 8 8 8 7 

X +5.8 +4.6 +5.9 +5.0 +6,5 +5,9 +2.1 +3.2 +0.7 +1. 4 +3.8 +1. 3 
y -4.8 -2,7 -4,2 -2,8 -2.4 -1.3 +0.3 -1. 6 -0.2 +0.3 +1.6 -2.3 
z +0.9 -1.4 +0,9 -1.6 +1. l -1.8 t•'.l. 8 -3.0 +3.8 +3.6 +3.6 -2.9 
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Figure 2: OEEPE Oberschwaben - Systematic model deformations after block 
adjustment by independent models 
Dependence on flight direction 
Planimetry: GP-version O; 1 mm~ 1 µm 

WA Frankfurt Block 
riean of: 

all strips {8) 

WA Wien Block 
mean of: 

all strips {7) 

NS-strips (5) 

NS-strips (2) SN-strips (5) 

Figure 3: OEEPE Oberschwaben - Systematic model deformations after block 
adjustment by independent models 
Comparison of wide-angle and super-wide-angle 
Planimetry: GP-version O; 1 mm~ 1 µm 

'wide-angle 

mean of: NS-strips 17) 

Super -wide -angle 

mean of: NS-strips (8) 
{block The Hague) 
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SN-strips {8) 

SN-strips {7) 

{block Delft) 
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Figure 4 OEEPE Oberschwaben - Systematic model deformations after block 
adjustment by independent models 
Dependence on control versions: 
Planimetry 1 mm~ 1 µm 

'NA Frankfurt Block (mean of 5 NS-strips) 

CP-·,ersion 0: 
all control points 

SWA Den Haag Block 

CP-version O: 
all control points 

GP-version 1: 
perimeter control 

mean of 8 NS-strips) 

GP-version 1: 
perimeter control 

5. DISCUSSION OF THE RESULTS 
5.1 Magnitude and type of systematic model deformations 

GP-version 5: 
4 corner points 

CP-version 5: 
4 corner points 

The results show clearly the presence of systematic errors, of considerable 
magnitude, at model points and perspective centres. 
The maximum 2lanimetric errors occur at model corners, the central points (1,2) 
being less affected. When judging the strips separately the maximum systematic 
coordinate errors are: Wide-angle 11.4 µminx, 7.2 µm in y; super-wide-angle 
10.5 µminx, 10.8 µmin y. The respective maximum values at the central points 1 
and 2 are only: w.a. 3.3 µm and 3.4 µm, s.w.a. 4.8 µm and 4.5 µm. 

The average systematic errors of the separate strips are only slightly larger 
than the average systematic errors of groups of strips of common flight direction. 
Thus the systematic errors are, to a most remarkable degree, constant. 

The root mean square values ms of the planimetric systematic errors of the 
standard points are presented in table 5. They represent noticeable percentages 
of the values of 0 0 of the block adjustments. 

Table 5: Comparison of standard errors of unit weight (cro) and r.m.s. values ms 
of systematic errors; planimetry, control version 0. 

block Frankfurt Vienna The Hague Delft 
w.a. w.a. s. w. a. s. w. a. 

0o 20.3 cm 19.2 cm 2 5. 1 cm 24.6 cm 
7.2 µm 6.9 µm 9.0 µm 8.8 µm 

ms 11. 1 cm 9.7 cm 10.9 cm 11. 1 cm 
4.0 µm 3.5 µm 3.9 µm 4.0 µ m 

The systematic vertical model deformations are, altogether, considerably smaller 
than the P:animetric deformations. The maximum errors, occuring often at the 
c~ntral points 1 an~ 2, amount to 3.9 µm and 4.7 µm for wide-angle and super
wide-angle, respectively. The vertical errors at model corners are unexpectedly 
sma 11 . 
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Figure 5: 
OEEPE Oberschwaben - Systematic 
vertical model deformations and 
systematic errors of perspec
tive centres 
CP-version O; 1 mm~ 1 µm 

The systematic errors at the 
perspective centres are collec
ted in table 4 and presented 
graphically in fig. 5. The 
values refer always to p.c. 
No. 1, the values of p.c. 
No. 2 being of exactly equal 
magnitude and opposite sign. 
In general, the planimetric 
errors at the perspective. 
centres are smaller than of 
the model points, whilst the 
magnitude of vertical errors 
of the perspective centres 
compares with the vertical 
model deformations. The 
maximum systematic errors 
per strip, of the perspec-
tive centres amount in 
x, y, z, respectively, to 
7.7 µm, 6.4 µm, 4.2 µm (w.a.) 
and 3.5 µm, 3.9 µm, 5.8 µm 
(s.w.a.), for control ver
sion O. 
Apart from the magnitude also 
the~ of model deforma
tions are of special inter
est. They are common for both 
w.a. and s.w.a. models as 
displayed in fig. 2 - 5. 
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WA Frankfurt Block 
mean of: NS-strips (5) 

WA Wien Block 
mean of: NS-strips (2) 

SWA Den Haag Block 
mean of: NS-strips (8) 

mean of: SN-strips (3) 

mean of: SN-strips (5) 

SWA Delft Block 
mean of: SN-strips (7) 

The planimetric model deformations are trapeziform. Characteristic features are: 
Considerable scale difference between the short sides of the models; points 3-1-5 
and 4-2-6, respectively, form straight lines; errors of points 1 and 2 have equal 
magnitude, reversed sign. 
The typical features of vertical model deformations are: Little or no warping of 
the models; maximum height errors, of opposite sign, at central points 1 and 2 
(arching and sagging). 
It is only at the perspective centres that w.a. and s.w.a. behave somewhat dif
ferent. In the first case (w.a.) symmetrical enlargement of the base and azimutal 
rotation is predominant, in the second case (s.w.a.) the base is mainly tilted. 

5.2 Dependencies of systematic model errors 

With regard to possible corrections of systematic model deformations it is most 
important to investigate how constant they are and on what parameters they 
depend. 
Flight direction, camera: The tables and graphs show clearly that the model de
formations, as referred to the state coordinate system, depend in first instance 
on the flight direction. This is true for w.a. and s.w.a., see figures 2 and 3. 
After rotation by 180° the planimetric model deformations of the NS-strips match 
very well with those of the SN-strips. The dependence on flight direction is 
equally confirmed by table 3 and fig. 5 for vertical model deformations. It also 
holds for the perspective centres. 
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Fig. 2 shows that by takinq the mean deformation of all models, without taking 
the flight direction into account, an entirely misleading type of model deforma
tion would result. Only an affine deformation would be the result, the trapezi
form deformation, related to the flight direction, being eliminated. 

The important conclusion is, that the main systematic model deformations origina
te from the camera (all exposures were taken from the same airplane - Aero Com
mander 560 F; all strips were triangulated by stereocomparator in direction 
north-south; it is not known, how many film magazines were used during the flight 
missions). This is confirmed by the different planimetric model deformations of 
w.a. and s.w.a., although being of the same type. (The vertical deformations are, 
however, very similar in both cases, except for the perspective centres). It is 
also confirmed by the remarkable constancy of the deformations within each group, 
independent of the date of the flight missions which has no traceable effect. 

The overall r.m.s. deviations of the individual residual errors of the models 
against the average systematic errors are for wide-angle 2.9 µminx and 3.8 µm 
in y, for super-wide-angle 3.8 µminx and 4.9 µmin y. 

It is evident, therefore, that any method of correction of systematic errors by 
additional parameters, see 131, 151, has to consider the flight direction of 
strips. A different set of parameters per strip might be advisable. 

Control version: According to table 3 and fig. 4, there is some influence of the 
control version of the block adjustment on the apparent systematic model deforma
tions. The effect is noticeable in planimetry only. The type of the effect is 
most interesting. With poor planimetric ground control the trapeziform type of 
planimetric model deformation is correctly indicated, with, however, additional 
affine deformation (scale and shear) superimposed. The additional affine deforma
tion is rather small, however. The systematic planimetric model deformations dif
fer with perimeter control (version 1) by less than 2 µm, with 4 control points 
only (version 5) by less than 5 µm against the 11 true" model deformations as de
termined with all available control points (version 0). This effect is indepen
dent of camera or other flight parameters. 

Restitution centre: There is a small systematic effect related to the 4 different 
centres of restitution, traceable again in planimetry only. -The average plani
metric model deformations, after duely considering the flight directions, differ 
for w.a. between block Frankfurt (PSK) and block Vienna (StKl) by 2.0 µm, for 
s.w.a. between block The Hague (PSK) and block Delft (StKl) by 2.4 µm. The 
respective maximum average differences are 4.2 µm and 2.2 µm. Such systematic 
differences can be explained by the different sets of diapositives and systematic 
errors of the stereocomparators used. 

6. SUMMARY AND CLOSING REMARKS 

This paper presents the results of an empirical investigation into the systematic 
model deformations of the OEEPE test block Oberschwaben, as they are apparent 
from residual errors at tie-points and perspective centres after block adjustment 
by independent models. The results are most interesting with regard to magnitude 
and type of the model deformations and their relation to flight parameters: 

- The magnitude of the systematic coordinate errors is considerable. In plani
metry the deformations are trapeziform. The mean values range between 3.5 11m 
and 4.0 µm, which amounts to a considerable percentage of the 0 0 values of the 
block adjustments (without correction of systematic errors), between 6.9 µm and 
9.0 µm. The vertical model deformations are rather small but also typical, with 
maximum values of opposite sign at the central points 1 and 2 of the models. 

- The model deformations, as referred to the state coordinate system, are pre
dominantly related to the flight directions. Thus, the main cause of the de
formation is clearly the camera. Small systematic effects in planimetry have 
been found to be related to the density of ground control used for the adjust
ment and to the centre (instrument) of restitution. Other flight parameters 
have had no traceable influence on the model deformations. 
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The systematic model deformations have turned out, for a given camery, to be 
constant to a remarkable degree. Therefore it can be expected that suitable pro
cedures for correcting the systematic errors during block adjustment will be 
highly effective and will extraordinarily increase the resultant accuracy of 
the adjusted block, possibly by a factor 2 or 3. It will be essential, however, 
to consid~r the flight direction when introducing additional parameters in a re
fined mathematical model. 
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ON POLYNOMIAL METHODS FOR STRIP ADJUSTMENT 

by Peter Waldhausl, Vienna 

INTRODUCTORY REMARKS 

In 1972 ISP Commission III has recommended to continue with more research on the 
influence of systematic errors in aerial triangulation (AT). The author is well 
aware of the fact that strip adjustment is of minor importance for the future. 
But obviously many airsurvey organisations still operate with polynomial methods 
for strip- and strip-block-adjustment Ill. It was the idea to do retrospectively 
some thorough research on systematic errors based on the mathematical model of 
the polynomial formulae for strip adjustment. This paper is an extract from a 
much longer study published recently 121. There, please, the ccmplete list of 
references and more as well as more detailed formulae may be found. The practical 
sample 5.2 is published first in this paper. 

FROM THE ROTATION MATRIX TO THE ADJUSTMENT POLYNOMIALS 

Since the polynomial formulae for AT adjustment are based on the approximate 
rotation matrix the basic functional model of the polynomials is the very reason 
for some systematic "numerical deformations" of the strip coordinates. They are 
of measurable size (5µm, lOµm) as soon as the rotations to be corrected locally 
are bigger than maximum tolerances (40C, 60C), The numerial deformations are de
fined as the differences between the local transformations with the strict and 
the approximate formula for the orthogonal rotation matrix. The maximum toleran
ces for the absolute orientation of any part of a strip must therefore be smaller 
than the above given values. 

Further systematic negligences follow from the polynomials used. Let us begin 
with the formulae for the approximate absolute orientation: 

X - x = x dmx +6x0 - y d + z d 

Y - y = x d ;ie + 6 Yo + y dmy - z dw 

Z - z = x d <f +6 z 0 + y dw + z dm2 

( 1 ) 

Six of the nine unknown coefficients are substituted by five "basic-polynomials": 

dmx • • • • • ••••••••,by••••••• Polx(x) 

dmy and dm2 ,,,,, by••••••• Poly(x) 
+) 

d(I) ............. by •.•• I •• Pol(l)(x) ( 2) 
dw I I I I I I I I I I I I I by••••••• Polw(x) 

d at I I I I I I • I I I I I I by•• • • • • • Pola((x) 

The well known effect of the summation of all errors proportional x needs their 
integration. Thus (1) leads to the basic formulae for the most of the polynomial 
strip adjustment formulae used so far: 

X - x = J Polx(x)dx +6x0 - y Poldt(x) + z Pol(l)(x) 

x;xo 

Y - y = J PolJe (x)dx + 6 y0 + yPoly (x) - zPolw (x) 
X = x 0 

X 

Z - z = f Pol(!) (x)dx + 6z0 + yPolw (x) + zPoly (x) 
X-X0 

+) z-sca I e cannot be defined by ground contro I, nor ma 11 y 

Waldhausl 1 
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SELECTION OF BASIC POLYNOMIALS AND CLASSIFICATION OF STRIP ADJUSTMENT METHODS 

The basic polynomials Poli(x),i = x,y,$,w,K, normally are a selection out of the 
family ir( 2)' i.e. polynomials up to the second degree. 

Pol(o) ( X) = a 

Pol(l) (x) = a + b'x (4) 

Pol ( 2) (x) = a + bx+ cx 2 

The case Pol(o)(X) is trivial, because it leads back to formulae (1). The selec
tion of polynomials out of (4) allows a simple classification of the most of the 
strip adjustment methods with polynomials. We just take the degree-numbers of the 
five basic polynomials following the same sequence as of i above. 
We thus get a five digit type number. Two digits are set one above the other 
where independent basic polynomials are used for the two coordinates (sequence 
x,y,z, e.g. x (top), z (bottom), in the case of$). Type digits in brackets in
dicate uncomplete polynomials (e.g. (2) for:a + cx2). Whenever "flat terrain" has 
been assumed this will be indicated by 11

2 = 0
11

• Here we often find another 
typical source for systematfc strip deformations by the polynomial adjustment 
methods. The negligences due to this assumption 11

2 = 0
11 become greater very soon 

than 10 µmin photo-scale: Let us allow for rotations locally somewhere along the 
strip up to 60c, then the above limit of 10 µmis reached as soon as the height 
differences are greater than M in meters, where M is equal to one thousands of 
the photo-scale. And that is not very much. 

Table (5) shows row a comparison of nine of the polynomial "methods" for strip 
adjustment. It is up to the reader to compare more of them. In (5) the coeffici
ents are shown in a slightly changed order. 

BASIC SPLINE FUNCTIONS INSTEAD OF BASIC POLYNOMIALS 

In order to increase the known limited flexibility of the functional model of 
polynomial strip adjustment formulae (3) spline functions can be introduced in
stead of the no rm al bas i c poly no mi a 1 s ( 4) , see I 2 I and a 1 so I 3 I and 14 I . Sp 1 i n e 
functions are not yet known too much in photogrammetry. Therefore a number of 
definitions shall follow. 

1. DEFINITION OF SPLINE-FUNCTIONS 

Given an increasing sequence of real numbers (xi)' i = l(l)n, xi < xi+l. 

(a) A spline function Sm(x) of degree m with the knots Xi, i = l(l)n, is a 
function defined in each interval (Xi, Xi+l), i = O(l)n, x0 := - oo, 
x n + 1 : = + oo , by s om e po 1 y n om i a ~ o f d e g r e e '.: m . 

(8) Sm(x) and its derivations Sm(J)(x), j = l(l)m-1, are continuous (at least 
piecewise) everywhere. 

Examples : 

S 0 (x) = Stepfunctlon, ((!,) 
is not operative 

s 1 (x) = Polygon, continuous 

Sz (x) = Parabolas, smooth 

S3(x) = Cubic parabolas, 
smooth and of 
continuous curvature 

=1 1-----<~ ___ k I 

-I Id t-.. 
+-:rt:±::. 
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llx =Ax
0 

+ (Scale) + ( ';)€ ) + ( 4' ) 

Ay=Ay0 + ;}e ) + (Scale)+ ( w ) 

£l Z =.4 z 0 + ( (j) ) + w ) + (Scale) 

2 2 2 X X Type 
Method X 2 } y xy X y z xz X Z 

AX•~ a b 0 -aK -bK -oK a b C 2 2 2 2 2 
Vienna 0 X X X cp ip q> 

(Long strips) Ay " Ayo ¾ bK OK a b C -a -b -c y y y w w w 
AZ• AZ -a •b •O aw bw ow 8. b C 

ocpq>cp y y y 

AX • AX a b -aK -bK a b 1 2 1 2 1 
Vienna 1 0 X X qi cp 

t>y • "Yo °it bx a b C •a -b -c 
(Short strips) y y y w w w 

AZ• AZ -a -b a b 0 a b 0 0 <j> q> w w w y y y 

AX• AX a b -a -b aq> b 1 2 1 2 1 
Vienna 2 0 X X KX KX (fl 1 Ay ,. Ayo aK \., a b 0 -a •b -o 
(:le independent) y y y w w w 

t.z • t.z -a -b a bw 0 a b C 0 cp <p w w y y y 

AX• t.X a b 0 -°it •bK •OK 2a2 2 1 2 0 m Ill m 
v,d, Weele t.y • Ayo ¾ bK OK a b 0 Z a 0 m m m 

t.z • t.z -a •b -o 
0 cp <p cp aw bw 

AX • AX a b 1 1 1 1 ( 1) 0 X X 

Schwi def sky Ay • t.yo bK a b z • 0 y y 
t.z • AZ -a -b 8. b 

0 cp <p w w 

b -°xx-bKX 1 1 1 1 1 
AX • AX a 

1 
OEEPE / AB 

0 X X 

Ay • t.yo a b a b z ., 0 
Ky Ky y y 

Grama stet ten t.z • t.z -a -b a bw 0 cp cp w 

AX • AX a b -a •b •o 1 2 1 2 ~ 
0 X X KX KX KX 

Zarzycki Ay • Ayo a b & b 0 z • 0 Ky Ky y y y 
t.z • t.z -a •b aw bw 0 

0 cp IP w 

AX • AX a b •¾ •bK aq> b 1•1 1 1 1 
Neumaier 0 DI II q> 

(Formula 20) 
Ay • t.y 0 8.14 \c. . a b -a •b 

DI m w w 
t.z • AZ -a -b a b a b 

0 cp IP w w m m 

AX • t.X a b -b • 1 1 1 1 ( 1) 0 X X Kx 
Mar/:jfk t.y • t.yo bK,y • A b z • 0 y y 

t.z • t.z -a -b a b 
0 qi 'I' w w 

Table (5): Comparison and classlflcatlon of nine different polynomial strip 
adjustment formulae, References are given in [2] , 

2. NATURAL SPLINE FUNCTIONS 

A natural spline function has a finite number of knots Xi, i=l(l)n, in the inter
val (x1, Xn). In the interior of said interval the degree of the polynomials is 
odd,,,; (2 k-1), in both the end intervals (-oo, xi) and (xn, +oo) the degree is 
reduced to -::: (k-1). 
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Example k = 2 

m. = 2k - 1 = 3 ( i = 'interior') 
1 

me = k - 1 = 1 (3 = 'exterior' or 'end' ) 

I I 
linear linear 

combined polynomials of degree$ 3 

Fig. 6: Graph of a natural spline function k = 2. 

The natural spline functionsKm (x1,xz,· .. ,xn) are known to be the smoothest 
interpolation from all possible functions 

f € ck-l ja,b 11 with at least piecewise continuous f(k), due to the definition 
b 

o(f): = J lf(k) (x)l 2 dx +min.with n > k ~ 1. 
a 

It is of interest for us to know that this special class of smoothest inter
Polation functions is to be found among the spline functions. 

3. SPLINE FUNCTIONS REPRESENTED BY TRUNCATED POWER FUNCTIONS 

Each spline function Sm(x) eJ m (x 1 , x2 , ... , xn), i.e. the family of all 
possible spline functions of degree m with the knots Xi, i=l(l)n, can be repre
sented uniquely by truncated power functions. 

n m 
Sm(x) = p(x) + _r cj(x-xj)+ with p(x)e: 11m 

J=l 

where 7f m is the family of a 11 polynomials 
that 

(x-xj)m if (x-xj) 
(x-xj)! = { 

0 if (x-xj) 

Example: 

Fig. 9: Example of a truncated 
power function 

> 0 

$ 0 

of degree - m. 

