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REnorrE SENSING OF OBJEC'l' ' S STATE AS A s rl'ATISTICAL ESTI­

MATION PROBLEM : GENERAL CONSIDERATIONS AND ALGORITHM 

ABSTRACi : We argue that remote sensing of object ' s state 
is a promising field in itself , and that it could enhance the 
classification accuracy . We show that point- by- point methods 
fail , and so the problem is put as a statistical one of esti­
mating the mean values (that is , the first moments) of state 
variables over an area . 

The method is a modification of the maximum likelihood 
estimation procedure . It needs extensive information on the 
relation between the state and the brightness , which is deri­
ved by nearly the same method from test area observations . 
Once fully determined , this relation is valid everywhere . Vie 
are able to a priori and a posteriori assess the sensitivity 
of the method to data shortage , noise , and violation of some 
assumptions . ~.~athematically , the moments of a random variable 
are estimated from the observations of the summatory statis­
tics of a non- linear function in that variable . It is a rather 
general problem. 

Introduction 

Remote sensing of a known object ' s state , e . g . of crop 
maturity or soil humidity , has been receiving little attenti­
on (particularly , in automatic data processing) as compared 
to remote sensing of object ' s cathegory , i . e . to classifica­
tion. The state of objects is , however , the most promising fi ­
eld for remote sensing because of the need for this informa­
tion and the difficulties of collecting in situ the large 
amounts of it in a timely and precise manner . 

The obvious explanation is that even the object's type 
can be deduced from remotely sensed data with only a marginal 
accuracy so that the much more complicated problem of asses­
sing the object ' s state by classification must soon altogether 

448 



hopeless . Some experience in the field has only supported 
this belief /1/ . We deduce from this not that the problem 
should not be tackled , but that the method should be statisti­
cal estimation rather than classification. It is only natural 
since the problem is of a continuous rather than of a discrete 
nature . 

We show that if the object ' s type is known and some ra­
ther common statistical assumptions are fulfilled , putting 
the problem as one of estimation immediately gives us a pac­
kage of ready- to- use powerful statistical methods better de ­
veloped and aestetically more pleasing than classification. 
We carry out in this paper what adaptation of classical esti­
mation methods to our problem is necessary. In the end , we 
try to show that classification accuracy is limited mainly by 
not taking into account the fluctuations of the object ' s sta­
te . So combined classification and state estimation could en­
hance the precission of the former . 

A number of more complicated mathematical points has 
been omitted . We intend to discuss them in a separate strict­
ly mathematical paper. We feel that all that reasoning would 
be a bit out of place here . In this paper , all mathematics 
has been removed to Appendix. 

1 . Problem statement 

In ~emote sensing , each resolution element (RE) usually 
consists of many (n >> 1) identical microelements , as grass 
consists of individual blades with a portion of soil for each . 
The observed brightness Yj (j=1 , ••• , N) of the j - th RE is , 
then , the mean of the microelements ' brightnesses Y . . : 

1 n lJ 

Yj =-?.; Y .. , as r.post sensors do average just brightness RE ' s 
sta¥e \ecf~r Xj=- ~ x .. , x . . being state vectors of micro-

n f;t lJ l~ 
elements . For grass , the components of x are projective cove­
rage , chlorophyll and water content and so on. The size of a 
microelement and the number of state variables are supposed 
to be chosen in such a way that fully (i . e . within the admis­
sible range of errors) determines Yij : Yij=f(xij) . Then , the 

function f is the same for a given object regardless of all 
circumstances . In what follows , it is assumed known. For the 
method to obtain it , see chapter 2 . 

We suppose that the area H under study consists of N REs 
and is a statistically stationary one so that x ' s , though 
fluctuating , are all from the same probability distributioR 
P(x) . This implies that there is only one object in H. So one 
should first classify the frame and either pick out the safest 
parts of H by use of known non- parametric methods to discover 
non- stationarity , or use the simultaneous classification- sta­
te determination , the idea of which is given is chapter 4, 
to enhance classification accuracy . 

Finally , we assume the independence of all x ' s , though 
close points are surely correlated. It is a common thing in 
statistics since the most powerful methods are derived under 
this assumption but work well even if it is violated . Besides , 
we could generalize our method by adopting the mixed autoreg-
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ression- moving average model of the form 2: o( x. = ,2: Q, ~. 
i~K ~-K l l=K t-'~-K ~ 

where £'s are independent , so that our sums would remainsums. 
But this is yet to be done . 

