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S—transformations and criterion matrices 1n photogrammetry

At presevit the densification of geodetic point fields, by meqrs of aero-
triangulation seems to reach a precisiorn ~omparavle to the precision of
terrestrial methods. This fact requires another =ttitude of photorramme—
trists with respect to ground control, which i1n the future cannot be con—
sidered as non-stochastic arymore.

Criterion matrices (artificial covariance matrices) could be useful then
to descrihe the precicion of siven ground contrel pointe and to evaluate
tre precision of point field densifications. S—tirarsformat:ons will give
a good tool to link up photosrammetric blocks with siven peodetic point
fields. Tais paper will discuss the concept of c¢riterion matrices and
S—trausforunations aind therr possible application in prnotogrammetr;.

Die Genauigkeit, die cich beil der Verdichtung von Festpurktnetzen mittelgs
Aerotriangulation mittlerweilen erreichen iidsct, steht derjenigen aus
terrestrichen Methodern kaum nack. Dies verlungt nach elrier anderen Ein-—
stelluriz der Photogrammetristen gegeniiber den Pacspurkte, die kunftig
nicht melr ais fehlerfrei betrachtet werden kinnern.

Kriterium Matrizen (kiinstliche Koverianz Matrizer.) kluctern dazu dierern,
um die Genaulgkeit der gegeben Festpunkte zu beschreiven und um die Ge-—
naulgkeit der Netzverdichtung zu beurteilen. S-Transfcrmationen bieten
eine gute Moglichkeit photogrammetr:sche Rlocks mit dem gegeberien Punkt-
feld zu verbirden. Der vorliegende Artixkel erliutert das Konsept der
Kriterium Matrizen und S-Transformation sowie derer. mtgliche Anwendung
in der Fhotogrammetrie.

La densification der résaux €odésiques, au moven de 1'aédrotrisnculation,
semble atteindre actuellement urne précision comparable & celle des méthodes
terrestres. Ce fait nécessite une autre attitude des phcetogrammézres uuant
au carevas terrestre qui ne pourra plus étire considéré comme rnorn-stochustique.
Des matrices—critdre (matrices de covariance artificielles) pourralent alors
Etre utiles pour décrire la précision des points 4'appul dorrés et poar
évaluer la précision de densifications de poirite terrestres. Les trans—
formations "S—systémes" peuvent dorner un bon outi! pour relier des blocs
photogrammétriques avec des résaux géodésiques domrés. Cet article dis—
cutera le concept des matrices—critére et des transtormations "S- stémes"
et leur application possible en photogrammétrie.
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7. A skelonh of ihe problem

The denaificatior of geodetic pointfields has tradionall; been bazsed on

tne assumption trat 1t could start from given points, which are not
stochactic. These points were determined by =z higher order survey, for
which the obtained precision wag cousidered much better than that of the
densification survey.

Experience with modern surve; equipment and methods, shows however, that

lr many caces this assumption cannot be maintained any leonger. Moreover,
riven coordinates shonld be entered as stochastic variates (observations)
ir. the adjustment of lower order networks. ‘Mnis complicutes the 2djustment
conglderabl; and a revision of computing methods seems to ke necessary.

Ar adjustment in two steps seems to be 2 proper answer to these problems.
In the first ctep the network is adjusted without given points. This

means thot the stren~th of the "free" network is anal;sed and the search
for groso obaservatinnal errors is not effected by given coordinates. The
coordinates ot points in the retwork arc then computed in a local system
(see [3] ). The cornection t» given coordinates in the second step ~rives
the opportunit; to test these independentl; of the obiervations adjusted
ard checked in the first step.
I photogrammetr;” one meets z oimilar situation. In the traditionsl
approach ground control is entered in the adjustment of aerotriangulation
blocks ac not stochastic. The developnent of zerotriangulation during the
seventies made clear, however, that this approach is not always justified.
The precision of photogrammetric point determination reaches in some caces
the same level as the precision of come terrestrial surveys. The coor-
dinates of ground control points should then be entered as stochastic
variates in the block adjustment. Tn most block adjustiment programmes,
tnis 15 not possible, so the computing procedurc should be modified.