4. INTERPOLATION, APPROXIMATION AND ADJUSTMENT OF STRIPS 

( 7) 

The 11+11 simply indicates 

( 8) 

Interpolation : S(x) passes through the knots. The number of degrees of freedom 
of S(x) equals the number of reference points (= pass points). We distinguish: 

{a) interpolation at the knots 
and 

(B) interpolation with reference points only near the knots. 
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(a) 

v = l(l)n knots 

</> 1 ( 1 ) r reference points 

( s ) 

rl--- 1~1 I I I I I ' ➔ X 

X ◄ Xz X3 X4 

xv N 

x</> V = 1 ( 1) n 

n = r </> 1 ( 1) r 

x</> 
< xv < x</>+m-1 m = degree of Sm(x) 

Fig.10: Interpolating spline-functions, for (a) and (s), see text. 

Approximation: The number of degrees of freedom of Sm(x) is reduced by only one 
condition ("smoothness-condition"): 

r b 
E(u) = 91,E pi(Xm(xi)-yi) 2 + g2 J (S;(x) 2 dx + min. (11) 

1=1 a 

where E(u) is the Euclidic norm of the vector of unknowns, and 91, Pi and g~ are 
variable weight numbers, a~ x1 and b ~ Xn define the interval of interest Ja,bl. 

We again distinguish between 

(a) approximation at the knots 
and 

(S) approximation with references near the knots. 

(a) 

v = l(l)n 
</> = l(l)r 

Waldhausl 5 
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- 30 l -

-----'...L...._i==_____J1LJ____I ==f=------1-L--; -~I .. 
Xz 

v = l(l)n 
$ = l(l)r 

knots 
reference points 

Fig.12: Approximating spline functions, for (o:) and (B), see text. 

Adjustment: may be defined as the general case, where more reference points are 
given than knots and where - in general - a smoothness condition exists. g2/g1 in 
(11) may be 0. The reference points are situated also far away from the knots. 

5. KUBIK'S PIECEWISE POLYNOMIALS 

K. Kubik 141 introduced linear, quadratic and cubic parabolas for each interval 
( x i , x i + 1 ) , i = 1( 1 ) n - 1. T he f o rm u 1 a e fo 1 1 ow t he p res en ta ti o n of Ah 1 be r g I 5 I 
which represent a Hermite-interpolation between the knots. The parameters are 
the function values Yi, the first derivations y' i and/or the curvatures Y"i ,i+l· 
Comparable formulations are presented in 121, where Kubik's spline-version has 
been prepared for combination with formula (3). For examplification the trunca
ted power functions are easier to handle. 

6. STRIP ADJUSTMENT WITH BASIC SPLINE FUNCTIONS 

After introduction of basic spline functions formulae (3) read as follows. 

X 

X - x = J Sx(x)dx +6x0 - ySd(' (x) + zSlf (x) 
X~o 

X 

Y - y = J Sa{ (x)dx + 6Yo + ySy (x) - zSw (x) 
x=x0 

X 

Z - z = - J S'f(x)dx +6z0 + ySw (x) + zSy (x) 
x=x0 

( 13) 

With the increasing number of knots Xi also the m1n1mum number of ground control 
increases. The distribution and the number of pass-points shall not be evaluated 
by the number of unknown coefficients in the equations (3) or (13) only. Care 
should be taken that for the five different basic spline functions each the 
necessary information are functionally, geometrically well defined: the scales 
in x and y direction, the tgK, tg$ and tg w. Due to the 3 integrations the 
relevant numbers of control are iricreased by one. The total number of equations 
required is always greater than the number of unknown coefficients. This results 
from the practical fact that nobody will measure x-pass-points, but only height-, 
plane- or full control, that not coordinates are required but scales and 
rotations. 
Finally the minimum ground control distribution shall be shown for strip adjust
ment formulae (13) of the type S 22222, where all basic spline functions are of 
the order m = 2. crmax shall not get greater than 2 cro, Following 151, where 
Ackermann shows that 

in models 
crmax "' 0,12 ~ cr

0
, we gain the maximum bridging distance 

in= 4,1..;;( d::x ) 2 (14) 
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I: 
A A 

:1 A A A 

A A 

x1 x2 x3 n a 3 

I : 
A A A 

:1 A A A 

I: 
A A A 

: I 
- n + 1 

A A A A - n + 2 

" h A - n + 1 
x, x2 x3 x4 n a 4 

1: 
A A A A 

:1 
-n + 2 

h A A A - n + 2 

I: :1 
A A 4 A 

A A A A A 

t,. ti. A I\ 

x1 x2 x3 X4 x5 n ,. 5 

I: 
A A A A A 

:1 I\ A t,. A ·A 

+ + + + models 
0 6 12 18 24 30 36 

Fig.15: Minimum ground control for strip adjustment with type s 22222 
with n knots xv, V = l(l)n, xv < xv+ 1 · (1 = 2 (1 for strip max 0 

1 engths of 24 to 36 models. t:, = Fu 11 control. For each of the 
three cases two possibilities a re shown. 

PRACTICAL EXAMPLES OF SPLINE STRIP ADJUSTMENT 

For better demonstration of the improved flexibility of spline functions against 
normal polynomials a 19 models strip axis height-adjustment shall be demonstrated 
at first. The photo scale was 1 : 30 000, the A 7 machine scale 1 : 10 000. Two 
times three versions have been calculated. 

Case I : Only the minimum number of ground control has been used (4 - 7 points). 
Case II: All 20 height controlled nadir points have been used. 

The three versions read: 

A V -t:iz+t:iz
0
+a(x-x 1)+b(x-x 1) 2+c 1(x-x 1)] 

( 16) 
= 

B -t:iz+l:iz
0
+a(x-x 1)+b(x-x 1) 2+c 1(x-x 1)] 3 

V = +c 3 (x-x 3 )+ 

C -t:iz+l:iz
0
+a(x-x 1)+b(x-x 1) 2+c 1(x-x 1)~ 3 3 3 

V = +c 2(x-x 2)+ +c 3(x-x 3 )+ +c 4(x-x 4Li-

Finally lvvl has been computed, in all six cases from all 20 points. Table (17) 
shows that the spline functions Band C result in much smaller 1vv1 than the 
normal cubic polynomial A. 

Waldhausl 7 
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I II 

A 26,3 10,6 

B 16,6 7,2 

C 4,o 2,6 

Table 17: The sums lvvl for 20 height controlled nadir points 
after adjustment. For the six cases see test (v in meters). 

The graphs Fig.18 show the final corrections v in meters. We recognize that more 
ground control (4 + 20) cannot change the form of the strip, if an unflexible 
normal cubic polynomial has been used; compare IA and !IA. 

The case IC( 7 ground control points, spline function~ s 1 (x 1 , x 7 , •.• x~) gives 
a much better result than case !IA (20 ground control poii'\ts, cul'iic polyl\omial). 

ABC 

JI: Adjustment with all 20 height 

controlled nadir points 

C BC C 

Fig.18: Final corrections v = Z - zadj for the six cases 

Ground control used : 

Case 
Symbol 

Number 

A 
D 
4 

B 
c::, 

5 

C 

7 

knots 

ABC 
versions 

21 models of the same strip have been adjusted with 3 corresponding versions: 

A with formulae (3), type 22222, i.e. with quadratic basic polynomials 
("knots" x1 , x5) 

8, C: with formulae (13), type S 22222, i.e. with basic spline functions of 
second degree, again truncated power functions have been used. 
8: 3 knots (x 1 , x3 , x5) 
C: 5 knots (x 1 , x2 , x3 , x4 , x5 ) 

Full control has been given to 8 pairs of control points (see fig.19) equally 
distributed over the 21 models. 

Waldhausl 8 
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6---6---6---6---6---6---6---6 

I I I I I I I I 
6 6 6---6---6---6 6---6 

Fig.19: Full ground control and knots used for strip adjustment. 

Version [vv] Vmax redundant 

A 9, 1 
+ 1, 06 {z) 

30 
- 1. 04 {z) 

B 2,9 
+ 0, 58 {z) 

25 - o, 66 {z) 

C 0,4 
+ 0,20 {y) 

15 
- o, 27 {y) 

Table 20: Remaining defects v = ~terr - ~adj.'~= x,y,z, 
after strip adjustment using 16 full control points. 

From the remaining defects, see table 20, the conclusion can be drawn that a 
reasonable strip subdivision by spline-knots and adjustment with the more 
flexible basic spline functions leads to results which are remarkably better 
than those after adjustment with normal basic polynomials. 

SUMMARY 

In 121 a study has been made about systematic negligences in the functional model 
of polynomial strip adjustment formulae. 
At first the functional model of the correction polynomials for aerial triangula
tion is rigidly derived from the rotation matrix. That is necessary in order to 
know that the rotations to be corrected locally in the strip are to be smaller 
than 60C. Greater values cause systematic "numerial deformations" > 10 µmin 
photo scale. 
The introduction of "basic polynomials" allows for a transparent classification 
of the most of the polynomial methods used so far. 
Finally spline functions are used instead of the basic polynomials. This leads to 
polynomial strip adjustment formulae with controllable flexibility and constant 
quotient crmax/cr 0 also for longer strips. In 121 the proposal has been made to 
compare such functionally more strict polynomial strip adjustment methods with 
single model- and bundle (strip) adjustment in order to find out the real pro
gress made with the more analytical methods. 
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EXPERIENCE WITH PHOTOGRAMMETRIC TRIANfULATION IN ASTRONOMY 

by E. Clerici, K. Kubik and J. van Kuilenburg, Delft, Netherlands 

ABSTRACT 

This report documents the results of an application of photogrammetric bundle ad
justment to an astronomical problem. In particular the application to the cali
bration of astronomical telescopes and the determination of porper motion of 
stars is treated. 

INTRODUCTION 

Determination of stars coordinates by photogrammetric block adjustment is be
coming an established procedure in photographic astronomy. The astronomical pro
blem however is a restricted version of the photogrammetric problem, since in 
astronomy the objects are at infinity while the cameras are effectively situated 
at one point. 
Photogrammetry deals with the reconstruction of a three-dimensional object space 
observed with cameras at unknown location, while astronomy deals with a two
dimensional object space with cameras at known coincident locations. The geo
metrical adjustment procedure is, however, completely analogous and the formal 
solution methods can be the same. The computer program used for the application 
documented in this paper has been developed along the lines published by 
D. Brown (Brown 1958). 

PLATE REDUCTION 
Before the measured image coordinates (stars) can be transformed to object space, 
four problems have to be solved. 

First of all a physical model of the imagery which isolates the distortions and 
points out the unknowns has to be developed. Secondly a reference frame has to be 
chosen to convert the measurements to some absolute system. Thirdly a statistical 
model has to be defined to describe the nature of the errors, their propagation 
and their interdependence. Only after these three problems are settled the fourth 
problem, concerning the choice of the reduction methods themselves, can be tack
led. Only this last problem is explicitly treated in this study. 

Most analysis of this reduction problem end up with the formulation of the least 
squares solution which operates iteratively, by improving a first order approxi
mation. This repeated linearisation is fully justified in astronomy (and most 
other applications) since very good approximate values are generally available, 
in the approach used for this study, only linear reduction terms are used. It 
was hoped that systematic image errors after bundle adjustment would indicate 
higher order distortions. This procedure is justified as in the astronomical 
practice seldom terms of higher than third order are reported. 

LEAST SQUARES ADJUSTMENT 

The separate image coordinates and plate constants are adjusted and transformed 
into one system by the bundle adjustment method as developed by D. Brown (Brown 
1958). This system is completely flexible and can accomodate the astrometric 
problem without major changes. In principle simultaneous adjustment can be per
formed to each of the three object coordinates (x,y,z) to each plate attitude and 
principal point (t,w,K,X 0 ,Y 0 ,Zo), and to each camera position and principle 
distance (xo,Yo,c). The analysis starts from the conventional projective relation
ships. 
In order to optimize the structure of the generated (sparce) normal equation 
system a carefull analysis is needed, e.g. the numbering of points and plates is 
very important for the efficiency of the solution algorithm. The coefficient 
matrix organisation most used, shows a banded-bordered structure which can be 
solved with reasonable ease. Solutions of this type of matrices have been repor
ted using up to one hundred plates and tens of thousands of stars. The separate 
problem of finding the proper weight matrix is still a matter of study. 

Many applications for this technique are possible in astronomy, like improving 
photographically determined catalogues (Googe 1971, Lacroute 1971, Ebner 1970), 
radio-telescope calibration (Konefick 1971) and position determination (Vegt and 
Ebner 1972). Clerici 1 



Residuals of individual 
stellar positions of the 
Praesepe area after a 
bundle adjustment using 
five plates and about 
thirty stars (residuals: 
1 cm = 10 µm) . 

PROCESSING OF THE PREASEPE AREA 
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To get some experience with this ½echnique five overlapping photographic plates 
of the Preasepe area in the sky were obtained with the astrometric refractor of 
the Leiden Observatory (plate scale 40 11 /mm, field of view 195). 

On the plates about 30 stars were measured on a monocomparator and adjusted along 
the lines pointed out in the former paragraph. The plate attitude angles found 
are consistent with those derived from the known telescope setting, and amount 
to the values tabulated in the table. 

Plate 11993 11994 11992 11996 11997 

y 0 + ?56 - ?71 - ?62 - ~64 
u) 0 + ?10 - ?34 - ?6s - ?64 
,t 0 0 

+ •. 50 + ?07 + ?01 + ?65 

Adjustment Praesepe area; plate attitude angles 
as computed with reference to plate 11 993. 

The resulting residuals, which certainly show a systematic trend, are depicted 
in the figure. 

It is clear that when proper motions of stars have to be obtained from similar 
photographic measurements one has to take in consideration the effect of these 
systematic distortions. 

In order to be able to correct these distortions the use of reseau telescopes is 
advisable. 
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ANALYTICAL TRIANGULATION - A SUGGESTED METHOD 

by K. C. Saxena, Dehra Dun, India 

ABSTRACT 

Analytical triangulation using plate coordinates can be carried out by simultane
ous solution of three consecutive photographs and then linking the groups of 
these three-three photographs, just as we connect models in Independent Model 
Triangulation. The method suggested by the author in the presented paper is fare 
more simpler than the simultaneous solution of all the photographs which involves 
very heavy computations requiring fast computers. The problem has been further 
simplified by the use of transformation equations without 'f', i.e. Z coordinate 
of plate points. 

INTRODUCTION 

The author has already submitted two papers on the subject, for publication in 
the Photogrammetric Engineering. In the first paper titled 'Analytical Triangula
tion - a simplified approach' the use of a simplified mathematical model without 
'f' for the transformation of plate coordinates into three dimensional system has 
been suggested. Simplified formulae have been worked out to facilitate computa
tions on a desk calculator. 

In the second paper titled 'Analytical Triangulation - a simplified solution' the 
author has outlined a method of analytical triangulation using plate coordinates 
which can be programmed on small computers. 

In this method, instead of simultaneous solution of all the plates, the problem 
has been treated as sequential, solving three plates at a time and then linking 
the consecutive groups of three plates each sequentialy to give strip coordinates 
Coordinates of desired points are fixed up by intersection of three rays cor
responding to their images in the three consecutive photographs. 

In the present ·paper, the approach, for the solution remains the same as laid down 
in the above mentioned papers. The algorithm has, however, been further simplified 
to facilitate programming on small computers. The suggested method will be found 
useful in the organisations where facilities for large computers may not be 
available. 

MATHEMATICAL FORMULATIONS 

The mathematical model without 'f' for transformation of plate coordinates into 
three dimensional system is as given below: 

X = a + ax by 
0 

y = bo + bx + ay 
z = co - ex + dy 

This can be written as 

X X - y 0 

y = y X 0 

z 0 0 - X 

or Ci = (aij Dr) Pj 
( 3 X 1) (4x3)(3x3) Qj 

or Ci = aij Pj + Dr 

0 1 
0 0 

y 0 

(4xl) 
(3xl) 

Qj 

0 0 

1 0 

0 1 

Saxena 1 
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b 
C 

d 
ao 
b 
co 

0 
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( 2) 
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Where 
Ci :he coordinates of a point 'i' 

aij = design matrix for a point 'i' falling in photograph 'j' 

Pj = Parameters (aj, bj, cj, dj) scale and three rotations 
for photograph 'j' 

0j (aoj, boj, coj) the three shifts for photograph 'j'. 

If 61, 62, 63 are the three ground control points falling in the first two photo
graphs 1,2 and c1 ,c 2 ,c 3 are their known coordinates, then the condition equations 
for the ground control points are: 

c1 = a11 P1 + Dr o1 for point No. 1, in photo No. 1 

c1 = a 12 P2 + Dr 02 for point No. 1, in photo No. 2 

a21 P1 + Dr 01 for point No. 2, in photo No. 1 

a 22 P2 + Dr 02 for point No. 2, in photo No. 2 

a 31 P1 + Dr o1 for point No. 3, in photo No. 1 

c3 a32 P2 + Dr o2 for point No. 3, in photo No. 2 

( 5) 

The coordinates of tie points are taken as parameters and the observation 
equations for tie points are given by: 

a i j P j + Dr 0j - Dr Ci = 0. 

Suppose C4, C4, C6 are the unknown coordinates of tie points 04, 05, 06 falling 
in the first three photographs 1, 2 and 3, then the observation equations for 
these points are: 

a41 P1 - D1 01 - Dr c4 = 0 for tie point No. 4, in photo No. 1 

a42 P2 Dr 02 Dr c4 = 0 for tie point No. 4, in photo No. 2 

a43 P3 Dr o3 Dr c4 = O for tie point No. 4, in photo No. 3 

a51 P1 - Dr 01 Dr c5 0 for tie point No. 5, in photo No. 1 

a52 P2 
a53 P3 
a61 P1 
a62 P2 

a63 P3 

Dr O 2 

Dr 03 

DI O 1 

Dr O 2 

Dr 03 

Dr c5 = 0 for tie point No. 5, in photo No. 2 

Dr c5 = 0 for tie point No. 5, in photo No. 3 

Dr c6 = o for tie point No. 6, in photo No. 1 

Dr c6 = O for tie point No. 6, in photo No. 2 

Dr c6 = 0 for tie point No. 6, in photo No. 3 

The observation equations (5) and (6) can be written as 

L + V = AX 

Saxena 2 
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where 

A = 
pl p2 P3 01 02 03 C4 cs c6 

all 0 0 I 0 0 0 0 0 
(3x4) (3x3) 

(15x9) 0 a12 0 0 0 0 0 0 

Total: a21 0 0 0 0 0 0 0 
(45x30) 0 a22 0 0 0 0 0 0 

a31 0 0 0 0 0 0 0 

0 a32 0 0 0 0 0 0 

a41 0 0 0 0 -I 0 0 
(3x3) 

0 a42 0 0 0 - I 0 0 

0 0 a43 0 0 - I 0 0 

a51 0 0 0 0 0 - I 0 

0 a52 0 0 I 0 0 - I 0 

0 0 a53 0 0 0 - I 0 

a61 0 0 0 0 0 0 - I 

0 a62 0 0 I 0 0 0 - I 

0 0 a63 0 0 I 0 0 - I 

Cl ( 3x l ) pl ( 4x l ) 

Cl 
II 

p2 II 

c2 
II 

P3 
II 

c2 
II 

01 (3xl) 
L = 

C3 
II X = 

02 
II 

(15xl) 
C3 

II (9xl) 
03 

II 

total : (45xl) 0 II total: (30xl) 
C4 (3xl) 

0 II 

C5 
II 

0 II 

C5 
II 

0 II 

0 II 

0 II 

0 
0 II 

0 II 

V represents the vector of residuals. 