Now consider the set of all Xj'S and Yj'S in an area . 
As show~ in ~ppe~dix, not all points (Xj, Yj~ lie on the 
regresslon llne ~(Y/X) : D(Y/X)~O, so that , ln contrast to 
microelements (unless they are chosen improperly: are too lar­
ge or have too few state variables) , neither X determines Y 
uniquely , nor an observation Y0 of aRE determines that RE's 
state X, bu-t a whole set CX1,X2) (see fig . 1) . So point - by­
point methous dont's work . Thelr error is not even averaged 
out when taking into account many REs since there is no way 
to choose for each RE the right - on- the-average Xj lying on 
the unknown regression line . So we dismiss the point- by- point 

ideology. Its intrinsic error is assessed in Appendix. The a 
priori formulae are for computing at home when P(x) (i . e ., 
its moments .fi. ) are prescribed . l 'he a posteriori formulae 
should instead be supplied by observations Y~ only . Note that, 
though D(X/Y)/V1/n and vanishes at large n, general dispersi~ 
ons D(X) and D(Y) are likewise~1/n so that point - by- point me ­
thods are no better at large n, only the data cluster tigh­
tens since the fluctuations vanish. 

But the fluctuations are necessary to secure the uniqu­
eness of solution. Even if D(Y/.X)=O and Y=F(.X) - the best case 
for point-by-point methods , - a 1i' with an extremum will give 
rize to two solutions X1, x2 for an observation Y. Likewise , 
if there are more state varlables affecting the brightness 
than independent observation channels , we'll have for each 
RE more unknowns that equations . No consistent-on- the-average 
method could be provided since the system of equations for all 
X· ' s would either be no better than an equation for a single Ri (if X·'s are let to be different) , or consist of the equa­
tions wi~h the different l ef t sides , i . e . observations , and 
the same right sides containing X (if all X's are assumed to 
be equal) and be unresolvable algebraically . 

However , in both cases mentioned , the same P(X) placed 
in two otherwise indistinguishable points X1 , X2 will produce 
the different distributions of observations P'Y), and .so the 
mean values X1 and X2 could be distinguished . See , e . g ., 
fig . 2 : the distributions A1 , A2 , A1 have different forms . In 
other words , now we have as many equations as the observable 
moments of P(Y) , from which we may determine as many moments 
of P(X) . (As there is no such function as F on fig . 2 , but 
only a statistical relation , this reasoning should be slightly 
modified) . 

So we propose to limit our demands to only mean values 
of the state vector over H. We believe it is all on~ practi- . 
cally needs . Mathematically , a set of variables YJ·=- ~ f(X . . ) n .L lJ 
(j = 1 , ••• , N) is observed . "l'he moment .fJ-.1. (and , possibi/, 
jt 2 , ••• ) of P(X) should be estimated . Now we'all expose the 
mathematical pitfalls of the problem and provide a method to 
solve it . 
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2 . State estimation algorithm and obtaining 

a priori information 

':i e' ll use the maximum likelihood (Iv1L) method of parame­
ter estimation as it is suitable for analytical examination 
and is the most powerful one . l.~L equations are solved by some 
widely known numerical procedures /2/ . 'l1he number of equations 
is limited by noise . If P(Y) is represented as the Edgeworth 
series (see Appendix), this number lvl is the number of terms 
above the noise level . Since f is non- linear , every term de ­
pends on all of the unknown parameters jJ.; (and there is an 
infinite number of them). So unless the sequence of .}ts is in 
some way cut off, there will be always more unknovms that equ­
ations and the usual ML will be inapplicable . 

It's one of the deepest questions of mathematical sta­
tistics: the estimation of some parameters in the presence of 
many other nuisance parameters , all of which it ' s impossible 
to estimate . There are some methods based on ML for this prob­
lem, but they need specific P(Y) , and the only hope for them 
is the exponential approximation of P(Y) dealt with in chapter 
4-

We propose instead to change the classical statement of 
ML estimation problem. We shall not demand classical consis­
tency since there is no way to achieve it with the nuisance 
parameters . We'll prescribe fixed values to all the moments 

JLM 1 , ••• above the number IJI of those we can consistently es­
timate . rrhese values will be those characteristic to the clo­
sest-to-normal distribution and so will depend on unknown 
first I'll moments . Surely, the real moments }JIM 1 ••• may de­
viate from the prescribed values and so produc~ !n error in 
the estimates of J.L-i, ... ,fA.M • VIe can neither establish an a 
priori or a posteriori upper limit to this error , nor even 
guarantee that it vanishes as N--:l>--00 • So the estimation is , 
strictly speaking, inconsistent . 