The method given for terrestrial rnetworks can be used here as well, thig
will be explaned in sections 3.1-2. The terrestrial coordinates are now
considered as being stochastic, this fact raises the quection of what
variatice—covariance matrix should be used. In many cases the original
mautrix is not avallable anymore, that is why an artificial matrix should
te uged 1lnstead. The latter is suppoced to describe the precision of the
points "sufficientl ". Grafarend [4,5}, Paarda [ 1] and Molenaari:Bilgive
sugrestions for these artifical matrices.

As S—transformations and artifical covariance matrices appear to be
indispensible in the proposed method of computation, their meanirig; will
be explained in the following sections.

2. S—transformations and criterion matrices

We shall first explain the meaning of S—transformations and artificial
ccrariance matrices in a planimetric coordinate system, because they are
easy to understand. Then follows a sketch of the gereralisation to three-
dimensionzal space ag given in [81l.

2.1. S=transformation ir. plenimetry

Congider a planimetric independent model block. The adjustment of such a
block can be made without ground control. For the coordinates of all
points in the block approximate values will be introduced to initiate the
computations. If the coordinates of two points are kept as fixed, then
corrections for the others will follow from the adjustment. The two fixed
poitls are called "S-base" [1] . The result of this procedure is a set of
coordinates which gives the positioning of the points in the hlock relat-
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ively with respect to the S-base. The variance—covariance matrix of these
coordinates expresses the precision of this relative positioning.

If another S-base is chosen, another set of coordinates will be found and

another variance-covariance matrix.

So one should not speak about

"absolute" coordinates and "absolute" precision, because they are always

relative with respect to an S-base.
S—systems are specified by the choice of an S-base.

It is better to talk about "S-systems".

It is possible to

transform directly from one S-system to another, by means of S—transform-

ations.

Suppose we want to transform from an S-system with base (u,v) to a system
with base (r,s) and in both systems we have the same approximate values

for the coordinates

Xi (u,v) xi (r,s) X, | — index i indicates
(1 1) N _ point number
) - - — superscript (u,v)
yi (u,v) g (z,s) v (r,s) indicates
. = = S—system
— superscript indic—

ates approx. values.

The expectational values for the coordinates are not equal in both systems,
but they do not differ very much :

S~ (u,V) L (I’,S)
X, X,
| -
(1-2) A ~ denotes mathematical
(U.,V) (I’,S) :
~ ~ expectation
yi yi

The transformation from (u,v) — to (r,s) - system is then :

Pe (rys) w (u,v) -
X. o ot X, d
1 a -b 1 %
2.1 = +
S e L ew _
¥ j b a Y5 | i dy
and
o (r,s) o o (u,v)
x; 50 _° X5 4°
(2.2) = 5 o + :
o (r,s) b ) o (u,v) | d
yi yi y

From (1.1) we find a’=1, b°=0, dg=dy= O

so when we neglect second order

terms in the linearisation of (2.1), then the differerce etuation of (2.1)

and (2.2) is

_ (ry8) (u,v) o V
AX. AX. %, -y. |{Aaa Ad
i i i i X
3 = + +
& _ @e) @) . Wl i}
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with x = x - xo etc.

For the coordinate computation in the (r,s)-system (x°, ¥2) and (x°, %)
: ! g* vg
are kept as fixed and thus :

L (rs) o (zys) . (ry8) (r,s)

(x, y ¥ ) = (x, y.) and (X, v Ty ) = (xg 4 59)
hence :
. (r,s) . (r,8)
(8%, » Ay, ) = (0,0)
) C(es) L (rys)
(AXS Ay, = (0,0)

With (4) the transformation elements can be eliminated in (3).
The result is :

B (rys) - (u,v) —O O. 3 o 6 & (u,v)
AXri _AXri _ Xri —yri er _‘Yrs er
JRRCT N B B C%] e I A
Ay Avpg Ipi il | Yrs *re || 2Yrs

where x . = x. — x_ and . =Y. — etc.
ri i b yrl Ii yr

Some rewriting using (4) leads to :