From the observation equations (7) we can form the normal equations as given 
below: 

(AT P- 1A)X = yT p-ll 

or (AT A) X = AT L assuming weight matrix as identity. 
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6 T 0 0 !6 T 0 0 I T T T 
i:ailail i: a i 1 -a41 -a51 -a61 

ATA 
i=1(4x4) li=1(4x3) I (4x3) 

= 0 6 T 0 0 6 T 0 
1 _:42 

T T 
(9x9) i:ai2ai2 i:a i 2 -a52 -a62 

total : i = 1 i = 1 I 
(30x30) 0 0 6 T 0 0 6 T T T T 

i:ai3ai3J i: a i 3 1-a43 -a53 -a63 
i=4 i=4 

- t t - - - - - - -
6 0 0 6 l 0 0 - l - l - l 
i: a i 1 I ( 3x 3) I (3x3) 
i=1(3x4) 

lo I _ 1 0 6 0 6 l 0 - l - l 
i: a i 2 I I i = 1 

0 0 6 10 0 3 I - l - l - l 
i: a i 3 
i=4 I I 

- - - -
-a41 -a42 -a43l-l - l - l J 3 I 0 0 
(3x4) 
-a51 -a52 -as3l-1 -l - l 0 31 0 

-a61 -a62 -a631-1 - l - l I 0 0 31 
- - - - - - - -

T 
-

T 

3 T c. 
l: a i 1 l 

i = 1 (4xl) 
3 T 

Ci l: ai2 
i = 1 II 

0 II 

3 c. ( 3 X 1) 
Rl 

l: l (12xl) 
ATL i = 1 = R2 ( 8) = 

( 9x 1) 3 c. II ( 9 X 1) 
l: l 

total: i = 1 0 
(30xl) ( 9 X 1) 0 II 

0 II 

0 II 

0 

On partitioning of the matrices ATA and ATL as shown above the normal equations 
can be written as: 

D1 D T T p Rl 2 a 

(12xl2) (12x9) (12x9) (12xl) (12xl) 

D2 D3 E Q R2 ( 9) 
( 9x12) ( 9x9) ( 9x 9) ( 9 X 1) ( 9 X 1) 

a E Dll. C 0 
( 9 X 12) ( 9x9) ( 9x9) ( 9 X 1) ( 9 X 1) 
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Where D1 , D2, D/, o3 , D4 , a, and aT are the partitioned matrices of JATAJand 

R1 , R2 are the partitioned matrices of JATLJ 

P1(4xl) 01(3xl) c4 (3xl) 

p = p2 0 = 02 
II C = C5 

II 

P3 
II 

03 
II 

c6 
II 

From equation ( 9) above 

D1P + o/ o + a TC = Rl (10~) 

o2P + D3 0 + E.C R2 (lOb) 

a p + E Q + o4c = 0 (10c) 

From equat4ons (10a) and (10b), we get 

p = 
T T -1 {(R 1 - a C) - D2 D3 (R 2 - EC) } ( lla) 

(12xl) (12xl) (12x9) (9xl) 

0 ( D 3 - DD -1 D T)-1 {(R2 - EC) -1 T = - D2D1 (R 1 - a C) } 2 1 2 ( llb) 

(9xl) (9x9) ( 9x 9) (9xl) (9x12) (12xl) 

and from equation (10c) 

C 1 (aP + EQ) 1 ( aP + EO ) = - ¾ = - 3 
(9xl) (9xl) (9xl) 

( llc) 

since o4 = 3 I 

PROCEDURE 

1) Approximate values of parameters P and O and the coordinates of tie points are 
computed using the simplified method described by the author in the paper 
titled 'Analytical Triangulation - a simplified approach'. 

2) Mean coordinates of tie points are then found out. 
3) Substituting the values of C in equations (lla) and (llb) we obtain new values 

of parameters P and Q. 
4) Substituting fresh values of parameters P and O in (llc) we obtain new values 

of C. 
5) The process is repeated till m.s.e. at tie points and control points is within 

tolerance limits. 

After determining the coordinates of tie points 04, 05, 06 from the first three 
photographs, these points serve as control points for the solution of the next 
three photographs and the coordinates of next group of tie points 07, 03, 09 are 
determined. The process can then be continued to compute the unknown coordinates 
of all the selected tie points. 
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BLOCK ADJUSTMENT WITH PROGRAMMABLE DESK CALCULATORS 

by P. R. Datta, Hyderabad, India 

A strip can be triangulated either by aeropolygon method, or by independent 
models (adjoining models sharing a common projection centre) or analytically 
(say, by Schut's program). A common characteristic of all these methods is that 
the projection centres are held fixed and are not burdened with residuals after 
adjustment. The scaling and rotation needed for adjustment are with reference to 
these projection centres. This is in contrast to block adjustment by independent 
models as units and by bundles, where the projection centres are also treated as 
stochastic variables. Our present discussion is in the context of the former case 
which in terms of accuracy is inferior but is sufficiently accurate for all pho
togrammetric production jobs. The object of this paper is to suggest a method of 
block adjustment with strips as units which can be programmed for desk calcula
tors with extended memory (like Hewlett Packard 9100 A). 

The deformations ( ox, oy, oz) of a triangulated strip at a point can be deemed 
to be composed of three components. The first and the major component represents 
a trend of the error surface. It can be represented by expressing ox, oy, oz as 
continu-0us polynomial functions with strip coordinates x, y, z as arguments. The 
second component is a deviation from this trend which shows a systematic pattern 
locally - that is when only one or two adjoining models are considered - but is 
random when considered over the whole strip. The third and the least important 
component is a random error which is localised only at a particular point of ob
servation and is caused by random observational or reading errors of strip coor
dinates or by random errors in the ground control used for check. 

The errors of both first and second types can be explained as double summation 
effects of transfer errors from model to model as mentioned for the first time 
by Vermeir. As Zarzycky demonstrated, the polynomial trend can be viewed as the 
effect of a systematic and constant pattern of transfer errors while the quasi
random deformations of the second type can be deemed to be caused by a local 
deviation of the transfer errors from this systematic pattern and the irregulari
ties of the model deformations caused thereby. 

Determination of the trend surface can be looked upon as a problem of polynomial 
regression. If sufficiently close ground control data are available - say, one to 
two models apart - quasi-random errors of the second type can also be processed 
simultaneously by assuming covariance functions Ill. The covariance functions may 
have the magnitude of the distance between a pair of data points as arguments and 
may tend to '1' as the distance tends to 'O' and tend to 'O' as the distance 
tends to be large. A suitable covariance function is the normalised Gaussian 
frequency distribution function with the distance between any two data points as 
argument. It has, however, been observed that with fabourable bridging distance, 
that is with ground control 5 - 6 models apart, the polynomial adjustment, with
out assuming any correlation, gives as accurate results as by any other method; 
and this is true also for block adjustment with deformed strips as units. 

The formulae for the trend-polynomials can be deduced by assuming systematic and 
constant transfer errors. Alternatively, they can be deduced from the simple 
logic of strip deformation - characterised by three components, namely torsion, 
curvature and azimuthal error - being a linear function of strip lenth for shor
ter strips (about 10 - 12 models long), and a quadratic function of strip length 
for longer strips (15 - 18 models long). The formulae can be written (3) for 
shorter strips, as: 

ox = ao + a1x b,y + + 2 2b 2xy + 2c 2xz - c1z a2x 
J. 

oy = bo + b1x + a 1 Y - d1z + b x 2 + 2a 2xy - 2d 2xz 2 
oz = c1x + dly + a 1z 2 2d 2xy + 2a 2xz co - - c2x + 

It will be observed that according to the above formulae, the errors ox, oy, oz 
are correlated. Schut l41 has generalised the formulae by assuming errors in 
planimetry and height to be independent of one another and assuming the plani
metric error propagation to be such that conformality is preserved in planimetry. 
His formulae for the shorter strip are: 

Datta 1 



- 315 -

ox = ao + a1x - bly + a2(x2-y2) - 2b 2xy 

oy = bo + b1x + aly + b2(x2-y2) + 2a 2xy 

oz = co + c1x + cxy + 2 c3x + C4XY + c5xz 

The third option would be to treat ox, oy, oz as completely uncorrelated. 

By practical experiments Ackermann J5I found that the accuracies obtained from 
the three options differ surprisingly little. Im fact the difference was not more 
than 10 %. The third option can be adopted in cases where a planimetric absolute 
accuracy up to+ 75 µm and an altimetric accuracy up to 0.6 o/oo may be accept
able, and where-only programmable calculators may be available. 

In such cases, block adjustment with strips as units can be done in two stages. 
First, an internal adjustment can be performed by adjusting the strips one by one 
sequentially. The adjusted coordinates of the tie points from the lateral overlap 
with the previous strip can be used for adjusting the subsequent strip. Such an 
adjustment does not include a common projection centre unless the lateral overlap 
exceeds 50 %. But, the dominant trend of error propagation at right angles to the 
flight line can still be represented by a polynomial which includes y2 and other 
second and third degree terms in y. For external block adjustment, therefore, the 
polynomials mentioned before have to be extended by including terms with y2 and, 
in case of long blocks, with higher powers of y, line y2x and y2z. The y2term 
also covers the earth curvature. Also covered by this polynomial trend are curva
ture, torsion and azimuthal changes of the block, up to second degree, along 
cross-sections at right angles to the flight lines of the block. 

It has been found in such cases that with a lateral overlap of about 20 %, and 
with tie-points along the lateral overlap on every model or every alternate mode\ 
the ~mpirically adjusted block does not show any significant periodicity along 
the cross-sections. It may be mentioned here for clarification that the block is 
assumed to be regular without any cross-strips and is also preferably rectangula~ 

The real difficulty in handling such a block adjustment problem on a programmable 
desk calculator comes from the size of the matrices to be multiplied and inverted 
in a least squares solution. If a strip is to be adjusted with an adjoining strip 
with 'p' tie-points by a polynomial having 'n' parameters as coefficients, 
multiplication of an x p matrix with a p x n matrix is involved three times, 
assuming that polynomials for x, y and z are not correlated. Also involved is 
the inversion of a coefficient matrix of normal equations of size n x m. 

To avoid the inversion of the matrix Gopalan J71 suggests the use of Orthogonal 
polynomials. By orthogonal polynomials is meant a set of polynomials, 

{Pi(x,y,z) Ji=l ton} 

such that for all F j 

m 
l: {Pi(xa, ya, za)} {Pj(xa, ya, za)} = 0. 

a= 1 

The coefficients of the powers of x, y, z in the polynomials cannot be indepen
dent of the set of data points 

{(xa, ya, za) Ja=l tom} 

as, otherwise, one of the polynomials would equate to zero identicrlly. The 
technique of determining the coefficients of the polynomials is referred to as 
"generation of orthogonal polynomials". Householder's technique J61 of generating 
a set of orthogonal polynomials over a uni-variante data field is well known. We 
shall evolve here a technique of generating a set of orthogonal polynomials over 
a bivariate data field. The same technique can be extended to any number of 
dimensions. 

Let us illustrate by the polynomial formula for 'oz' for a short strip where 
there is not much relief (say< 10 %): 

2 oz= c
0 

+ c1s + c2y + c3x + c4xy 
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This mathematical model involves 5 parameters - C
0

, c1 , c2 , c3 and c4 . With the 

same number of parameters the polynomial can also be expressed as 

where P
0

, P1 , P2 , P3 , P4 are a set of orthogonal polynomials. 
Now, if there is a set of 'n' orthogonal polynomials, it means that there will be 
1/2 n (n-1) equations of the type 

m 
L {Pi (xa, ya)} {Pj(xa, ya)}= 0 

a=l 

for i ~ j. Thus, the number of coefficients of these polynomial terms to be de
termined as functions of { (xa, ya)/a = 1 tom} has got to be exactly 1/2 n(n-1), 
which in this particular case is 10. 

Satisfying this condition, the polynomials can be formulated as follows: 

P
0

(x,y) = 1 

P1(x,y) = 1 + a11 x 

P2(x,y) = a+ a 21 x + a 22y 

P3 (x,y) = 

P4 (x,y) = 

1 + a31 x + a 32y + 

1 + a41 x + a42y + 

where aij's are functions of (x 1 ,y 1), ... (xm,Ym). 
The observation equations in this case are: 

z cG{P-(xa,ya)}+c,{P,(xa, ya)}+c 2{P 2(xa, ya)}+c 3 {P 3 (xa, yaJ1+c 4{P 4(xa, ya)}, 

ex = 1 to m. 
The coefficient matrix (N) of the normal equations would turn out to be 
a diagonal matrix: 

m 2 
0 0 N = a:

1
IP 0 (xa,Ya)I 

0 
m 2 

0 L JP 1 (xa,ya)I 
a= 1 

0 0 

0 0 

and this makes its inversion apparently very simple. But this apparent simplicity 
disaapears when we have to evaluate the coefficients aij. The fundamental basis 
of least squares adjustment is not violated as the mathematical model still 
remains linear. 
If the observation equations are weighted without correlation with 'wa' as the 
weight coefficient for the observation of the point 'a' then Wa has to be in
cluded in the condition of orthogonality as 
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m 
z w {P.(xa,ya)} {PJ.(xa,ya)} = 0 for all i f j. 

a=l a l 

In that case, 'N' will still be a diagonal matrix but the diagonal elements 
wi 11 change to 

etc. 

Evaluation of the coefficients from the ten equations means, in terms of com
puter software, repetitive loops enclosing a few arithmetical statements or in 
FORTRAN terms, several DO loops, each loop being not very long. This point will 
be clear from the determination of the polynomials P

0 
and P1 as illustrations. 

From equation 

m 
z w/P

0
(xa,ya)} 

a= 1 

we can find 
m 

all = - ( z w ) 
a=l a 

From equation 

m 
z wa{P

0
(xa,ya)} 

a=l 

we have 
m 

a21 z w Xa + 
a=l a 

and from equation 

m 
z wa{P 1 (xa,ya)} 

a= 1 

we have 

or 

{P 1(xa,ya)} = 

m 
I ( z W Xa), 

a= 1 a 

{P 2(xa,ya)} = 

m 
a22 z w Xa 

a=l a 

{P 2(xa,ya)} = 

0' 

0' 

m 
= z w 

a=l a 

0' 

m 
Z wa(a 11 xaya + ya) 

a=l 
= 0. 

Thus, a21 and a 22 can be evaluated by solving a pair of linear equations. To 
evaluate a41, a42, a43, a44, four linear equations will have to be solved. 
Further to avoid singular solutions at every stage of these linear equations, 
the origin will have to be kept out of the working area. Use of Orthogonal poly
nomials in this form therefore, has no special advantage over the normal method, 
where a 5 x 5 symmetric positive-definite matrix is to be inverted. 

This is an extention to the bivariate case of the algorithm suggested by 
Gopalan 171 for a univariate data field. Apparently this does not lead to any 
simplification in computation. But there is a fallacy in this argument. The co
efficients (aij) in the above case are the functions of '2m' real variables 
(xi ,Yi) i=l tom. Hence, all the aij's need to be considered independent of each 
other. This is evident from the recurrence algorithm developed by Householder in 
the unvariate case for generating orthogonal functions (quoted by Forsythe l6J): 
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P
0

(x) = 1 

P1(x) = xP
0

(x) - a 1P
0

(x) 

P2(x) = xp 1(x) - a 2P1(x) - s1P
0

(x) 

Pi+ix) = xPi(x) -ai+lPi(x) -siPi_ 1(x) 

Here, a's and s's are functions of data set {x Jµ = 1 tom}. 
µ 

ai+l is given by 
m 

and Si 

ai+l = I l: 
µ=l 

i s given by 
m 

s. = I l: 
l a=l 

In the bivariate case, the Gram-Schmidt ortho9onalisation process J81 can be used 
to orthogonalise the column vectors of the lxl matrix: 

IX I = 1 

1 X y 

The vectors after orthogonalisation are the column vectors: 

IP (x.y.)J IP 1(x.y.)I ......... IP 4(x.y.)J 
0 1 1 i=l tom, 1 1 i=l tom, 1 1 i=l tom. 

The Gram-Schmidt algorithm is well known in mathematical literature and is clear
ly formulated by Thompson 181. The algorithm is a recurrance algorithm in the 
sense that the value of P

0
(xi,Yi) is used to calculate P1(xi,Yi), the values of 

P0 (xi,Yi) and P1(xi,Yi) are used to calculate P2(xi,Yi) and so on. The inner pro
duct of the column vectors can be very easily handled in a computer by a loop. 

Conformality can be enforced in planimetry by using complex variables w = x + iy 
and ow= ox+ ioy and expressing 'ow' as a poser series in 'w' with complex co
efficients as parameters. Schut J9l uses the same formulation but carries out the 
computations in the real field by separating the real and imaginary parts of the 
variables. In a programmable calculator like Hewlett-Packard 9100 A or 9100 B, 
computations can be directly performed over the complex field, with the help of 
the hardware circuitry which transforms cartesian coordinates directly to polar 
and vice versa. For example, multiplication of two complex numbers wand w can be 
handled as 

and 

To find correct normal equations for a least squares solution, from observation 
equations which are in the complex field, we must include the complex conjugate 
of the observation equation also. For example, for a point (i) if the observation 
equation is 

2 ow i = C
O 

+ Cl w i + C 2w i + .... 
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we must also include its conjugate 
- - - - 2 

Twi =co+ cl wl + Cz w2 + 

as an additional observation equation. 

Using Householder's recurrence algorithm and substituting 'w' for 'x', ortho
gonal polynomials crn be generated separately for the complex observation equa
tions and their conjugates. The same orthogonal polynomials can be used for a 
combined set of equations including the complex equations and their conjugates, 
if there is no funitional_correlation between (c 0 ,c1,c2,, .... ) and (c0 ,c1,c2,, .. ) 
In other words c0 ,c 0 , c1,c1, etc. are to be treated as independent parameters. 

Householder's recurrence algorithm can be directly used fur generating orthogonal 
polynomials over the real field when (ox,oy,oz) are uncorrelated and functions 
of 'x' only. This may be the case when the flight lines are nearly straight and 
parallel and the tie-points are chosen on straight lines parallel to the flight 
lines. 
lt has not so far been discussed as to how (ox,oy,oz) will be calculated for 
internal adjustment, at different points. Strip coordinates of every strip are 
transformed by a linear conformal transformation in planimetry only and the 
heights transformed by a scale change and datum shift, with reference to the co
ordinates of tie-points in the previous strip. No attempt is made to shift the 
origin to the centroid in any of the transformations. In case of (x,y) shift, 
the tie-point at extreme left of the strip is made to coincide with the same 
tie-point of the previous strip. For z-shift, the tie-points with minimum height 
are made to coincide. 
The planimetric linear conformal transformation is calculated, not by least squa
res adjustment, but by two well-observed points at the end of the strips. The ex
ternal block adjustment will have to be similarly proceded by a planimetric 
linear conformal transformation followed by scaling and shift in z-direction. 
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COMPARATIVE ACCURACY OF POINT DETERMINATION BY ABSOLUTE ORIENTATION AND BLOCK 
ADJUSTMENTS - A THEORETICAL ANALYSIS 

by P. R. Datta, Hyderabad, India 

The object of this analysis needs some clarification. Historically, biock adjust
ment is an improvement over strip adjustment, by taking advantage of the connec
tion at tie-points between stripes. As a result, requirements of ground control 
points could be relaxed as the connection at tie-points improved the overall 
accuracy of the block, and this is true irrespective of whether the block ad
justment is done with deformed strips as units by polynomial transformation, or 
by similarity or affine transformation of models as units, or with photogram
metric bundles as units. 

There was a time when, for very accurate work, every m0del of a block was in
dependently controlled on the ground on the belief that coordinates determined by 
absolute orientation of a model with respect to ground-controlled points was more 
accurate than those obtained by aerial triangulation adjustments. In view of the 
development of efficient block adjustment programs, the time has come to examine 
this assumption critically especially, as a result of the extensive studies made 
by Ebner 161 and conclusions drawn by him. It could still be true that accuracy 
obtained by absolute orientation is better, when ground control is not dense. 
But, the question which needs to be answered is, for example, "Is the accuracy 
obtained by absolute orientation of one model with 1 : 20.000 scale photographs 
better or worse than those obtained by block adjustment of 4 models with 1:10.000 
scale photographs?" 