But we'll show that wr are able to assess the sensitivi­
ty of the es ~imates ~1 , ••• ,Jt.M to the deviations of }1M 1 , ••• 
and , moreover , to nearly all other sources of error. This+ is 
a rare possibility . If the sensitivity is not too great , one 
may hope that as , in general , Jt~ j , ••• won't drastically de ­
part from the closest - to-normal v~lues , on the average, the 
method will work well. But if the a posteriori assessed sen­
sitivity is great, the estimates of J4_1 , ••• ,J-tM are suspici­
ous . k oreover, a priori assessing the sensitivity as a fun­
ction of unknowns jl 1 , ••• ,;uM , the sensor characteristics , 
object type and so on, we could outline the more and less per­
spective fields for remote sensing. 

Now, deriving f from the simultaneous observations of 
X .' s and Y.'s at a test area follows approximately the same 
lfne , onlyJwe now write the common distributiou P(X , Y) as a 
function of unknovm }L' s and a's (f(x)= . f; a . xl) . rrhe incre­
ased number of unknovvns (plus a's) is co1np~n~ated by the in­
creased dimensionality of observations (plus X ' s) . 

Sometimes , there ar8 some reliable analytical models 
for an object ' s interaction with radiation /3/ . They give us 
f explicitly and eliminate the need for test area observatio­
ons . 
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3. Sensitivity estimation. Exp onential a pproximation 

As shown in Appendix , the sensitivity of I;IL estimate 
flk (k=1 , ••• , l'vi) to some parameter 'L involved in ML equatj_ons 

is simply the ratio of the determinants of the matrices of 
Fisher information about the set ( /{t ... ,!J'M ) and ( Jl.:1, ... , 
}t k_1 , IJ,, ••• ,foM ) . Fisher information on \ )C

1
, ••• ,p 11 ) is 

extremely important in itself as it determines the lower 
bound of the error due to the limited supply N of data . 

Comn~ting a priori Fisher information essentially re ­
duces to _£ P(1)log J?(Y) dY . 'l'he logarithm is a stumbling block . 
l~ should be auroximated to perform the integration analyti­
cally. Above that , the Edgeworth expansion now can ' t be used 
since it may have negative probabilities at tails . 3esides , 
the logarithm in 1·"L equations may give rise to prohibitive 
calculations . 

As P(Y) ~ 0 , if may be wri tten as P(Y)=exp 'i (Y) . =_'(".,_') 
may be , naturally , approximated as a series in (1/n) . Expan­
ding the exponent in Taylor series and equating its terms with 
the terms of the same order in.j~!n) of the Edgeworth series , 
we find P(Y) exp ~ 8 .U ~ (Y)n- J , which is an exponential ty­
pe distribution (/ 4/ , ~h~pter 19) . I~ ow we may perform the in-
tegration. · 

Besides , distributions of the exponential family had 
been throughly analyzed in statistics . Approximating P(Y) by 
them, we may simply look up for efficiently estimable parame­
ters and for their sufficient statistics or whether P(Y) de­
composes into the informative and uniformative (about some 
parameter) parts as stipulated by some methods to resolve the 
nuisance parameters difficulty. 

4. Better classification by taking into 

account state fluctuations 

1."ean classification accuracy in remote sensing is 80-85, ~ 
and is limited mainly by significant cluster overlap . However , 
as shown in /5/ , small homogeneous areas produce much narr­
ower clusters (since the close points ' state is correlated) 
whose classification accuracy could be nearly 1 oo~; . rl'his fi ­
gure can ' t be achieved straightforwardly for neither may trai­
ning data be collected at many small areas , nor , in clusteri­
zation , may clusters by reliably constructed from small data 
sets and identified in situ for each area . That ' s the reason 
why clusters are usually defined in such a way as to repre­
sent the whole frame under study. Then , they are superpositj ­
ons of many small area clusters shifted because of state fluc ­
tuations at a large frame . So they are much wider and the 
classification accuracy is poor. To improve it , we could de­
compose a wide cluster into the set of narrow ones if the ob­
jects ' states were known. But to estimate the state , one must 
know the object ' s type . So we are driven towards combined 
classification - state estimation. Its idea is illustrated by 
fig . 2 . 
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Conclusions 

In the vvay of applying our methods, one shou.ld first 
eztract the state-brightness relation f from extensive in 
si t u a nd remote observations of a test area . Then f could be 
a pplied to any other area to assess its mean ste.t e from re­
mote observations only (se e chapter 2). By the method of chap­
t or 3, one may compute the sensitivity of the estimate to me ­
an error sources and the error resulting from the limited 
amount of data . One may also compute the a priori error esti­
ma te for statistical and poi~t-by-point methods , adopting s o­
me possible state probaoi l ity distribution. If f is not ava­
ilable from test areas, it may in some cases be comput e d ana­
l y tical ly . 