A good way of answering such a question is by testing the results from several 
sample observations with sample photographs. Another way is to simulate different 
sets of data with different patterns of distribution of random errors and work 
out the variances of the terrain coordinates from the sample of adjusted terrain 
coordinates at every point. However, results can also be predicted theoretically 
provided the variances and covariances of the observations are known. For a good 
A-7 instrument or A-8 instrument, the grid test should give us a standard devia
tion on the image plane of+ 5 µm or+ 6 µm. In the case of an actual photograph, 
it could be+ 8 µm, so that-in either-x or y direction it is about+ 6 µm. In the 
case of stereoscopically observed y-parallax the accuracy on image scale has been 
found to be+ 2 µm from practical experiments. When the basic observations are 
the comparator coordinates measured on the image plane, the standard deviation on 
the image plane can be assumed to be+ 5 µm when we consider errors both due to 
comparator observations and point transfer. In each of x and y directions, the 
error can be assumed to be about+ 3.5 per µm. For all practical purposes, there 
is no correlation between x- and y-observations. 
The approach to the problem here is similar to that of Ebner 161. As pointed out 
by him in another paper 181, a theoretical study of this nature is sure to yield 
results which will agree with practical results within+ 20 %. There are, how
ever, two points of difference. First, every step of the working has been spelt 
out. Secondly - and this is a major difference - the variances of the observed 
model coordinates are not empirically assumed but have been statistically worked 
out. The investigations have stf~l not been completed and as such I have outlined 
here only the method in detail and also, the results obtained for computed 
variances and covariances of the model coordinates from the basic assumptions of 
standard deviation on the image plane, and y-parallax on image scale. 

To make a theoretical study of a problem like this, we need a mathematical model 
where the observed data are explicitly expressed as functions of parameters, and 
where the unknown terrain coordinates of a number of check points figure as para
meters. Thus, a suitable mathematical model has to be found. 

The polynomial model of error propagation along a strip is based on Vermeir's 
hypothesis of transfer errors from model to model and is strictly valid when the 
transfer errors are constant and systematic. It is at best a good approximation 
to the quasi-systematic error pattern actually generated by a double summation of 
the effects of random transfer errors, and indicates only the trend of deformation 
of the surface. 

The inadequacy of the polynomial error propagation hypothesis was demonstrated by 
Ackermann Ill in a comparative study of the accuracies in x, y, z coordinates ob
tained from the STRIM program and from second and third degree polynomial adjust-
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ments of strips. Thus, for the purpose of the present investigations, it would be 
legitimate to work with only two types of mathematical models: 
a) the mathematical model for block adjustment with models as units, and 
b) the mathematical model for bundle adjustment. 
In case 1), a choice has to be made between affine transformations and similarity 
transformations. 

A ff i n e transform at i on s I 2 I , I 3 I , I 4 I have the adv ant a g e of an easy and s imp l e 
linear mathematical model at the cost of doubling the number of orientation para
meters. Neither the tra~sformation suggested by Oswal and Balasubramaniam l41 nor 
that of Blais l3I is an exact similarity transformation and the rotation matrix 
has been derived by constraining the affine transformation in both cases. This 
has been very clearly analysed by Schut J5J. 

In order to use an affine transformation to investigate the variances of the ad
justed terrain coordinates, the variances and covariances of the parameters of 
transformation must be known. In a transformation of model-coordinates (x,y,z) 
into terrain coordinates (X,Y,Z) of the type 

X all al2 al3 X + al4 
y a21 a22 a23 y a24 

z a31 a32 a33 z a 34 

var(aij) i = 1 to 3' j=l to 4' and 

cov(aij ,ai 'j' )i ,i, = 1 to 3' j > j I = 1 to 4' 

can be either known directly from experience, or can be deduced from the know
ledge of the variances and covariances of the basic observations. Direct ex
perience in this field is not extensive, as affine transformations have not been 
extensively applied. Affinity in a model can be produced by incorrect principal 
distance and by affine deformation of the image plane due to elastic deformation 
of the base and emulsion of the photograph. We do not have complete knowledge of 
image deformations as yet and this factor alone should rule out consideration of 
block adjustment by an affine transformation of individual models. Besides, as 
pointed out by Blais 131 and although not explicitely mentioned by Das 12I, there 
is the possibility of an indeterminancy creeping in when the (x,y,z-) and (X,Y,~) 
systems are sharing the same origin and the data points are coplanar with this 
origin. It is worthwhile to explain this point a bit. 

T If the origin is shared Ja 14 a 24 a34 i = 0 and if the data points (xi, yi, zi) 
i=l to 3 and (Xi' Yi' Zi) i=l to 3 are coplanar with this origin, then 

and are singular and 

a21 a22 a23 

a31 a32 a33 

is indeter
minate. 

However, if affine transformation is used for simultaneous block adjustment by 
independent models, this problem can be avoided by shifting the origin of the 
ground coordinated system from the centroid of the block to the level of the pro
jection centres. 

The mathematical model for transforming independent models should, therefore, re
present similarity. If Jx,y,zjT are the obsTrved model coordinates,JX,Y,ZJT the 
unknown terrain parameters, and Jxs, Ys, zsl the parameters indicating the shift 
of the model in model space, then the mathematical model takes the form 

x 1.R T X 

y 

z 

y 

z 
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He re, IR I is a rotation matrix for the model space to be rotated into the ground 
space and the scale of the model. In Cayley's from 

RT= ( 1 + a2 + b2 + 2 -1 
C ) 

1 + a2 b2 2 2(ab + C) 2(ac - b) X - - C 

2(ab - c) 1 - a2 + b2 - c2 2(bc + a) 

2(ac + b) 2(bc a) 1 2 b2 + c2 - - a -

where a,b,c are functions of the absolute tilts of the model and a:b:c = ~:~:K; 
s,a,b,c are the parameters of absolute orientation. (~,~,K) are tilts of the 
model about the origin of (X,V,Z) system; to minimise the values of X,V,Z this 
origin is usually shifted to a point near the centroid of the block prior to 
least squares adjustment. It is also not necessary, for this theoretical in
vestigation, to introduce the additional parameter (d), as done by Schut 151 as 
any swing of a model by about 1800 can always be corrected by changing signs 
of model 'x' and 'y' coordinates. 

For both least squares adjustment and calculation of variances, it is necessary 
to linearise the mathematical model, around certain approximate values of the 
mathematical model, around certain approximate values of the parameters. For 
every point, the linearized observation equations are 

vx+dx = (~:) 0 ds + \~~) 0 da + (:~) 0 db + (~~) 0 dc + (:;) 0 dx 

(~) dV (~) dZ + (}/) o dxs + 
ax ax + + Cay) Ody s + (az) o dz s av o az o s s s 

V +d 11. (21.) da + (21.) db + (~)
0

dc + 
ay = Cas)ods + (ax)odx y y aa o ab o 

(21.) dV + 121.) dZ + ay li li + (~) o dx s + (a y ) o dy s + (az ) odzs av o 1 ') Z 0 s s s 
V +d (!!) 0 ds + (~) da + (~) db + (~~) 0 dc + 

az = (ax)odx z z aa o ab o 

+ (az) dV + (a~) dZ + (~) dx + (~) dy + ( a z) d 
TI o az o axs o s ay s o s ~ 0 ZS s 

The least squares adjustment in this case is an iterative process. The linearised 
mathematical model can be assumed to be fully valid only in the case of the last 
iteration when further changes in parameter values are negligible; and in this 
case, since every model would be nearly levelled, we shall be entitled to treat 
planimetry and height to be uncorrelated. 
(X,V,Z) can be assumed to be reduced to mean model scale prior to adjustment 
computations, as is normally done in all programs. Then, the approximate values 
of the parameters s,a,b,c are s ~ 1, b.,. o, c ',l:; o, and 

(ax) 
as o 

(:~)o 

x, cH)o = V, (~!)o = z, (~~)o = 0, 

= - 2 Z , (flb) 
0 

= 0 , ( ~ zb ) 
0 

2 X , ( ~) = 
a a ac 0 

(li) = 2Z, (~) = -2V aa o aa o 

2V (li) -2X (~) = 0 ' ac o = ' ac o 

(X,V,Z) in this case are the approximate values of the terrain coordinates of the 
point, reduced to mean model scale and referred to a system of axes parallel to 
the ground system with its origin close to the centre of the block. 
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Using 'ij' as suffix to indicate point 'j' in model 'i' the linearized observa
tion equations can be symbolically expressed as 

( I ) dU .. L. I I 
dPi ..... vij + = -

l J J d Qi 

dR j 
where 

u .. - lxij y i j z i j IT l J 

pi - I s i ai b. 
l Ci IT 

Qi - I (i) (i) (i)IT 
XS Ys Zs 

R. 
J - IX j, y j, zj\T 

and 
Lj - xj 0 -2Z. 

J 
2Y. 

J 

yj 2Zj 0 -2x. 
J 

z. - 2Y . 2X. 0 
J J J 

If there are 'm' models and 'n' observed points in the block, these equations 
will be valid for i = 1 tom and j = 1 ton, provided that there is no equation 
when ' j ' i s not a poi n t observed i n model ' i ' . 

For those points which are the qround control points additional observation 
equations will have to be added. If (GXj, GYj, GZj) are the ground control data 
for point 'j' reduced to mean model scale ana referred to the centre of the block 
as origin, then these equations are 

(II) ....... vj(g) + dXj = 0. 

All these observation equations can be symbolically represented by AX= B where 
•~• is a vector of corrections which can be called pseudo-parameters and 'B' is 
the vector of pseudo-observations. If the adjustment is carried out without 
taking equations (II) into account, the standard error obtained would be a 
measure of the relative accuracy of the adjusted block. Absolute accuracy of the 
block cannot, however, be defined merely by including equations (II) in the ad
justme~t, as absolute accuracy is to be found from the deviations at check points 
which are not used for adjustment. 

The same set of observation equations as (I) and (II) may be used for digitally 
calculating the standard error of absolute orientation also. In that case, 
equations (I) will be only for one model. The accuracy obtained from a digitally 
performed absolute orientation is likely to be higher than that for absolute 
orientation performed on an analogue instrument, as in the latter case, it is a 
sequential process of scaling and levelling the model. However, digital orienta
tion with simultaneous solution for all the orientation parameters is possible in 
a medium-sized computer and even in a desk calculator like Hewlett Packard's 
9100 A with an extended memory. Thus, a digital absolute orientation is not only 
desirable but is also possible where only discreet points are required to be co
ordinated and no plotting in the dynamic mode is necessary. 

The solution of the system of normal equations in this case can be symbolically 
represented by 

X = (ATPA)-l (ATPB) 

where 'P' is the weight matrix. The 
justed parameters can be expressed 

zx = (ATPA)-l 0 0
2 where 

variance - covariance matrix (zx) of the ad
as 
0 2 = 

0 n-u 
in this case, 1

0
0

1 is the standard error of unit weight, 'V' is the vector of 
residuals offer adjustment, 'n' is the total number of observation equations and 
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'u' is the number of parameters to be determined. 
Since P is the weight matrix and not just the weight-coefficient matrix, it is 
the inverse of the variance-covariance matrix of the observations. If the obser
vations are not correlated, then using usual notations, 

and 

hence 

-2 -2 -2 
P11 = 0 1 P22 = 0 2 P33 = 0 3 etc. 

n 
n-u 

The exact value of this ratio will depend on the layout of the block and tie
points. But, usually the number of redundant equations will be about 50 % of the 
number of parameters, and then we can assume 

z = 3(ATPA)-l . 
X 

Our problem is now to find 'p' or, to be more precise, p-l, which is the same as 
the variance covariance matrix of the model coordinate observations. Since, in
dependent models are normally formed in analogue instruments, using rotational 
elements only, the variances and covariances of the elements (Kl, Kll,¢1 ,911 , 
wII), have been first calculated on the basis of the standard deviation of the 
y-parallax observations. Using usual notations, crpy = ± 2 µm, on image scale. 
Using the same notations as in the previous paragraph, however, this time in a 
different context, where the 'p' matrix is identity, all parallax observations 
being of equal weight, 

E{cr 2 } = 6x (2µm) 2 . 
0 

The variance covariance matrix for the orientation elements is given by 

(ATA)-l x{6x(2µm) 2} 

where 'A' is the coefficient matrix for the parallax equations. If the number of 
points at which y-parallax is observed is increased to 9, then 

E{cr 2 } = 2.25 x 4(µm) 2 and the variance covariance matrix becomes 
0 

(ATA)-l x(9xl0- 6) mm 2. 

For our investigation, we assume parallax observations at 6 points as usual. From 
the linear equations expressing model deformations (ox, oy, oz) at every one of 
the 6 points in terms of the rotational elements, the variance covariance matrix 
for the model deformations at the 6 points has been worked out. The parallax 
equations used are for a flat model and the photography is assumed to be normal 
wide-angle photography with 60 % endlap. To reduce the accuracy figures to a 
commonscale for comparison, the model scale has been assumed to be the same as 
the scale of photography. The base is assumed as 92 mm and the projection 
distance as 152 mm. 

The complete variance covariance matrix is of size 18 x 18 and it is not possible 
to reproduce it here. But some of the main points are summarised below: 

a) At the 2 neat model points vertically below the projection centres, there is 
no correlation between the 'x' and 'y' coordinates at the same point or between 
the two points; 'x' and 'z' coordinates of the same point are correlated to the 
extend of about 68 %. 

b) At each of the other 4 neat model points on the wings 'x' and 'y' are cor
related to the extent of about 50 % although correlation between 'x' and 'z' or 
'y' and 'z' is negligible. The 'x' coordinates of the 4 points are correlated to 
the extent of about 50 %. There is no correlation in 'y' and the pattern of cor
relation in 'z' is not steady. 

It would have been ideal to include the correlations in the 'p' matrix, if 
possible. Unfortunately in the programs known to me (till middle of 1973) this 
is not possible. Even differential weighting of the model coordinates depending 
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upon the position of the point on the neat model is not possible. The calculated 
average standard deviation on image scale of the neat model points are as below: 

c) For points vertically below projection centre, 

ax= cry= 10 µm, and 0 2 = 27 µm. 

d) For other 4 neat model points, 

a = a = 16 µm, and 0 2 = 27 µm. 
X y 

For the purpose of the current investigation, no correlation are being assumed 
but different variances as calculated above are being assumed for model coordin
ates of different neat model points. The figures would have reduced to 1/3 of 
their value if 9 points were assumed for parallax observations. 

We can assume a setting error of 4 µm on image scale for 'x', 'y' and 1 2 1 and an 
additional 4 µm for pointing the floating mark in the 2-direction. But this will 
not make any appreciable difference in the standard deviation figures. 

DETERMINATION OF THE VARIANCES AND COVARIANCES OF THE PROJECTION CENTRE 
COORDINATES 

Projection centre coordinates are normally determined by monocular observations 
on the same points on the dispositive at two different projection distances, 
usually 'f' and '2f'. If (X 0 , Yo, Z0 ) are the projection centre coordinates and 
(x,y) and (X,Y) are the coordinates observed in the upper (3) and lower (2) pro
jection planes, then (X 0 , Y0 , Z0 ) are determined from the simplified equations 

XO = X - t(X - X) 

yo = y - t(Y - y) 

z 0 = z - t (Z - 2) 
and 

X2 - Xl y2 - yl 
t = (X 2-x 1)-(x 2-x 1) = ( y 2 - y 1 ) - (y 2 - y 1 ) 

1',j 1. 6 7 

The projection centres are seldom determined by a rigorous least squares adjust
ment. The equations in differential form are 

dX 0 = 

dY
0 

= 

dZ
0 = 

and 

cit = 

dX - t(dX - dx) - dt.(X-x) 

dY - t(dY - dy) - cit. (Y-y) 

dZ - t.d(Z-2) - dt.(Z-2) 

(dY2-dY1) j (Y2-Y1)-(y2-Y1)I - (Y2-Y1)(dY2-dY1-dY2+dy1) 

I (Y2-Y1) - (y2-Y1)l2 

As the mathematical model is itself approximate, there is no point in calculating 
correlation. Here, crx =cry= 8 µm and crx =cry= 16 µm; further, 

x2-xl y2-yl = 184 mm 
and 

X2-Xl = Y2-Yl = 368 mm 
and -4 0 = 3 X 10 t 

We can also assume: 0 2 = cr(Z-2) = 5 µm. Since X-x = Y-y ~ 184 mm, and Z-2=f = 
152 mm, we have 

crxo =cryo = 65 µm and 0 20 = 47 µm. 

If 't' is determined independently from x observations on 3 pairs of points and 
y observations on 3 pairs of points and the mean of 6 values accepted, then 
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-4 at = 1.2 X 10 . 

In this case, X0 and Y0 are determined from 6 observations each. The computed 
values of aXo and ay

0 
are in this case aXo = ay

0 
= 16 µm. With the revised value 

of at' we have az
0 

= 20 µm. 

CASE OF ANALYTICAL TRIANGULATION 

The case of analytical triangulation arises when the observed input data are 
image coordinates observed on a comparator. It can be assumed that all known 
systematic and quasi-systematic errors like lens distortion and image deform
ations are eliminated by a pre-processing program which reduces the image co
ordinates to the principal point as origin. If a large computer system is 
accessible, sequential analytical trtangulation should be followed by a simultan
eous adjustment by bundles. For a theoretical study, therefore, the mathematical 
model based on collinearity condition used in adjustment by bundles can be 
accepted. 

With usual notations and system of axes, and using Cayley 1 s form of the rotation 
matrix, the equations of collinearity are: 

X = -f 
(l+a 2-b 2-c 2)(X-X

0
) +2(ab+c)(Y-Y

0
) +2(ca-b)(Z-Z

0
) 

2(ca+b)(X-X
0

) +2(bc-y)(Y-Y
0

) + ( l-a 2-b 2+c 2)(Z-Z
0

) 

y = -f 
2(ab-c)(X-X

0
)+(1-a 2+b 2-c 2)(Y-Y

0
) +2(bc+a)(Z-Z

0
) 

2(ca+b)(X-X
0

) +2(bc-y)(Y-Y
0

) + (l-a 2-b 2+c 2)(Z-Z
0

) 

For approximate values a~ o, b ~ o, c ~ o of parameters and assuming the ground 
scale to be the same as image scale (so that figures of accuracy refer to a com
mon scale), we have the following relations: 

ax x 
(az)o ~1, 

ax x 
(az

0
)o~ - f' 

(~) ~ _ 2xy 
aa o f 

ax x2 
(ab)o ~2f(l+ f2) 

ax ( ac) o ,;,, - 2Y 

( ay) ~-1 TI o ~ ' 

(H-) ~ - l a 
O 

o f 

( ay) ~ 2x ac o 

These partial differential coefficients are the elements of the coefficient 
matrix 1 A1 for linearised observation (correction) equations for every point ob
served in every photograph. Correction equations for ground control points are · 
the same as (II) in case of independent models. As in the case of block adjust
ment by independent models, E{a 0

2 } can be assumed and variance covariance matrix 
of the parameters which include the corrections to the unknown terrain coordin
ates is 3 (ATPA)-1. The inverse of the 1 p 1 matrix, in this case, is 

-1 2 P = ax I , where 1 ! 1 is the identity matrix and ax= ay = 8 µm. 
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For orientation of a single model, we need consider only two photographs and the 
ground control. It can be directly treated as a simultaneous block adjustment by 
bundles and the same formulation as for block adjustment can be used. 
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AEROTRIANGULATION WITH INDEPENDENT MODELS AND ADJUSTMENT USING AFFINE 
TRANSFORMATIONS 

by G.B. Das, V. Ramakrishnan, B.K. ManjappaRai, Hyderabad, India 

ABSTRACT 

In this paper a semianalytical method of aerotriangulation with Independent 
Models and adjustments is outlined using affine transformations for determination 
of perspective centre, linkage of models, absolute orientation and adjustments 
of strip and block. 

INTRODUCTION 
At present the normal methods of aerotriangulation with independentnmodels use a 
similarity transformation expressed as the product of a scale factor and an 
orthogonal matrix. This orthogonal matrix is put in Cayley's form and approximate 
orientation elements are substituted. Such an assumption reduces the number of 
points required for linkage and orientation. However, the observations are not 
reduced because redundant points are observed and a least square fit is obtained. 
This procedure does not take care of any model deformation due to inaccuracy in 
relative orientation and other differential distortions due to film shrinkage 
etc., which are normally affine in naturs. 

It is therefore suggested that affine transformations of the type 

x' = allx + a12Y + a13z + a14 

y' a2lx + a22Y + a23 2 + a24 

z' = a3lx + a32Y + a33Z + a34 

be used instead of similarity transformations. Such a transformation will require 
four corresponding points out of which one may be selected as the origin for 
both the systems (x y z) and (x' y' z') so that a14 = a24 = a34 = 0. 

Then the solutions of such equations can be conveniently handled on an electronic 
desk calculator with programming facility. 

PERSPECTIVE CENTRE 

As usual a grid or a diapositive is mounted with the plate kept horizontal. 
Three well destributed points are observed at two well separated levels L, L'. 
Then the coordinates in the two systems (x y), (x' y') are related by an affine 
transformation of the type 

x' a11x + a12Y + al3 

y' = a21x + a22Y + a23 

After solving for aij the invariant point in the above transformation is ob
tained as solution of the characteristic equations 

(all - l) XO+ a12 Yo+ a13 = O 

a21 xo + (a22 - l)yo + a23 O 

(x 0 YQ z0 ) are the coordinates of the perspective centre, where x0 y 0 are the 
solutions of the above equations and z0 = F.(L - L') + L', F being (x' - x0 /x'-x~ 
Following is an example worked out with data given in ITC exercise on independent 
model triangulation: 

X y x' y' 
Point Nr. 3 381.35 411.78 385.22 520.71 

4 498.27 410.23 605.28 517.88 
5 373.19 192.13 369.86 107.41 

all = 1.88214 al2 = .0001 a13 = -332.53798 

a21 = .00074 a22 1.88160 a23 = -254.37831 



Solution of equations 

(a 11 - 1) x + a12y + a13 = 0 

a21 x + (a22 - l)y + a23 = 0 
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gives the x
0

, y
0 

coordinates of the perspective centre 

376.97062 
288.22522 

The scale factor F = 2.1338 and z0 
of the perspective centre are 

f x 140 + 10 = 308.74. Hence the coordinates 

(376.97, 288.23, 308.74). 

LINK ORIENTATION 

The linkage between successive models is achieved by a chain of affine trans
formations, the common perspective centre being the origin for both the systems 
of coordinates. The distribution of three pass points required should be such 
that two points will be on the flanks on one side and the third below the per
spective centre on the other side. The longitudinal separation of this third 
point from the first two ensures a better linkage in the direction of flight. 
Example: 

With the input data from Schut's l7lexample the following equations are obtained: 

(100) 
-24.10 ail - 147.31 ai 2 - 294.33 ai 3 

( 4 7) 
5.33 ai 2 - 291.44 ai 3 

( 778) 

- 25.51 
= -128.55 

-258.01 
2.62 

+ 4.83 
-255.65 

- 20.67 
-25.93 ail+ 156.42 ai 2 - 290.96 ai 3 = +137.84 

-255.14 

Solving for ail' ai 2 ' ai 3 i = 1,2,3 and substituting in (49) 

-33.08 ail+ 23.55 ai 2 - 292.63 ai 3 

the coordinates of point (49) are obtained as 

-29.76, +21.47, -256.52 
compared with the data 

.29.77, +21.46, -256.51. 

Whereas in Schut's example the residuals are as large as -0.27, -0.23 in height 
and 0.07, 0.08 in plan, in the affine solution, there are no errors and there is 
no scope for propagation of any due to residuals. 

ABSOLUTE ORIENTATION 

If there are four control points in the starting model, it can be oriented ab
solutely with respect to the ground by a set of affine transformations. If, how
ever, the distribution is not good then the absolute orientation can be achieved 
after strip formation. For a good orientation, the four points should preferably 
be at the four corners of the model or strip. A fifth point in the centre of the 
area will be a good check for any systematic deformation. 

Das 2 



- 330 -

Example: 

The foll0wing is based on data from Schut 1 s example. Instead of taking a single 
model the entire configuration of three models is considered. The points (1), 
(75), (217) and (195) are selected as control points and point (24) as the check 
point. The equations, with point (1) as origin, are 

( 7 5) 

(217) 

( 19 5) 

Check point: 
( 24) 

- 211.48 
4.31 a i 1 + 263.95 ai2 - 4.92 ai3 = -1564.72 

29.03 
-2911.63 

+456.36 a i 1 + 273.16 a i 2 - 0.13 ai3 = - 992.49 
17.95 

-2478.32 
+425.35 a i 1 - 41. 0 2 ai2 - 1. 19 ai3 = :I- 624.60 

17.95 

-521.49 
+ 69.61 ail+ 122.37 ai 2 - 2.10 ai 3 = -661.10 

- 14. 20 

agreed perfectly, whereas with similarity transformations this point had a 
residual error of the order of 0.15 in the transverse direction. 

ADJUSTMENTS 

For purposes of adjustments of strip or block it is assumed that affine para
meters aij are continuous functions of the spatial situation. Further, if the 
number of bands of control points in a strip is n, then it is assumed that the 
affine parameters aij will fit into a curve of degree n-1, which is different 
for each aij, 
Having obtained the transformation from model to ground the affine parameters for 
the models other than those in the control bands are corrected according to their 
situation in the strip. 

In case the terrain is flatish or low undulating then the three dimensional 
affine transformation is not likely to yield stable solution and in such cases 
the two dimensional transformation in the planimetric coordinates will be found 
to be quite practical. 

In photogrammetric plotting it is often found that with the control as supplied 
by aerial triangulation due to continuous transformation setting of individual 
models poses a problem. In view of this, for purposes of plotting the adjustments 
can be modified by polynomials in x and y where x may stand for strip and y for 
model and the block thus adjusted will be found to give consistency within each 
model separately. 
Affine adjustment is recommended because in aerotriangulation with independent 
models there is no provision for correction of the various sources of errors and 
distortions and the minimum correction that can be assumed is of an affine nature. 
To assume a similarity transformation or conformal polynomial is to preserve the 
already introduced errors in angles because of the affine nature of distortion. 

CONCLUSION 

In normal strips and blocks one expects differential distortions and deformations 
which can be suitably corrected by assuming the transformations to be affine. 
With a medium sized computer or an electronic desk calculator affine transforma
tions will be found quite handy and avoidable inaccuracies can be eliminated. 
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BUNDLE BLOCK ADJUSTMENT FOR BLOCKS OF LIMITED SIZE IN ORDER TO DENSIFY 
TRIGONOMETRIC NETS 

by A. Verdin, Brussels, Belgium 

SUMMARY 

The "Institut Geographique Militaire" in Brussels (!GM) employs the numerical 
photogrammetry in order to determine planimetric and altimetric control points on 
the photographs used for the revision of the general map of Belgium at the scales 
of 1 : 10 000 - 1 : 25 000, or for special works at scales of 1 : 5 000 -
1 : 10 000. 
This paper shows the adopted methods in relation with the typical conditions 
existing in the !GM. The density and the regular distribution of the trigono
metric points in Belgium allows the use of little size blocks (30 photographs 
maximum). 
Besides analogical models observed on stereoplotters, the !GM more and more 
employs observations of perspective bundles, made with the stereocomparator SOM. 
A cheap iterative procedure of bundle block adjustment has been programmed on the 
computer terminal of the IGM, for blocks of limited size with a regular density 
of 1 control point every two or three photographs (inside and on the borders of 
the blocks). In the future, this procedure will be completed by a direct method 
applied when the density of control is not sufficient to obtain a good converg
ency of the iterative procedure. 

INTRODUCTION 

L'activitede l 'Institut Geographique Militaire de Bruxelles dans le domaine de la 
photogram111etrie numerique s'exerce en grande partie dans le cadre particulier de 
la revision de la carte de base de la Belgique aux echelles du 1/10.000 et 
1/25.000. 
Dans les regions en evolution rapide, il est souvent necessaire de reconstituer 
en vue de la restitution un canevas de points de contrOle planimetrique complet. 
Certains travaux speciaux demandent egalement la reconstitution d'un canevas de 
controle altimetrique valable. 

PROGRAMMES DE ROUTINE HAEITUELS 

Autant que possible, ces nouveaux points de controle sont observes sur les cli
ches originaux de la premiere couverture photogrammetrique executee entre 1950 et 
1968, dont les couples ant ete prepares directement par voie topographique. Ces 
couples de cliches sont observes de preference sur instruments analogiques. Les 
points nouveaux a determiner sont obtenus en appliquant les formules classiques 
de transformation spatiale d'orientation absolue, calculees sur la base du cane
vas de preparation ancien. 

Si la mise en place de ces cliches est devenue impossible sur les instruments 
analogiques disponibles (c'est le cas par exemple des cliches sur plaques SOM -
18 x 18 cm), la determination se fait a partir des observations sur stereocompa
rateur. Les observations corrigees des erreurs de distorsion, de courbure deter
re et de refraction permettent la reconstruction de modeles calcules, dont 
l 'orientation absolue est effectuee a partir du canevas de points connus. 

Ces solutions classiques donnent les meilleurs resultats. Les deux programmes 
d'orientation relative et d'orientation absolue ant ete retranscrits en langage 
FORTRAN et sont couramment utilises sur ordinateur IBM 370/155 a partir du Ter
minal !GM. 

CONDITIONS DE TRAVAIL PROPRES A L'IGM 

Il devient cependant de plus en plus difficile, vue l 'evolution rapide de l 'en
vironnement de selectionner avec certitude sur deux couvertures photographiques 
differentes d'une meme region, des points de controle inchanges communs a deux 
prises de vues eloignees de plus de 15 ans dans le temps. 

C'est pourquoi le procede indique ci-dessus devient de plus en plus aleatoire. 
D'autre part, les couts grandissants des travaux topographiques imposent de re
chercher par voie photogrammetrique une solution avantageuse au probleme de la 
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creation ou de la densification d'un canevas de points de controle. Il importe 
done de tirer parti au maximum des points connus du reseau geodesique et topo
graphique. Ce reseau de points se presente tres favorablement en Belgique. Outre 
le reseau fondamental de points trigonometriques constitue en ~eneral de points 
eleves utilisables pratiquement en photogrammetrie comme controle planimetrique 
seulement, les services terrain de 1 'IGM determinent sur chaque feuille de la 
carte un reseau de points de contr8le au sol connus en plan et en altimetrie dont 
la repartition est en principe tout a fait homo~ene et dont la densite est de 
1 'ordre de 1 pt par 10 km 2 • Ces points peuvent etre directement identifies sur 
photographies, ou balises avant la prise de vues. Ils permettent de plus le leve 
immediat d'un detail photogrammetrique dans leur voisinage. 

La densite et la repartition du type de contr8le permanent ainsi constitue sur la 
couverture photographique (1 point pour 1 photo et demie ou pour 2 photos) 
exigent 1 'utilisation des methodes photogrammetriques numeriques les plus preci
ses pour la compensation des blocs de photographies. L'homogenite dans la repart
ition des contr8les terrain permet de se limiter a des blocs photogrammetriques 
de faible dimension (30 photos au maximum pour les echelles couramment adoptees 
a 1 'IGM pour des surfaces de 16 x 10 km). 

On evite ainsi le traitement de systeme d'equations d'observations demesurement 
grands et les solutions ad~ptees peuvent etre envisagees suivant les routines de 
calcul IBM disponibles. 

Les methodes de compensation des blocks doivent etre les plus generales et per
mettre l 'emploi de points de contr8le connus en coordonnees (X, Y, Z), (X, Y) ou 
Z uniquement. 

SOLUTIONS ADOPTEES POUR LES OBSERVATIONS ET LA COMPENSATION DES BLOCS 

- OBSERVATIONS 

S'il s'agit de modeles analogiques, les observations sont effectuees soit par 
modeles independants sur A8, soit classiquement par bandes sur A7. On veillera a 
assurer aux couples observes une orientation absolue tres approchee (en~ seule
ment sur A8) en tenant compte du contr8le altimetrique tire de la carte de base. 

Si les observations sont effectuees sur stereocomparateur, on procedera soit a 
1 'observation cliche par cliche des faisceaux photographiques sur toute leur 
surface. 

Les observations sont alors presentees et exploitees comme des observations sur 
monocomparateur, mais 1 'observation de chaque detail est faite en vision stereo
scopique, a moins qu'il ne s'agisse d'un point materialise au sol. Ce procede 
d'observation est praticable sur le sterecomparateur SOM de 1 'IGM ou sur compar
ateur Nistri a 3 plaques. 

- COMPENSATION 

La determination d'un reseau de points planimetriques s'effectue, en general, a 
partir des observations sur instruments analogiques. L' IGM utilise un procede de 
compensation calcule de bloc analogique planimetrique, similaire au procede An
Block. Les systemes d'equations d'observations sont resolus aisement sur l'ordin
ateur 370/155. 

Pour la determination d'un reseau de points planimetriques et altimetriques, 
1 'IGM avait le choix entre la compensation de blocs de model es independants ou la 
compensation par faisceaux perspectifs. 

Sans exclure a priori le premier procede, 1 'IGM s'est oriente particulierement 
vers les faisceaux perspectifs pour les raisons suivantes: 

a) facilite et precision des observations par faisceaux sur le stereocomparateur 
SOM; 

b) standardisation des procedes d'observation. Le service du cadastre belge de
mande egalement a l 'IGM, pour ses besoins personnels, des observations de co
ordonnees instrument sur l 'entierete de la surface du cliche, en vue du re
levement spatial et du redressement perspectif calcule des cliches aeriens. 
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Il va de soi que l 'observation est aidee dans l 'instrument par le pointe 
stereoscopique de chaque detail; 

c) elimination sur la surface totale du cliche des erreurs de distorsion, de 
courbure de terre et de refraction; 

d) disponibilite et precision de donnees terrain approchees fournies par la carte 
de base, avec un ecart-type moyen planimetrique crp = 2 m, altimetrique 
crz = 1 m; 

e) faculte de realisation d'un programme unique qui partant des coordonnees 
cliche observees, fournit directement la solution du block en coordonnees ab
solues terrain, sans stades intermediaires de cal cul; 

f) determination de la precision de chaque point intersecte, a partir de 2 ou 
plusieurs sommets a chaque tour de calcul, en vue d'une elimination rapide 
des erreurs grossieres du leve (voir programme A 50 ci-apres). 

PROGRAMMES PARTICULIERS DE COMPENSATION DE BLOCS DE FAISCEAUX PERSPECTIFS 

- PROGRAMME ITERATIF A 50 

Ce programme a ete etabli en suivant le programme iteratif de l 'IGN de Paris. 
Les donnees de depart sont constituees par les coordonnees cliche des points ob
serves par faisceaux, apres correction des erreurs de deformation du support de 
l 'emulsion en fonction des donnees de calibration de la chambre de prise de vues. 

Dans le programme A 50, les donnees de depart sont tout d'abord corr1gees des 
effets de la distorsion, de courbure de terre et de refraction. La partie itera
tive du programme se decompose comme suit: 

a) relevement separe de chaque gerbe perspective sur points terrain connus (con
trole) ou approches, par le procede IGN de Paris. On attribuera un poids beau
coup plus important aux equations d'observation relatives aux points de con
trole; 

b) calcul de la matrice spatiale de rotation propre de chaque gerbe perspective 
et application aux coordonnees cliche, de cette rotation autour des centres 
de projection; 

c) intersection de tous les rayons correspondants a un point commun a deux ou 
plusieurs gerbes perspective. Le procede utilise est base sur la determination 
du point dont la somme des carres des distances a chaque rayon perspectif est 
minimale. Il a ete programme al 'IGM de Bruxelles a l'occasion du calcul des 
coordonnees des centres de projection d'un instrument analogique en vue de la 
triangulation par modeles independants; 

d) cal cul en chaque point des distances a chacun des rayons utilises pour l 'in
tersection. L'examen de ces distances permet la detection rapide d'une erreur 
grossiere commise sur l'observation d'un point sur un cliche determine et la 
correction ou l 'elimination de cette erreur. 
Les resultats du premier tour de calcul sont toujours imprimes. Pour passer 
aux stades suivants du calcul iteratif, les coordonnees approchees des points 
utilises pour les relevements sont modifiees en utilisant les nouvelles 
valeurs trouvees par l 'intersection des rayons perspectifs, tout en veillant 
a conserver inchangees les coordonnees des points de controle du bloc et l 'on 
repart en par. a) pour le 2eme tour ou les suivants. 
Pendant la compensation du bloc, appuye sur un certain nombre de points de 
controle, on demande l' impression des resultats tous les 15 tours de fa~on 
a verifier la convergence du procede. 
Ces resultats sont imprimes dans l 'ordre suivant: 
- matrices de rotation de chaque gerbe perspective, 
- coordonnees des centres de projection, 
- coordonnees cliche transformees apres rotation dans un systeme local 

rapporte au centre de projection de chaque cliche, 
- coordonnees des points intersectes et distances de ces points a chacun des 

rayons perspectifs utilises pour l 'intersection. 

Le procede est bien convergent, pour une densite suffisante des points de con
trole, par example, si la distance entre points de controle ne depasse pas 
trois fois la longueur de la base des couples formes par les gerbes perspect-
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ives se monte pour 46 iterations effectuees sur le terminal de l' IGM a environ 
5 000 francs belges. 

- PROCEDE DIRECT 

Il est necessaire d'envisager le cas d'une densite des ~ints de controle plus 
faible ou le cas des feuilles de la carte dont le canevas des points au sol n'a 
pas encore ete realise. Le procede iteratif devra etre remplace par une com
pensation d'ensemble directe de tous les faisceaux perspectifs en bloc. Rappelons 
les limitations imposees a la dimension des blocs (30 cliches maximum) et la pos
sibilite de disposer de valeurs approchees initiales valables (ap = 2 m, oz= 1 m). 

L'IGM cherche a resoudre le probleme du bloc, en generalisant un procede d'orien
tation relative et absolu ~multane experimente sur un couple de photographies. 
Le procede est base sur les relations de colinearite des rayons objet et image 
dans chaque faisceau. 

Si (Xp' Yp, Zp) sont les coordonnees approchees du point P, (x/, y/, zpi) les 
coordonnees cliche obtenues eventuellement apres une rotation Ko approchee 
initiale, AP i le facteur d'echelle relatif au rayon issu de P dans le faisceau 
d'ordre i, on obtient en attrnbuant des corrections (dX, dY, dZ) aux coordonnees 
terrain (dX

0
i, dY

0
i, dZ

0
i) aux coordonnees des sommets, dApi aux facteurs 

d'e~helle et ~ne rotation elementaire (dwi, d¢i, dKi) au faisceau i de sommet 
(x, yi z,) 

0 ' 0 ' 0 

xP + dX
0 XO 

i + dX
0 

i 1 -d K. 
1 d ¢ i xp 

i 

yp dYP yo 
i + dY

0 
i + Pp 

i + d A i ) +d K . 1 -dw. i + = Yp p 1 1 

z + dZP zo 
i + dZ

0 
i -d¢, dw. 1 i 

p 1 1 zp 

c.a.d., si on neglige les termes de 2eme ordre, un systeme d'equations lineaires 
d'observations relatives aux rayons de l 'ensemble des deux gerbes perspectives: 

vx 0 - ;,_ i z i A iy i -x i dw. dXP dX
0 

i 
xp-xo 

i - ;,_ 
i i 

p p p p p 1 p xp 

A i Z i 0 i i i 
d¢i dYP dY

0 
i y -Y i_A iy i Vy = -AP xp -y + + p p p p O p p 

vz 
i i A ix i 0 i 

d Ki dZ dZ
0 

i i i i 
-AP Yp -z Z -z -A Z p p p p p O p p 

p 
d Ai 

p ( 1 ) 

Pour fixer les points de controle terrain, on introduit,a cBte du systeme (1) les 
equations d'observations suivantes pour chaque donnee terrain de controle (plani
metrie et/ou altimetrie), en attribuant aces equations un poids largement 
superieur aux equations (1): 

La solution d'ensemble des systemes (1) et (2) fournit les corrections: 

(dwi' d¢i' dKi)' (dX
0
i, dY

0
i, dZ

0
i), dApi et (dXP, dYP, dZP). 