In view of all said, we think the efforts to fit our 
prob lem into a good thPoretical frame were justified. 

Appendix 
1 n 1 n 

Y to X: not a one- to- one mappin_g . Let Y=n: ~ 1yi ,X=nf2-fi 
y=f(x),)Ua- moments of x with respect to the point a, mk­
the corre~ponding sampl e d moments. Hegression curve of Y onto 
X is 

·r(Y'/X' , ·c .[l, f(xj) IX) ··· ( .j1., E f(k) (X) 
1
" J =1

'
1 b 1 n =lvl b1 k= o t<! 

~ f ' C k ) c ·-r ) x· I f.:Oo f C k ) c ···{ , f C 1 ) c v ) X' x x 
:U(Y/X)=D(~ .L\. m X)= 1_-' J, .L\. (l1 -1.1. 11· ) 

K=O k k , l=O n~ J l . rk+lJ-1 J- k 

(2) 

(lJ?==:,:c.l k 1 (x. -~nkj 1 ~1 x. =x) may be expresse d as a function 
~K n l = l n l= l 
of Jt1., ••. ,)-L K and X). It is clear that, generally (even f or 
norma l x) , D(Y/X)~O, unless f is linear. As seen from fig . 1 , 
D(X/ Y. )~O as well, a nd X may not be uniquely determined from 
a n observed Y. ·1.'he a priori error estimate for p oint - by-point 

methods is D(X/Y )=D(Y/X)/ ['Om ('i/X)L~x ] 2 
(see fig.1 ) . 'J'he a pos­

t e riori estimate is as (2) with f ,)) , Y instead of f ,JL, X, 
provided that f is a one-to- one mapping ( )) are the moments 
of y and may be computed through the observed moments of Y) . 
If this assumption i s violat ed, the a posteriori estimate may 
be obtained front (2) whereJL's snouJd be substituted with 
thei r e stimates computed by the chapter 2 method . 

_
1 

n Edgeworth series. l'( Y), the probability distribution of 
Y-n ~ 1 yi ' may be represented as Edgeworth s eries (/6/ , chap­
ter 1 7) : 

(3) 
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where A are the "'central mo~ents of Y; Q3 ( ~, YJ=~3n3 (Y)/.A2 312 ; 
Q4= ( ~~ -3)H4( Y)+ ~ H6 (Y) , ••• , or , V being the c entra l mo-

l\ 2. \ ~ l 3 :\ 2. ~' \ I "Y (!':' '-~ • ) J I 2 ments of Y, l\ 1 = 11:1. ,>.2=v2/ "'{"rr; Q3 Cv, n ,1 )=).)3H3 ( i /'l n Jl 2 ; Q4= 

= V4.H4.(Y)/n~~+))~H6 (YJ/Jn~~ ' so that Q . (~ , n , Y) is the ( - j/2+1) - th 
power of n . J 

~aximum likelihood method . ML e quations are 

~ o logP(Yi) 
~ = 0 (k= 1 , ••• , ffi ) (4) 
i=1 0 ck 

where c are the unknown paramete~s of ~(x) and n1ay pe e~pres-
sed as function of )11, .. ,fk· ek 1s def1ned as M ( Hk(x~J where 

it= ( x-)l1 )/d and d is the standard error of x . '1'hen , Ck= l~=oil~fl 
where d are the coefficients of the power series expansion of 
the k- th Hermite polynomial . As P(x) may by expanded into 
Gram- eharlier series of the form 

N2 00 

P(~) = exp( -2 ) L! 
2 k=o 

a distribution with fixed f irst~ moments (of c ' s) will be 
closest to normal when eM 1 = eM 2=,,, 0 . If we 1Jirri t e .ftK as 
a function of e 1 ••• eK ~ tTI~n expr~ss v ' s as the functions of 
J4' s C: i • c(s)) and~~· t~e co~ffici~nts a of the p~wer series 
expans1on off : y=F( x ) = . ~ a . x1 ; V-1. =.ZJ a. 11.; )) 2= L::; a . a. lJ . . , 