Verdin 4 

( 2) 



Adoptons les valeurs corrigees 
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( X i + dX i y i + dY i zoi + dZoi) 
0 p ' 0 0 ' 

xp 
i 

xp 
i 

Yp 
i Rw. cj, i Yp 

i 
= Ki l 

zp 
i 

zp 
i 

co r 

Elles verifient les relations de colinearite si les matrices orthogonales 
Rwi cj,i Ki sont pratiquement identiques a leur forme linearisee, c'est-a-dire 
si (w,cj,,K) sont petits. 

11 vi en t al ors: 

xP XO 
i 

xp 
i 

yp = yo i u i i p car Yp ( 3) 

z zo 
i : i 

p car car zp car 

Si tel n'est pas le cas, c'est-a-dire si les donnees initiales angulaires ne sont 
pas suffisamment approchees, il faut prevoir une ou deux repetitions des calculs 
a partir des valeurs corrigees, ce qui en accroit fortement les couts. 

Une Maniere aisee d'obtenir des valeurs initiales tres approchees pour les angles 
(w, cj,, K) c'est-a-dire egalement pour les coordonnees (xr>' Yp• zp) est d'effectu
er un cal cul preliminaire du bloc par le programme A 50 
(10 iterations par exemple). Ainsi, on disposera de valeurs approchees precises 
pour toutes les inconnues du systeme, tout en se reservant la possibilite 
d'eliminer bute erreur grossiere avant la compensation directe finale. On 
realise ainsi une grosse economie de temps et d'argent. 

Un bloc de 30 photographies comportant chacune environ 10 points observes ou un 
total de 100 points a determiner conduirait a la compensation simultanee de 900 
equations d'observation a environ 780 inconnues, a savoir 

30 x 6 elements des gerbes perspectives (coordonnees sommet et 
angles de rotation) 

30 x 10 facteurs d'echelle A i 
p 

100 x 3 coordonnees (X, Y, Z) terrain. 

Le procede direct de compensation de bloc envisage ci-dessus conduit a des 
systemes comportant des equations d'observation plus nombreuses que les systemes 
adoptes generalement puisque chaque point dans chaque faisceau donne lieu a 3 
equations au lieu des 2 equations obtenues habituellement en traitant les co
ordonnees reduites (x/z, y/z). 

Cependant les equations sont par elles-memes beaucoup plus simples et comportent 
de nombreux coefficients egaux a l'unite. 

Le procede est en voie de programmation systematique pour les blocs limites 
traites a l'IGM. 
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PROGRAMMES DE PHOTOGRAMMETRIE NUMERIQUE DEL' IGM DE BRUXELLES 

a) Orientation absolue (procede iteratif 
(procede direct de Tienstra 

b) Triangulation analytique: orientation relative et enchainement des modeles 

c) Bloc planimetrique analogique 

ct) Triangulation par modeles independants - enchainement des modeles par bandes 

e) Compensation de bandes par polynomes 

f) Programme A 50: calcul iteratif d'un bloc de faisceaux perspectifs 

g) en cours de programmation, methode directe de compensation d'un bloc de 
faisceaux perspectifs 
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INDEPENDENT MODEL TRIANGULATION WITHOUT USING PERSPECTIVE CENTRES COORDINATES 

by R. C. Badjatia, Roorkee, India 

Determination of coordinates of perspective centres of the instrument is known 
to be an important operation for performing independent model triangulation. In 
Kern PG-2, PG-3 and Planimat, it is possible to record the perspective centres 
coordinates directly with the help of certain special devices. However, in other 
instruments procedures like space resection etc. are to be followed which involve 
substantial increase in operation and computation time. In most of the cases per
spective centres coordinates must be determined for each model or at least after 
an interval of 4 to 5 models, unless it is assumed that the coordinates of the 
perspective centres as determined for the first model do not change, and can be 
used for other models of the strip. In such cases also the base must be kept con
stant and the instrument system must remain undisturbed. 

The above assumption also cannot hold if the cameras in the instrument do not 
rotate precisely about their corresponding perspective centres during relative 
orientation phase. Even if the coordinates of the perspective centres can mechan
ically be kept constant, it may become necessary to change the base intentionally 
in the case where the z-range of the perticular instrument cannot accommodate 
large height differences. 

The attempt of this paper is to study the possibilities of avoiding determination 
of perspective centres coordinates during independent model triangulation, there
by saving operation and computation time, avoiding restrictions of constant base 
and of constant instrument system. 

Considering that relative orientation of models in independent model triangula
tion is achieved at its best and that no further analytical refinement is to be 
attempted, the important computational part is absolute orientation of one model 
with respect to the other model i.e. the connection of models. It is here that 
the use of perspective centres coordinates is made. It is generally considered 
that the connection of models will be weak if the common perspective centre is 
not used as one of the tie points. In other words the absolute orientation para
meters will not be correctly determined without including perspective centre du
ring model connection. It is desirable, therefore, to examine the determination 
of absolute orientation parameters during model connection viz determination of 
scale factor, rotation matrix and shifts. 

During model connections the origins of both the model systems are shifted to a 
common control point in the two systems thereby eliminating the shifts. The 
common point is generally the perspective centres when this is used as a tie 
point. When perspective centre is not to be used any other control point will 
serve the purpose. Hence determination of shifts is not a problem. This leaves 
only the scale factor and the rotation matrix to be determined. 

In a relatively oriented model produced from two consecutive photograms, the geo
metrical relations between points or lines on the model are exactly the same as 
between corresponding points or lines in the actual terrain e.i. the model is a 
rigid body scaled down by a certain factor. Determination of scale factor is 
possible without the use of perspective centre coordinates, by comparing distan
ces between various control points in the two models and obtaining a mean value. 
In fact if one is not sure about the stability of the perspective centres in the 
instrument, its use for determining scale factor should be avoided. The scale 
factor determination, therefore, is also no problem when perspective centre is 
not to be included. 

The orientation of a model can be changed at will, by the application of an orth~ 
gonal transformation, without including the perspective centres in the transform
ation. As such it does not appear necessary to use perspective centre as one of 
the tie points for determining the rotation matrix connecting the two models. If 
all the control points (three or four in number) are situated in the model space, 
Schut 1 s method of absolute orientation Ill may be successfully used for determin
ing the rotation matrix. The points should have a maximum separation in x, y and 
z. In the worst case, even if the points form a plane surface in the model space 
Schut 1 s solution does not fail as is evident from one of the recent papers of 
Schut 1 s J2J. In this paper it is shown that Oswa1 and Blais 1 methods fail to give 
solution when the control points form a plane surface, whereas Schut 1 s method 
provides satisfactory results. 
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Model connection, an important process of independent model triangulation, can 
thus be carried out without using perspective centre coordinates. The three con
trol points in this case lie in the model surface. It may be desirable to select 
four points for model connection symmetrically situated and forming a rectangle 
in the superlap area. The superlap area for model connection is quite sufficient 
to have a rectangle of four pass points located as far apart as possible. If the 
photographs have 60 % longitudinal overlap, the superlap area is about 33 % of 
the total overlap area. The size of rectangle of points is about 0.15 l x 0.75 l, 
if l is the format size. If the overlap of the photographs is 70 % the superlap 
will be about 57 % of model area and the rectangle size will be 0.33 l x 0.75 l. 
To check the validity of above arguments experiments were conducted. Instead of 
independent model triangulation the procedure was first tested by performing 
analytical aerial triangulation of hypothetical strips. 

Two strips of 13 photograms each (12 models) was triangulated. The strips were of 
hypothetical photograms 131 having following specifications: 
1) - modestly rolling ground with height differences 5 % of flying height. 
2) - mountainous terrain with height differences 25 % of flying height. 

Format 18 x 18 cm, focal length= 115.0 mm, precision of image coordinates 
± 0.01 microns, overlap longitudinal 65 %. 

The image coordinates and other data for hypothetical photograms were available 
at the University. 

Analytical relative orientation of various models was done using single centre 
method (Ordnance Survey). Model connection was done using Schut's method of 
absolute orientation Ill without using perspective centres coordinates. Four 
points were used in the model space forming a rectangle. Strip formation was 
done using ordnance survey method. The strip was transformed to the ground 
system by Schut's absolute orientation method using 6 ground control points. 
The strips required no further adjustment. 

Necessary computer programmes were developed for computations on IBM 1620 and all 
the computations were done on the same. The results obtained were as follows: 

Strip I Hypothetical 
Strip II Hypothetical 

Mean standard error in microns 
X 

7.3 
4.3 

y 

5. 9 

5.5 

z 

3.9 
3.5 

The results above indicate that the analytical aerial triangulation without per
spective centres coordinates for model connection can be performed successfully. 
The experiments for performing independent model triangulation without using per
spective centres coordinates are in progress but incomplete at the time of sub
mission of this paper and could not be included here. The results are expected 
to be favourable. 
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GEOMETRIC CORRECTION OF ERTS-1 MSS IMAGES 

by R. B. Forrest, Southfield, Michigan, USA 

ABSTRACT 
ERTS-1 images have three levels of accuracy, corresponding to the effort applied 
to processing. All images are system corrected to give 750 meters circular 
standard error. A selected 5 to 10 percent are processed further, reducing the 
error to about 100 meters. Research indicates that the limiting error is less 
than 40 meters. ERTS image processing equipment and imaging models are discussed. 

INTRODUCTION 

This paper discusses the geometric accuracy of multispectral scanner (MSS) images 
collected by the first Earth Resources Technology Satellite, ERTS-1. The specific 
application may not be of particular interest to many who work with aerial 
imagery, since positional ERTS-1 errors of tens of meters are involved. However, 
many of the matters discussed are of fundamental concern to the metric use of 
line-scanner images. 

The ERTS-1 satellite has been extensively discussed in both popular and technical 
med i a I 1 I , I 2 I , [ 3 I . 0 n l y tho s e as p e c ts o f s p e c i a l co n c e r n w i l l be s i mm a r i z e d 
here. the satellite orbit has an inclination of 81 degrees and is designed to 
remain in a sun-synchronous orbit - each southbound pass occurs at local solar 
midmorning. Passes repeat every 18 days (Figure 1). Images are collected by a 
four-channel Hughes multispectral line scanner (the MSS) and by an array of three 
spectrally filtered RCA return-beam vidicon (RBV) cameras. The MSS images a con
tinuous strip of imagery 185 km wide, centered on the satellite ground track. The 
RBV cameras produce central-perspective framed images 185 km square with 10 to 15 
percent overlap. Image sidelap between adjacent orbital passes is about 14 per
cent at the equator and increases with increasing latitude. The image data, to
gether with other satellite performance data, are telemetered to ground receiving 
stations, where all data are recorded on magnetic tape. Images are reconstructed 
on photographic film later from the tape data. For some uses, magnetic tape is 
more desirable as a data medium. 

r 
✓ 
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Figure 1: Typical ERTS Ground Trace for one day (only Southbound Passes shown) 
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Because of technical difficulties on boa.rd the satellite, the RBV camera array 
has not been used extensively; nearly all images have been obtained by the MSS 
sensor alone. This discussion will be largely limited to the MSS images. The MSS 
sensor has proven to be unexpectedly durable and stable, and has far ~urpassed 
all expectations for its performance. Tens of thousands of these imaqss have al
ready been collected by ERTS-1 during its two years of operation. 

Each earth scene imaged by ERTS-1 includes four MSS images, one in each of four 
spectral bands. To perform multispectral analysis, the image data from all bands 
must be accurately registered. Much analysis is done using the data on magnetic 
tape, for which band registration is rigorously enforced by the geometry of the 
MSS sensor and the method of digital data processing. Some investigators use film 
images, often color composites of three spectral bands. Extreme care is needed 
during film recording to maintain image registration. Absolute positioning of the 
images on the earth's surface is also important. This permits temporal analysis 
using successive ERTS-1 images of the same locale, and also simplifies comparison 
of other types of source data with the ERTS images. 

At the Goddard Space Flight Center NASA facility in the United States, thousands 
of MSS images each week are recorded on film from magnetic tape. Other facilities 
in Canada and Brazil perform similar operations, although their production is 
lower. As the images are printed on photographic film, systematic geometric and 
radiometric corrections are applied to that positionally accurate registered 
images of high radiometric fidelity are produced. All ERTS-1 images are processed 
in this way to give the basic film products, variously called production images, 
system-corrected images, or bulk-processes images. To obtain an image product 
with improved positional accuracy, a selected number of the bulk images can be 
given additional treatment with a sequence called precision processing. The pro
cedure gives increased accuracy by using the geographic positions of map details 
which can be identified in the bulk images. The resulting film products are called 
scene-corrected or precision-processed images. 

The precision images still contain on the order of 100 meters circular standard 
error. Recent research at Bendix Research Laboratories indicates that much of 
this error can be removed by more intensive processing techniques. 

This paper is primarily concerned with the three different levels of geometric 
accuracy (bulk-processed, precision-processed, and intensive-processed), the 
equipment entailed, and the prospects for improvement. The discussion of film re
cording techniques applies in general to the NASA, Canadian, and Brazilian 
facilities, except as otherwise mentioned; specific details may differ slightly. 

MSS SENSOR 

Two of the four MSS spectral bands are in the visible, and two in the near infra
red portion of the spectrum. The geometry of an aerial line scanner has been de
scribed previously by Derenyi and Konecny 14I. If provisions are made for earth 
curvature and rotation many of these same considerations are also valid for the 
ERTS-1 MSS scanner. 

A single-line scanner by itself provides only one image dimension. Usually a 
rotating faceted mirror is used to perform the scannin9 of the earth image past 
the sensing element or elements. The ERTS-1 scanner l51 uses a single pivoted 
mirror, rocking back and forth through 0.1 radian 13 times per second. As shown 
in Figure 2, six consecutive scan lines are imaged in a single mirror sweep. Thus 
24 separate sensing elements are needed in the image plane of the scanner, 6 
detectors for each of the 4 spectral bands. On the ground, the instantaneous 
field of view for each detector element is a square 79 meters on a side. During 
a single west-to-east sweep of the mirror, the detected radiation at each detec
tor is quantized at 1 of 64 values every 10 microseconds, corresponding to a 
ground translation of 56 meters in the direction of scan. Thus one mirror sweep 
collects a swath of six scan lines, covering 474 meters by 185 km and including 
about 20 000 picture elements or ''pisels", 56 by 79 meters, for each of the four 
spectral bands. A single swath is collected in about 0.033 second. 

The mirror velocity changes somewhat during the active part of the scan, and 
since the detectors are sampled at fixed time intervals a small nonlinearity of 
scan angle versus time is introduced. Although largely systematic, some changes 
have been noted during the operational life of ERTS-1. 
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The forward movement of the scanner platform provides the extended second dimens
ion of a scanner image. Metrically, a satellite has an advantage over an aircraft 
as a scanner platform 161, because attitude and velocity changes are much smoother. 
The scanner image requires lower-order geometric adjustments over longer distan
ces. 
MSS images are not printed on film in continuous strips as they are obtained; 
instead they are recorded as individual frames 185 km square, with coverage and 
format chosen to match that of the RBV images. As will be seen, the geometry of 
an MSS frame is intentionally changed during film recording to be that of a 
secant-plane perspective projection (neglecting terrain relief effects) with 
mean scale of 1 : 3 370 000. 

Theoretically, all spectral channels of the same scanner pixel are imaged and re
corded at the same time. (This is not strictly true, but the delays are fixed and 
compensated during image processing). Geometrically, any one of the four spectral 
bands is like any other. Digital image data has in·herent registration between 
spectral bands. When registering film images of different spectral bands (as 
would be done in making a color composite, for example), misregistration results 
from instabilities in film and film-recorder operation. These instabilities must 
be kept to a minimum for successful multispectral film analysis. 

BULK IMAGE PROCESSING 
Film Recorder 

Over 1000 bulk ERTS-1 images can be produced daily by the NASA facility, conver
ting the serial MSS sensor signals on magnetic tape into high-resolution film. 
All present ERTS-1 facilities create bulk images on 70 mm film using an electron 
beam recorder (EBR). This device operates in a basically analog manner: a high
energy electron beam exposes the film directly, scanning a series of lines across 
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the film. As it scans, the beam intensity is modulated by the sensor data stored 
on magnetic tape. The basic deflection pattern of the beam is supplied by the 
internal controller of the EBR. Additional deflection and intensity adjustments 
are applied through a special interface controlled by a digital computer. The ad
justments provide desired geometric alterations, and are in part based on cali
bration measurements of previous bulk images. An important advantage of electron
beam recording over visible-light methods is the ease with which the beam can be 
rapidly deflected to make positional image corrections during printing. It is 
difficult to over-emphasize the tremendous significance of these transformation
printing techniques in image-data processing. The original image data can be re
mapped and presented in virtually any desired geometry. 

The EBR also exposes the individual characters of annotion information which 
appear around the edges of the bulk image. Corner registration marks, geographic 
coordinate ticks, and alphanumerics are printed. Internal geographic coordinate 
intersections are not shown to avoid obscuring image information. 

Bulk Image Geometry 

Atthough it does not appear in the bulk image, positional reference is based 
computationally on a square image border. This border is considered to be center
ed on the earth's surface at a location determined from the satellite ephemeris 
and the telemetered satellite pitch and roll. The border is not oriented with 
north at the top, but at an azimuth determined by satellite heading plus the 
telemetered satellite yaw angle. For most ERTS-1 images the border is rotated 
east of north by 9 to 15 degrees. All MSS and RBV images in the same scene 
(a scene is an image set of the same 185 km square on the earth collected at the 
same time) use the same earth-surface location for the border. The border always 
is the same size on the earth, about 190 by 202 km. The additional dimensions 
allow individual images of the same scene to be slightly shifted during film re
cording to compensate for slight misalignments between the different image sen
sors. Registration is done by aligning border ticks or the four corner registra
tion marks. 

As the film recorder exposes an MSS image for one of the four spectral bands 
within the image border, extensive geometric corrections are applied to the 
scanning electron beam. Without such adjustments, each successive MSS six-line 
image swath would be exactly aligned with its neighbors to create a rectangular 
image. While the resolution and general appearance of such an image would be ac
ceptable, it would be considerably distorted from the desired perspective pro
jection. 

The major distortion is caused by earth rotation. During the 28 seconds required 
to image 185 km along the satellite ground-track, the earth rotates 7 minutes of 
longitude eastward beneath the orbital plane. The earth-surface area covered by 
the resulting scanner frame is not a square, but approximately a rhombus (see 
Figure 3). Maximum deviatior from orthogonality is about 4 degrees and occurs at 
the equator. To remove this qistortion, the EBR must displace successive image 
toward the west edge of the fmage. 

The correction is implemented by applying small correcting deflections to the 
electron beam during film recording. The magnitudes·of these deflections are de
termined by the bulk-processing control computer, based on the spacecraft ephem
eris and the known time at which the bulk image was sensed. The exact amounts of 
deflection are computed only for 81 image points, spaced uniformly inside the 
image border in a 9 by 9 grid, called the EBR image Correction (EBRIC) grid. When 
the bulk image is being printed, an interface between computer and EBR controls 
the application of the EBRIC deflections. Beam deflection is linearly inter
polated between points in the EBRIC grid. All geometric adjustments use the grid, 
summing individual corrections to obtain the composite adjustment at each grid 
point. The attitude and altitude values at the center of the MSS frame are used 
as references. Away from the frame center, correcting deflections are added to 
the EBRIC grid adjustments depending on the amount of change and the effect on 
EBRIC grtd-point location. The shapes of the different image distortions are 
shown schematically in Figure 3. The Canadian and Brazilian facilities use a much 
more dense EBRIC grid, 32 by 32 points. The greater number of points followed 
from the desire to eventually apply terrain corrections to the images as they are 
printed, although this has not yet been realized. 
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Figure 3 : Principal MSS Image Distortions 
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Each scan line is slightly elongated during bulk-image recording to adjust the 
geometry from the panoramic curved surface of the original scanner to the plane 
surface characteristic of a frame camera. Spacing ·between scan lines is decreased 
away from the center of the MSS frame to produce a perspective effect in that 
direction as well. These adjustments also are added to the EBRIC grid deflections. 
Colvocoresses 171 has questioned the wisdom of this latter adjustment. The ratio
nale lies in the original desire to give the MSS images the same geometry as that 
of the RBV images. 

Another EBRIC contribution results from the imperfect alignment of the MSS sensor 
in the satellite with respect to the attitude sensors. The entire MSS bulk image 
must be slightly rotated and translated with respect to the image border. The ex
tent of this adjustment is determined as part of the precision image processing 
operation described below. 

Earlier, it was mentioned that nonlinearities in the mirror sweep rate introduce 
spatial distortions in the sampling of pixels along a scan swath. This non
linearity is monitored as part of precision image processing. The correcting de
flections are supplied to the bulk-processing control computer as additions to 
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each of the 81 EBRIC grid points. 
By its nature, the EBR equipment applies additional image distortions to the bulk 
images. Compensating corrections must be entered as EBRIC grid deflections to 
cancel these equipment errors. A calibrated film grid is periodically printed 
with the EBR and measured to update these equipment corrections if necessary. 

In summary, bulk image geometry is not a simple unmodulated presentation of con
secutive scan lines. A closed-loop control sequence exists with which bulk images 
are measured and the results used to improve subsequent bulk images. Once the 
systematic errors have been removed by this control loop, a rontinuous monitoring 
process is followed to ensure that accuracy is maintained. The net result is a 
complex and interrelated flow of information to remove errors caused by attitude 
and velocity differences, earth rotation effects, internal sensor geometry non
linearity, and EBR equipment drifts and distortions. 

Bulk Image Accuracy 

The film bulk images exhibit good registration between the different spectral 
bands. Circular standard error from early operations was about 150 meters; this 
has improved somewhat with time and is presently closer to 100 meters. But the 
circular standard error in' absolute position remain at about 750 meters. By far 
the most significant component is caused by errors in telemetered spacecraft 
attitude. Internal image geometry is rather good; only a shift and rotation are 
needed to greatly improve absolute position. The only feasible way to achieve 
such improvement is through the use of ground control points: small details of 
known earth-surface position which can be measured in the ERTS-1 images. This 
leads us to the area of precision image processing and the second accuracy level 
of ERTS-1 images. 

PRECISION IMAGE PROCESSING 

The primary function of the precision image processing sequence is to produce 
special "precision'' images with accuracy improved from that of the bulk images. 
In addition, information is obtained which can be used to monitor and periodical
ly improve the corrections being applied by the bulk-imare EBR at the 81 EBRIC 
grid points. To this extent, precision image processing improves the accuracy of 
all bulk images, not only those undergoing precision processing. An ERTS-1 pre
cfsion image as produced by the NASA facility is printed directly on 240-mm roll 
film at 1 : 1 000 000 in a transverse Mercator projection. Except for the small 
effects of terrain elevation variations, the precision image is geometrically a 
map. Projection zones correspond to those used for the Universal Transverse Mer
cator system. Both geographic and UTM ticks are shown around the image border. 
Interior geographic or UTM ticks can be provided at the request of the user 
ordering the image. 

Ground Control Points for ERTS 

During the preliminary planning for ERTS, it became clear that satellite attitude 
data would not be adequate to meet the initial precision-image positional goal of 
500 meters circular standard error. Image-derived data offered the only possible 
solution in the short time available, and the use of ground control points for 
positioning ERTS-1 images was studied. It was quickly apparent that, in addition 
to an increase in positional accuracy, ground control points offer other signifi
cant advantages for ERTS. Most important, failure of the attitude sensor is not 
a problem. Second, ground control points for ERTS are quite cost-effective be
cause of the modest accuracies required: selected features on existing maps can 
be used. 
A third advantage of the control-point application had important system design 
implications. A photogrammetric resection in space provides the image-sensor 
attitudes completely independent of the ~tel lite attitude sensors. This permits 
the angular offsets between image and attitude sensors to be established more 
accurately than can be done by prelaunch alignment. Moreover, the offsets are 
measured after the satellite has undergone the rigors of launch and is establish
ed in orbit. When the effects of the attitude offsets are passed to the bulk
image EBR control computer via the EBRIC grid, all subsequent bulk images can be 
given compensating shifts within the image border during film recording. (Recall 
that the bulk-image border is placed on the earth solely from satellite data). 
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Control points have other advantages as well. When using more than the m1n1mum 
number of points for a spatial resection, the redundant data gives information 
on the quality of the spatial resection and the individual control points. Image 
sensor performance also can be evaluated: for example, changes in MSS sweep non
linearity can be detected by analyzing control-point residuals. 

All of these advantages were attractive enough to warrant further consideration 
of control points for ERTS-1 precision image processing. Several problems had to 
be worked out, largely a consequence of the heavy workload to be accommodated. 
The first of these was identification. Photogrammetric mapping experience with 
control points shows that misidentification is a frequent source of trouble. 
Often, this results when the point is not compared directly against a reference 
image. But storage of a world-wide network of reference control-point images for 
rapid access is a formidable problem. On fue other hand, the digital information 
about a point: identification number, latitude, longitude, elevation, even the 
type of point, its average residuals and variances - all can be stored easily on 
tape or disk and accessed quickly and directly. 

For ERTS- a second problem with control points was their visibility. There was 
considerable initial uncertainty as to what constitutes a good control point. In 
general, these have been resolved. Small bodies of water are consistently good 
control points; other man-made and natural features also are used, depending on 
the circumstances. Once a number of such control points have been selected in one 
image, they form a data base for all future images of the same area (orbit and 
data collection are adjusted so that subsequent scenes of the same earth area re
peat to within about 30 km). Of course, the points may not be visible for the 
next orbital pass of the satellite. Clouds are the biggest problem. Seasonal 
change is another, although not as severe as was originally thought. Provision 
must be made for using supplemental control points for any single ERTS image. 

The method finally devised to implement control point for ERTS-1 uses a film-chip 
control-point library on glass plates. A chip of film 5 mm square is cut from an 
extra copy of a 70 mm bulk image whenever a new control point is selected. Each 
chip covers 17 km square on the earth, and is approximately centered on th! con
trol point. The chips are fastened to 240-mm square glass plates as they are 
selectec, adding them to previously fastened chips. Each plate is capable of hol
ding up to 2025 chips in a regular 45 by 45 array. A special glue is used for a 
permanent film-to-glass bond. After a film chip is mounted on a chip plate, the 
plate coordinates of the exact control-point location are carefully measured. 
These coordinates are stored in a digital control data base, together with the 
other data needed for the point. The identification number for the control point 
is established by the plate number and the row and column numbers on the plate 
where the film chip is fastened. A total of 30 chip plates are used, correspon
ding to the 30 zones on the earth shown in Figure 4. Each zone covers a land area 
equivalent to a square between 1 900 and 2 400 km on a side, with the smaller 
zones used for areas of particular concern to ERTS-1 investigators. Duplicate 
control-point coverage is allowed for where zones join, and one consideration in 
selecting the zones was the minimization of land-area boundaries. 

Where suitable maps are lacking or of questionable accuracy, relative control 
points can be used for positioning ERTS-1 images. The geographic location of a 
relative control point is defined at the time it is first selected, using only 
satellite data and the measured image coordinates of the point (terrain eleva
tion is assumed equal to zero). Once selected, relative control points provide a 
stable reference to which subsequent images of the same area can be accurately 
temporally registered. Even the standard error in absolute ground position of 
750 meters for relative control points may represent a real improvement in 
position determination for some areas of the world. 
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Figure 4 : Control Point Zones 

Precision-Image Processing Sequence 

The three parts of precision processing are shown schematically in Figure 5. 
Separate queuing is used for each part; all three functions normally occur simul
taneously, but for three different ERTS-1 scenes. For each image to be processed, 
the processing instructions and satellite data are provided on a magnetic tape 
prepared elsewhere in the facility. The 70 mm bulk images also are provided. The 
precision-processing computer controls all subsequent operations. 

During the Screening and Control Point Selection activity, existing ground con
trol points are checked for visibility and new points are selected if needed. 
This operation uses conventional light tables, magnifiers, and a graphic digit
izer for the maps. 

The next two precision sequences are handled differently at the NASA facility 
than at the Canadian and Brazilian facilities. NASA operations are discussed 
first. The Image Measurement sequence in Figure 5 takes place at a Viewer/Scanner 
instrument, somewhat similar in appearance and capability to a computer-control
led stereocomparator. The bulk images are placed on one stage and a control-point 
chip plate on the other. Electronic image correlation is used to automatically 
match each control-point image detail on the bulk images with the same master 
control-point film chip on the glass plate. The entire operation is controlled by 
the precision-processing computer, and manual operator assistance in control
point matching also can be used. With all control points measured, the program 
calculates the transformation required to map bulk-image details into the neces
sary 1 : 1 000 000 transverse Mercator projection. 

Image Conversion and Annotation at NASA takes place at the Scanner/Printer equip
ment, a second precision two-stage computer-controlled device. A flying-spot 
scanner converts the bulk-image information into a video signal; a cathode ray 
tube {CRT) re-images the adjusted video signal and prints the image back on film 
in its correct location, Figure 6 shows the basic concept. The image ~s scanned 
and printed in 64 separate blocks. On the printed precision image the blocks 
appear as adjoining squares; on the input bulk image these same squares are 
slightly distorted quadrilaterals. It is the task of the transform computation to 
determine the correct distorting adjustments to apply to the flying-spot scanner 
raster as it collects the image information for each print block. For each corner 
of the 64 print blocks the sequence of coordinate transformations is: 
precision-image printing stage + UTM grid + geographic + Universal Space 
Rectangular + Local Space Rectangular + bulk-image coordinates + x,y stage 
coordinates at the Viewer/Scanner where control points were measured+ x,y sta9e 
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coordinates on the scanning stage of the Scanner/Printer where the tmage is moun
ted while being scanned. The spatial resection supplies only two transformations 
in this sequence. The others are determined from the established bulk-image bor
der, the earth spheroid being used, a knowledge of the bulk-processing geometry 
modifications, and an image-to-stage orientation carried out at the Scanner/ 
Printer. 
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Precision Image Geometry 

X 

The MSS spatial resection is somewhat different from the normal photogrammetric 
spatial resection with six unknowns. Eight unknowns are determined. As a result 
of unavoidable errors, the bulk images contain errors introduced by incorrect 
satellite attitude, altitude, attitude changes, altitude changes, and residual 
film-recorder scale and skew errors. To remove the composite effects of these 
errors, coordinate corrections dx and dy are determined for the measured x and 
y bulk image coordinates, where 

2 
dx = a

0 
11 + (B) j + a 1x + a2y + a3xy 

2 
dy = bo j 1 + (*) j + blx + bzY + b3XY 

in which His the satellite altitude reduced to bulk-image scale, The a and b 
are the eight unknowns used in the spatial resection. These equations b!sicall9 
are those required to map any quadrilateral into any other quadrilateral, with an 
additional small term in the a0 and b0 terms to include some of the erroneous 
attitude effects introduced earlier when the bulk image was printed as a per
spective projection. The terms correspond to the first-order effects of the 
residual errors, as shown in Figure 4. 

In the resection, the approximate position and attitude data used to position the 
bulk image are considered errorless. The control-point geographic coordinates are 
transformed to those bulk-image coordinates where the control-point images would 
appear if the desired perspective transformation had been errorless. The differ
ences between these computed coordinates and the image coordinates actually 
measured at the Viewer/Scanner equipment are the residuals used in the least
squares resection computation, solving for the a1 and b1 terms. 

Only four control points are theoreretically adequate to position each ERTS-1 
scene. However, nine points typically are used, arranged in a three by three 
array which encloses as much of the image area as possible. The large redundancy 
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gives a significant reduction to that component of the precision-image error 
which is caused by random control-point errors. It has also been useful in part
ially compensating for the low skill levels of the personnel being used by NASA 
to control the operations. 

EBRIC Update 

About once a week, the Viewer/Scanner equipment is used to measure a special bulk 
image containing a rectangular grid. The results of this calibration are sent 
back to the bulk-processing operation in the form of a magnetic tape containing 
updated adjustments to be applied to the 81 EBRIC grid points during bulk-image 
film recording. This same measurement and control path has been useful on several 
occasions during ERTS-1 operation. The initial bulk-image shift and rotation (to 
correct for misalignment of image sensors and attitude sensor) was determined by 
precision processing and applied by an EBRIC tape. The MSS mirror sweep non
linearity has been modified using the same technique, based on analysis of con
trol-point residuals. 

Canadian and Brazilian Precision Image Processing 

The NASA approach to precision processing uses a film bulk image as if it were 
the original data input. This input is scanned and re-recorded with the correct
ions and the annotations needed to improve locational accuracy. A valid objection 
to this approach is that the bulk film image presents considerable degradation 
from the original sensor data stored on tape. Scanning and reprinting degrades 
the information still further. Resolution is better if the precision image is 
produced directly from the original tape data, using the same film recorder 
device but with slightly different EBRIC adjustments to improve and modify the 
geometry. This approach was considered during the design of the NASA facility, 
but at the time there was considerable uncertainty as to the stability of the 
EBR as a recording device. 

The Canadian and Brazilian precision-processing design proceeded along somewhat 
different lines, partly as a consequence of more modest production requirements. 
First, a slightly different type of film recorder was used. The NASA EBR requires 
the film to be in continuous motion forward as printing takes place, with con
sequent concern for the stability of the drive mechanism. And, since film 
exposure with electron-beam devices must take place under high vacuum, the pro
blem was a difficult one to solve. The Canadian and Brazilian film recorders 
use a step-and-repeat technique, with the film stationary during printing. By 
using this same device for precision processing, the cost of a special additional 
Scanner/Printer can be eliminated, and this was the decision for the Canadian and 
Brazilian facilities. The stability of both types of film recorders has since 
proven to be quite good, verifying the advisability of this technique. 

A second difference in the Canadian and Brazilian facilities concerns the control 
point measurement. The original 70 mm bulk image is enlarged in these facilities 
from a scale of 1 : 3 370 000 to a positive transparency at 1 : 1 000 000. Image 
coordinates of control points are measured on this transparency using a convent
ional graphic digitizer with a least count of 0.010 to 0.025 mm. Film chips are 
not used to provide a reference image of each control point, only available 
source maps. The technique permits the function of the Viewer/Scanner equipment 
to be replaced by a photographic enlarger and a conventional graphic digitizer. 
On the negative side, considerably more chance of point misidentification is 
introduced in this way, there is some loss in accuracy even with good identifica
tion, more time is needed, and higher skill-level operators are required. 

Figure 7 shows the precision sequence schematically, starting with the bulk image. 
The flow segment labelled "1" represents the precision measurement sequence. Seg
ment "2" is really only a repeat of the bulk-image production sequence, but with 
the substitution of a special set of "Precision EBRIC" correction grid points in 
place of the "Bulk EBRIC" corrections normally used. Notice that this sequence 
also enables EBRIC to compensate for the lens distortion introduced by the film 
enlarger. A variation of the precision sequence is used to update the bulk EBRIC 
grid points. 
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Figure 7 : 
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Early in the planning for the NASA ERTS-1 image processing facility, production 
rates became the dominant consideration. As a conse~uence, hybrid processing 
techniques were used, with the image date being transferred to film at analog 
rates, but with the geometry and density controlled digitally. Other techniques 
also merited consideration, including all-digital processing approaches. The 
chief disadvantage of such techniques at the time was the extensive processing 
and data handling time needed by very large computer systems to keep up with the 
data acquisition rates of the satellite. This is not difficult to understand when 
it is considered that one spectral band of one MSS image has over 7 DOO 000 
pixels, each with a reflectance value from 1 to 64. Since early 1970, when the 
ERTS design took place, new digital processing methods have been developed which 
hold considerable promise for application to future earth resource satellites. 
Several new attitude sensors have also been developed. With such a potential, it 
is natural that there should be interest in finding how well ERTS-1 MSS images 
could be positioned, assuming unlimited ability to make corrections and monitor 
mthe critical conditions. 
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Another concern is the technique used to locate control points on images in a 
production environment, some image presentation is needed other than photographic 
film with which to rapidly and precisely point to selected image details of con
trol points. Still another area of interest is the fine structure in satellite 
relative attitude behavior. MSS images can provide valuable insight here. Some 
investigations at Bendix Research Laboratories have been carried out under con
tracts with NASA to find some answers to these questions 181. 

Geometric errors in MSS images are caused by image sensor, satellite, and ground 
processing effects. Additional errors are introduced by attempting to point 
errorlessly and without bias to control-point image details. The interest for 
research is focused on only three of these four types of errors; ground process
ing effects are to be excluded. Thus, a substantial part of study effort must be 
concerned with removing the ground-processing error contributions. When this is 
done, it is possible to develop the systematic error components caused by the 
image sensor and the satellite. All of these could in theory be removed by a 
combination of modified MSS image sensor design, satellite attitude-sensor 
design 191, and the use of some number of control points. The remaining error 
when all this is done is called the limiting MSS geometric error in this dis
cussion. The reduction of geometric errors to this level I call "intensive image 
processing". 

The primary systematic error components in the present MSS images result from 
wobble of the scanning mirror normal to scan, scan sweep nonlinearity, and 
satellite attitude variation. All three could theoretically be removed from all 
image data: the mirror effects by careful inflight calibration, and the attitude 
variation by smoothing of telemetered high-resolution relative attitude data. 
Additional small systematic errors result from the placement of the individual 
signal detectors in the image plane of the scanner, and from the sampling-time 
delays for the different detectors. The limiting error is made up of random 
variations in the mirror during scanning - sweep rate and wobble - and of un
detectable small image sensor attitude changes. 

Intensive image processing is based on a variation of photogrammetric spatial 
resection, using a dense array of control points within a single ERTS-1 scene. 
In the work done to date, the control point images have been measured in each of 
several MSS image display media. Each medium is considered to be built up as a 
regular row-column array of adjacent MSS pixels. Row number and column number 
define a reference rectilinear image coordinate system. The resection mathematic
al model expresses the relation between the control points' locations in object 
space and the image column and row coordinates of the corresponding pixels. Model 
parameters are determined which give the best least-squares fit of the control
point data to the image coordinates. Residuals than are analyzed for additional 
systematism not included in the current mathematical model. This systematism is 
added to the mathematical model and the procedure repeated. When no additional 
systematism is detected, the final residuals, less image pointing errors and 
control-point errors, are then considered to define the limiting MSS geometric 
error. 

Image Display Media 

A fundamental problem in pointing to image details is of concern in the study. To 
eliminate the effects of ground processing, the MSS image display must theoretic
ally allow the original row-column pixel numbers of a control-point image detail 
to be determined directly. At the same time, the display must provide fractional 
pixel pointing precision; early in the study it was seen that the limiting geo
metric error is much smaller than one pixel; if only integer pixel row-column 
are used, a significant error source is introduced. These two requirements -
direct pixel counting and fractional pixel pointing - conflict directly. When 
the image display medium is such that discrete pixels can be seen and counted, 
it is difficult to do fractional pixel pointing. Conversely, suppression of pixel 
boundaries creates a composite image that looks like a continuous-tone photo
graph; fine pointing can be done easily in such a display but the pixel rows and 
columns cannot be counted directly. 