.l.~ 1 :x.::: o l v l il=o 1 J r l+J 
and then substitute the Y' s into (J) , P(Y) will become a se­
ries with coefficients depending on a ' s and e ' s . Now, as set 
forth in chapter 2 , eM 1 , e~ 2 , ••• are assumed equal to zero , 
and , substituting P(YJ+lntp ~L equations (4) , we get a system 
of M equations with M unknowns (assuming a ' s known) . If we 
should estimate both )L' s and a's (when determining f from test 
area observations) , P(X , Y) must be substituted into (4) in 
the same Edgeworth form. Numerically solving ~L equations will 
be much easier if P(Y) or P(X , Y) is expressed in the exponen­
tial form (as shown below) so that the loga rithm vani s hes . 

Fisher information. From Kramer- Rao theorem it follows 
that the error of the estimate fl of a parameter .JL h a s the lo­
wer limit : 

nc fl-r ) > - 1 = ___ 1 --

NMco)~'iJ?CY) ) NI.~ ( a1~~ (Y) )2 

The denominator is the Fishe r information I~ on~. For seve­
ral parameters , one should consider the information matrix 
with the elements I a·.u· =- Nivi ( o .2 logP(Y)/Jjt. a)L .) : 

..r:J.'r J 1 J 
/\ .1'\ Ivl at o t - 1 

DC t cy.1., ... , JA.~ ) - t Cfl-1' ••• ,f,., ))~ fi=1 of.k o.JLl I flr.rfl 

When N~ 0l , the error of a iv1L estimat e approaches the 1\ramer­
Rao limit . Assigning some values to )L' s , one could thus a pri­
ori estimate the lower bound of error . A pos teriori estimate 
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may be obtained (?y sub~ti_tuting_ the expectat\9n bl the ~am- z 
ple mean and ft' s oy thelr I,;L estlmates) as -~z=: 0 logP(Yi)/f. 

As shown in /7 I , this is even closer to l\'IL efro~ than the 
classical Kramer- Rao expression. 

Now , as stated in chapter 3, P(Y) may be approximated by 
an exponential form distribution , e . g . up to terms 1/n : 

'\/ y2 { ~ "' ~ 4 P(Y)=exp( - 2 )exp -M,r H3 (Y)+l 24 i\z: 
A2 z 

2 2 ;_ -& Hr (Y) - 3~~3 [ H2(Y)+6J} • 
72 ".2 b b /\2. 

(5) 

As a matter of fact , the positivity of P(Y) is achieved by a 
slight alteration of its tails as compared to Edgeworth repre­
sentation , so that the change is less than the first neglec­
ted Edgeworth term. So the precision of the exponential appro­
ximation is essentially the same as of Edgeworth series . It is 
enough for the a posteriori formula above , but a priori for­
mula involves integration which may diverge if the tails are 
not approximated accurately (which is not the case for Edger­
worth series) . But , though exponential approximation proce­
eds from Edgeworth series , it may correct the latter in the 
right sense by making the tails positive and so have greater 
accuracy at tails . We ' ll abandon the question~t that point . 

Sensitivit of estimates to errors . lf ~ is determined 
from the equation F ~ ,& =O, by the implicit function theorem 

ofl./.BfJ =- (0 lt1/~8 )/( O P/0~) . As in LL estimation F is simply 
~'dP(/l,eXi)/a~, both the numerator and the denominator are 

the above- mentioned sample mean formulae for l<1 isher informa­
tion on 6 and fl , respectively . For several parameters , we ' ll 
have the determinants of Fisher information matrix for ( }£~,··· 
PM) and C.ft1' ••• ,)lk- 1 ' e ' .. . , )1.~ ) . So to estimate the sensi ti-
vity to some neglented moment , or error term, or noice term, 
P(Y) should be represented so as to include this term, and 
then the formulae above should be applied . 
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Fig. 1. Regression of the observations Y of the R~s on the 
RE's state variables X.X toY is not a one-to-one 
mapping. 
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Fig.2. Better classification through ·taking into account 
the dependence of Y on X. Error areas are blackened. 
All-area clusters are significantly overlapping. If 
f is known for both objects, clusters may be decom­
posed into pairs with almost no overlap . There is only 
one possible X cluster for any Y cluster pairs if both 
objects should have the same X. 
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