During the research thus far, three different image display media have been used 
in a search for the best compromise between fractional-pixel pointing and direct 
pixel counting. The first image form was a conventional ERTS-1 bulk image, 
a 70 mm film transparency. It contains the errors normally associated with such 
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images which were discussed earlier. Direct measurements in pixel row and column 
number are not possible with this image form. 

For the second display medium, enlarged segments of the MSS digital image data 
were displayed on a 4000-line CRT. Each MSS pixel was imaged as 9 CRT pixels. No 
geometric adjustment was applied to the pixels, and a reseau was digitally super
imposed at prescribed pixel numbers. The face of the CRT was photographed onto a 
film transparency, and both the control points and the reseau were measured on 
the film using a precision comparator. 

Control point images then were transformed from x-y comparator coordinates into 
pixel row-column coordinates based on the reseau measurements. It was believed 
that the combined distortions of CRT, camera and film could be removed by this 
transformation. 

The third display medium was a printout on paper from a conventional high-speed 
line printer. Different alphanumeric characters represent the different reflect
ance values for each individual MSS pixel. An inexpensive and readily obtainable 
display can be produced by the line printer, and pixels can be counted directly. 
Figure 8 shows an example. 

On the three image forms, the most nearly continuous display is provided by the 
ERTS-1 film images, and the easiest pixel-counting by the paper line-printer out
put. The filmed CRT image occupies an intermediate position. 

Figure 8 Line Printer Pixel Map Compared to Conventional Map 
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Over 100 control points were selected for the initial research. Considerable 
effort was made to select points from symmetric image details: X road inter
sections, circular bodies of water, and three clearings. Nearly ~11 of the points 
used were of this type. The source maps were at a scale of 1 : 24 000. The total 
circular standard error from the maps and the map-point measurement process was 
calculated to be 6.0 meters. 

Imaging Models 

Three different mathematical models were used in the course of the initial 
analyses. The most detailed simulates the entire MSS imaging process, in the same 
way discussed by Kratky 131. The column and row pixel number measured for each 
control point, together with parametric values of scanner rate and duty cycle, 
establish the time at which the control point was imaged by the scanner. This 
fixes several time-dependent orientation elements - the unknowns in the model -
which describe satellite position and attitude, from which pixel column and row 
numbers can be computed corresponding to control-point latitude, longitude, and 
elevation, If all orientation elements were correct, the computed and measured 
pixel numbers should be identical. Residuals indicate additional adjustment is 
required. A total of 13 orientation elements were established for the original 
imaging model. Several of these are very highly correlated, and only 9 of the 13 
were originally carried as unknowns. 

In the course of the analysis, 12 additional unknowns were added. These provide 
adjustments to the mirror sweep nonlinearity and higher-order attitude effects. 
Three terms each were used for separate east- and west-edge mirror effects. 
Separate adjustments to pixel row number and column number as third-order effects 
of time required the other six unknowns. 

The detailed imaging model above is comprehensive in its geometric treatment of 
the imaging process, since it includes all known effects of the imaging process. 
However, it proved to be rather time-consuming for computer analysis of a great 
many control points. This was largely a consequence of using delta-process part
ial derivatives for 9 of the 21 unknowns, instead of explicit expressions. A 
second imaging model was developed which requires much less computer time. 
Results have since proven to be equivalent to those of the detailed model. 
Basically, the second model is a complete cubic polynomial representing image 
column and row pixels in terms of geographic coordinates. Latitude and longitude 
of each control point is modified initially by the cross-track terrain elevation 
displacement component. An additional term was added to the cubic, linearly vary
ing as the row number within a six-line swath, to compensate for the swath nature 
of the scanning process and also for the average time difference between read-out 
of the six detectors in a single imaging swath. The total of 21 unknowns is the 
same as that used for the first imaging model described in the previous paragrap~ 

A third imaging model was used only for the ERTS-1 bulk image. Measurements in 
pixel row and column numbers were not possible for this medium. Also, the bulk 
image already includes some geometric corrections, as seen above. The final 
equations for the third imaging model included 16 unknowns. The basic form is 

dx = a
0 

+ a 1x• + a2y• + a3x 1 y 1 + a4(y' ) 2 

dy = b
0 

+ b1x' + b2y• + b3x 1 y 1 + b4(y 1
)
2 

where x' and y' are the bulk-image coordinates as computed from a central-per
spective projection of control-point coordinates, and dx and dy are added to x' 
and y' to obtain the measured bulk-image coordinates. Three additional terms also 
are used for separate second-order mirror sweep effects at the east and the west 
image edges. 
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RESULTS 

The standard errors in the across-track (row) and along-track (column) dimensions 
were evaluated for the different image display media and imaging models. The 
results are summarized below in meters on the ground. 
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For all of these values, the effects of image pointing and map error have been 
removed. The poor results of the CRT film image, shown in detail in Figure 9, 
appear to have resulted from high-order CRT distortions which could not be re
moved by the reseau spacing used. The line printer method shows considerable 
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promise for future analysis. But the standard ERTS-1 bulk image gave the best 
accuracy. This is' all the more remarkable, since the image used was a third
generation positive copy. Also, none of the finer-structure corrections for MSS 
six-line swath scanning could be applied because of the impossibility of identi
fying discrete pixels. Based on these initial results, there is hope that the 
present errors of about 40 meters, or one-half pixel, can be further decreased 
with improved image display media. 

The initial investigation indicated that: 

(1) Using all available information, MSS circular standard errors can be reduced 
to about 40 meters, excluding the effects of terrain elevation displacement. 

(2) The ERTS-1 satellite exhibits a relatively well-benaved regime of attitude 
variation over a single MSS image; variations could be largely compensated in 
production either by many (10 to 20) control points or by accurate relative 
attitude data and fewer control points. However, occasional anomalous spikes in 
the attitude behavior do appear to be present. 

PRESENTLY PLANNED RESEARCH 

Plans for additional investigations of ERTS-1 geometric accuracy will use a 
different image scene. For the utmost ease in interpreting some of the image 
display media which will be used, a test area is desired which has a large number 
of ponds and small lakes uniformly distributed throughout the scene (or alter
natively, many small islands in a larger body of water). The entire test area 
also must be covered by accurate maps at scales no smaller than 1 : 50 000 for 
effective control-point selection. Finally, the area must be imaged in several 
different passes by the ERTS-1 MSS. Potentially satisfactory locations are found 
in New England, Florida, and several parts of the North Central United States. 

With the scene selected, several hundred control points will be selected from the 
maps, with about 100 clumps of 3 to 5 points each distributed uniformly over the 
test area. Selection criteria will be: (1) general symmetry of the map feature 
for accurate centering both on map and image; (2) good visibility in the ERTS-1 
image, preferably the 0.6 to 0.7 micrometer ("red") or the 0.7 to 0.8 micrometer 
("IR1") spectral band;(3) no evidence of change in shape between map and image. 

A major task of the planned research will be to develop a discrete-pixel display 
which can be pointed with the same precision as a conventional aerial photograph. 
(Recall that sub-pixel pointing is mandatory). Three alternative techniques are 
planned for initial evaluation: (1) a high-resolution television screen, using 
direct operator pointing to scaled-up MSS display segments; (2) a line-printer 
digital image printout, with different overstruck alphanumeric characters (10) 
creating a grey-scale image from the individual MSS pixels; and (3) a line-prin
ter digital printout with a single line-printer character for each of the 64 re
flectance levels. The first two display media will create an image-line pre
sentation, in which control point images can be pointed in the same way as a 
photographic image. The third format is intended for digital analysis, inter
polating pixel row and column density centroids for the small symmetric control
point features. After using these three media for control-point measurements, the 
most promising will be selected for additional development. The merits of the 
second technique may require the use of a line-printer with different shades of 
grey as characters in contiguous blocks. Similar devices already exist for other 
applications. 
Using the optimum image display format, the evaluation of limiting MSS geometric 
error can proceed, based on control-point measurements with small and well-known 
pointing errors associated with them. The results of the analysis will again be 
values for standard error in the MSS row and column directions, improved estim
ates of mirror behavior over a frame of scanning, and more definitive profiles of 
relative satellite attitude perturbations. 

CONCLUSION 

The ERTS-1 satellite has collected thousands of images over the past two years. 
These images have been applied to a great number of disciplines concerned with 
the earth's natural resources. Circular positional standard error of the ERTS-1 
MSS images has three different levels; that associated with the bulk images of 
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about 100 meters, and the limiting value which can be attained of something less 
than 40 meters. Work is in progress to better establish the latter figure. The 
many investigators who must perform temporal registration of ERTS-1 images are 
asking for positional discrepancies of one-half ERTS-1 pixel or less. It is hoped 
that additional research will show a way to achieve such high quality con
sistently for images collected by the future earth resource satellites. 
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MARS - A PROCESSING SYSTEM FOR THE MAPPING OF REMOTE SENSING DATA 

by E. Clerici, D. Eckhart and K. Kubik, Delft, The Netherlands 

THE REMOTE SENSING PROBLEM AREA 
- Image formation 

In addition to the now classical methods of aerial photography several new tech
niques of taking images have been developed. These techniques have in common a 
very high rate of data acquisition. The different imaging methods, however, have 
all their rather particular geometry. 

As a consequence of the strong data flow special processing as well as organisat
ional efforts are required. 

- Data prepocessing 

In order to reduce the amount of data at the earliest possible stage data pre
processing methods have to be applied. It is interesting to note that also the 
human eye has a prepocessing task, namely to extract the most relevant features 
of the image before sending the signals to the brain. 

For scanning methods a certain amount of data reduction is achieved via the pho
tographic image registration. In fact an integration by overlapping scanlines is 
performed. 
Even after preprocessing a vast amount of data is left, so that a very selective 
further processing is mostly indicated. 

- Interpretation 

Recognition is a most complex process as a large number of parameters is involved 
Two general approaches may be mentioned: recognition via general shape and re
cognition via the spectral characteristics per point. The last procedure is 
easier for automatic treatment and is a typical microprocedure. Visual inter
pretation of photographs is mainly directed to recognition of macrostructures. 
Human interpretation and automatic 
treatment complement each other to a 
large extent, so that interactive pro-
cessing may be a favourable proposition. llPf>LIC/lT/0/il OF 

- Profit to "Waterstaat" 
as organisation 

Clearly the purpose of applying remote 
sensing in an organisation with 
operational tasks must be profit 
oriented. Some promising application 
areas are listed in figure 1. The 
potential to achieve this, namely the 
data handling is illustrated summarily 
in figure 2. 

Depending on the case, remote sensing 
may be the only applicable means or it 
may be one of several alternatives. 
For example it is the only means for 
synoptic determination of the temper
ature distribution over the surface of 
the sea or a river, whereas detection 
of oil pollution on the sea may also 
be performed by visual control. 

Figure 1 
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Using remote sensing methods however, 
the chances of detection are much 
higher; moreover one is not necessarily 
restricted by daylight or clear weather 
conditions. Early detection of oil 
pollution on sea may result in quite 
substantial savings in costs of clean 
up actions (in the order of millions of 
dollars) even without consideration to 
the ecological consequences of coastal 
pollution. 

Of course an operational system has to 
be developed from a research programme 
directed to application, as most of the 
remote sensing techniques have only re
cently become available. Also basic re
search has to be performed in order to 
give proper support to the application 
research programmes (vide figure 3). 

MARS 
- Computer aspects 

Central to MARS is a large computer 
system (P 1400) which includes a mini
computer (PDP 11), used mainly to con
trol the hardware specially developed 
for processing remote sensing data. The 
software design of MARS is developed 
for a multiprogramming environment in 
order to make it accessible from term
inals distributed over the country 
(vide figure 4). 
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- Special purpose hardware 

A - ASTROSCAN 

This device is basically developed as a 
computer controlled densitometer of 
utmost flexibility. The mechanical part 
of it is a David Mann. comparator made 
available by the Astronomical Institute 
of Leiden University, and modified by 
the effort of NIWARS and Rijkswater
staat (vide figure 5). 

B - REMS 

REMS is an imaging devide coupled to the 
PDP that can perform a rectification of 
scanner images recorded digitally. The 
rectification is a function of the 
available flight parameters, which 
are registered in parallel to the video 
signal. 
The PDP allows quick look inspection of 
the recorded image by playing the tape on 
to a television display (vide figure 6). 

C - RADEX hard 

RADEX is the RAdar EXtractor in develop
ment at the "National Physics Laboratory 
TNO" on commission by the Rijkswater
staat. The hardware system is airborne. 
The purpose is detection of ships at sea 
using SLAR. Signals above a preset level 
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are accepted as representing a target and 
as such extracted from the scanlines and 
either recorded or transmitted to a 
ground station (vide figure 7). 

- Application software 
(vide figure 8) 

A - KARIN 

KARIN transforms selectively digitized 
image points to the map coordinate 
system. The transformation parameters 
are determined from a set of reference 
points. The output may take either the 
form of a coordinate list or of a line 
drawing. 

B - MARE 

This system was designed to produce 
temperature maps from digitized sign
als of IRLS. Typical is the feature 
that microstructure may be studied in 
an interactive way. 

C - SILOS 

This programme simply transforms 
selectively digitized features from 
Side Scan Sonar imaqes into a suitable 
map system with the-help of navigation 
parameters. A procedure is included to 
smooth the recorded navigation para
meters which may be mixed with a high 
noise level. 
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Figure 9 is showing how the "Remote Sensing Group Waterstaat" is composed of five 
different departments within the Ministry of Traffic and Public Works, and at the 

V V 
same time it summarizes the whole paper in one 
picture. The arms of the mill stand for basic 
dimensions of the remote sens~ng problem area 
whereas the sails supply the driving force to 
the problem solution effort, provided by .... 
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FILM FLATNESS IN AERIAL CAMERAS - A MODEL FOR ITS COMPUTER SIMULATION 

by K. Tempfli, Enschede, The Netherlands 

ABSTRACT 

A model for the simulation of the unflatness of aerial film in vacuum pack 
cameras at the moment of exposure has been developed, on the basis of in
vestigations reported in literature. 
The deterministic and stochastical models employed for the three components: 
unflatness of the vacuum platen, film thickness variations, and lack of contact 
between the vacuum back and the film, are described. The liminations of the pre
sent system and recommandations for further studies conclude this article. 

(original paper published in: ITC journal 1973-4, p. 562-582) 

DETERMINATION OF STOCHASTIC MODELS FOR OBSERVATION AND POINT TRANSFER ERRORS 

by H. G. Jerie, Enschede, The Netherlands 

ABSTRACT 

This paper describes a comprehensive experimental programme aimed at establishing 
stochstic models for observation and point transfer errors as functions of their 
influencing factors. 
An outline is first given of the various types of observations which have to be 
investigated and of their main influencing factors, namely the object quality, 
the image quality, the quality of the observation system, the quality of the 
human perception and the base-height ratio. 
The concept of observation errors is then analysed, after which a detailed de 
scription is given of the required material, preparation, measurements, and data 
processing for each of the experiments. 

(original paper published in: ITC journal 1974-2, p. 73-90) 

INSTRUMENTAL ERROR ANALYSIS AND GENERATION 

by B. Makarovic, Enschede, The Netherlands 

ABSTRACT 

One of the inputs for the computer simulation of photogrammetric processes is 
the instrumental distortions. Such distortions can be generated hypothetically 
from real statistical data, collected by means of ·experimental tests. 

The experimental test data can be analyzed systematically for different 
characteristic distortions . The results are distribution parameters of the 
typical distortions, correlations, residual distortions, and the corresponding 
standard errors . These data represent the input for generating the hypothetical 
distoftions, generation being essentially the reverse process to analysis. 

The analysis can be performed more efficiently if the acquisition of the experi
mental test data is standardized. For practical reasons it is expedient to com
bine this data acquisition with the standard routine tests for instrument per
formance. 

(original paper published in: ITC journal 1974 - 2, p. 91-110) 



- 36.3 -

ANALYSIS AND SIMULATION OF DEFORMATION 

by K. Tempfli, Enschede, The Netherlands 

ABSTRACT 

A statistical analysis of reseau photography is suggested as a framework for a 
possible approach to the digital simulation of film deformation. "Film deforma
tion" refers to the distortion of the image which is measured as compared to the 
image which is formed in the photographic emulsion at the moment of exposure. 
The simulation of this change of image geometry is one of the components of an 
extensive computer simulation system concerning the accuracy of photogrammetric 
operations to be developed at ITC. Existing reseau photography measurements are 
proposed as original data for a statistical analysis since they will represent 
a wide variety of what is happening in photogrammetric practice, if procured 
from various organizations. To obtain statistically representative data, labor
atory experiments do not seem feasible when the large number of factors possibly 
influencing film deformation such as type of camera, cycle speed, kind of film, 
processing equipment and method, storage conditions, age of film, type of prin
ter, and the kind of diapositives used are considered. A method is outlined for 
reducing the original data for the effect of the deviation of the emulsion sur
face from a plane and for the measuring error. 

The analysis is designed in such a way that it will lead to the description of 
film deformation by a purely inductive procedure. An orthogonal transformation 
of the error surface forms the core of the tr~nd analysis. For the variation 
of the trend coefficients throughout a film of consistent history the theory 
of stationary random functions is applied. The distortion remaining after sub
traction of the trend will be defined within the framework of the correlation 
theory. A statistical comparison of the results obtained from films with 
different history has to reveal the inter-relations existing between a variation 
in any of the process parameters and the variation of the properties of film 
deformation. 

(original paper published in: ITC journal 1974-2, p. 111-137) 
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ERTS COLOR IMAGE MAPS 
by Robert B. McEwen, James W. Schoonmaker, Reston, Virginia, USA 

ABSTRACT 
The U.S. Geological Survey has prepared several experimental color image maps 
from Earth Resources Technology Satellite (ERTS-1) images. Examples are the 
gridded image of Upper Chesapeake Bay and the mosaic of New Jersey. Both were 
printed at a scale of 1:500 000 with a full UTM grid and placed on public sale 
in February 1974. A color mosaic of Florida is being prepared from 16 separate 
scenes. It also will be printed at 1:500 000 scale. The publication of satellite 
image maps has required the development of innovative procedures, combining 
computational photogrammetry, image geometric control, photomechanical mosaiking, 
and color lithography. These color image maps are the first to meet cartographic 
standards and to be lithographed for public sale at a nominal charge. The 
detailed procedures and equipment are described, along with some of the results. 

(published in the Proceedings of 1974 Fall Convention of the ACSM, original 
paper published in Photogrammetric Engineering XLI, 4. 1975) 

GRIDDING OF ERTS IMAGES 
by William H. Chapman, Reston, Virginia, USA 

ABSTRACT 
The technique of converting an ERTS image into a map by fitting a common refe
rence grid to the image has proven to be very useful for obtaining an inexpen
sive but precise cartographic product. Normally the details of a map are mani
pulated to fit the projection. Transforming ERTS images to fit a projection 
causes image quality to diminish to an unsatisfactory level .However, sitting the 
grid to the image relates image details to the ground coordinate system with no 
loss of image quality. Gridding an ERTS image requires (1) identifying on the 
image discrete points whose ground coordinates are known, (2) measuring the x 
and y values of the points on the image, preferably with a coordinatograph, (3) 
computing the transformation parameters to relate the image and the ground 
coordinate systems and computing the grid intersections in the image coordinate 
system, and (4) plotting the grid on an overlay which is precisely registered 
to the image. 
(published in the Proceedings of 1974 Fall Convention of the ACSM) 

SPACE CARTOGRAPHY - CURRENT ACCOMPLISHMENTS AND FUTURE PROSPECTS 
by Frederick J. Doyle, U.S. Geological Survey, Reston, Virginia, USA 

ABSTRACT 
The paper gives a comprehensive review of the US and sowjet lunar space missions 
and of their carrographic achievements. Similarly the planetary missions for 
Mars, Jupiter, Venus, und Mercury and the earth orbiting missions are reviewed 
including the present sta e of information processing and mapping. Finally the 
author lists the planned future planetary missions and discusses the prospects 
for earth orbiting satellites for cartographic and relatet purposes. 

(published in the Proceedings of the International Conference of Cartography, 
ICA, Madrid, Spain 1947 
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