(541)
_~ (I‘,S) - (u,v) B = & " 5 o"‘AN (U-’V)—I
Ax, ) B *si Vi || *ar Yer||®Fr
) u,v u,
)]l e | R | O
A;Yi Ayi Isi Xsi_ ysr Xsr Ayr
-1
"o o [.0 _.o P (u,v)
Xri rs|| Frs Vrs )
- o 0 o o s (w,v)
Lyrl Xrl_ yrS XPS Ays
Then :
(r,s) T L @)
£y Do s A%y
.2 _ N
G2l T Tl Y LT Gs)
i _! i | LAYy _

So (5.1) and (5.2) give the transformation from (u,v) - to (r,s)-system
for coordinates, and the coefficients of (5.1) should be used to transform
the varilance-covariance matrix.

One should notice that when developing (5.1) we made no reference to the
S-base of (u,v)-system. This means that the transformation can be applied
to any S-system. If no base has been specified in an S-gystem, it is
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called a (a)-sretem.

An important fact is that (5.1) has been derived from az differential
similarity transformation. This implies that angles and ratios of lerigth
are invariant witn respect to S—-trancformations.

2.2, Criterion matrices

In this section we will concentrate on the ideas of Baarda [ 1] , which
proved to be ver; useful in the adjustment of densification rnetworks,
whereas the suthor does not krnow anv practical applications of the work

of Grafarend.

The artificial covariance matrix, also celled "criterion matrix", of Banarda
has the following characteristics : It gives circular point and relative
standard ellipses, whereas variances of distance ratiocs and angles are only
dependent on the shape and size of the triangles f{rom which they are tuaken
and not on the actual posgition of the triangle in the network.

In an (a)-=rystem, that is in a fictious coordinate system without S-base
the submatrix for two polnts is :

X. 3 %, V. - da = 2 parameter which will
; = 5 L J be eliminatei b an
5 d- ) d —H?: 0 S—transformation
1] 5 .
- = (e [ I
v 0 4" 0o d%=a” By 1= WGy F 1y ljj) o
* 5 o 5 +d - li': distarce between points i
x a“=ds. 0 e 0 ' and j in km.
J 1]
2 2 2 - ¢, and ¢4 are the parameters
7 - 0 1
Y5 T 4 which describe the precision of

the point field.

By means of (5.1) this matrix can be iransformed to a real S-system.
The use of this matrix i3 twofold. First : it serves during the
reconnaissance phase of a network as a criterion for tne precision of the
coordinates to be computed. The matrix G obtained trom the adjustment of
the network is compared with the criterion matrix H via the generaliged
eigen value problem : ¢ - AN H IEE C in wnhich both G and H are given
with respect to the same S-base.

IT all eigen values are O <CT p) min, A max £ 1 then variances computed from
G are alwars less than or equal to variances computed from H, thus H gives
an upperbound for the precisiorn of the nctwork (ree [ 11 §8,[121]).

Second : the matrix H can replace G in future computations. Thic means
that G has not to be stored with the coordinates, but the matrix H can be
generated instead when required.

The use of the matrix as a criterion for precislon seems to be more
meaningful for terrestrial networks than for photogrammetric blocks, as

for the latter the possibilities for improving the structure =re limited.
For the adjustment of aerotriangulation blocks one could make use of this
magtrix to describe the precision of ground control. This is important

when use i1s made of old point fields fur which the information about the
exact structure of the variance—covariance mutrix is not available anymore.
Values have to be chosern then for the parameters ¢, and ¢y depending on the
trpe of network from which the coordinates have been computed. Once the
choice has been made the coordinates of the given points enter the adjust-
ment as observations with the generated covariance matrix. The advantage
of this matrix over a diagonal matrix is that it takes into account the
correlation between points, which in prirnciple alwars existe.  This cor-
relation is dependent or the distarice between point:o.

520.



The effect of the matrix on the final computed coordincles igc in general
not so larre. The matrix i1s important however, for the eveluation of the
precigion and reliabilit; of the Tiral results and for the testing of the
given pointe.

2.3. Three—dimensional space

The two-dimensiocaal approach can be applied in man;” cases, tut the develop-
ment of photogrammetr; in the seventies as o method for spatial point
determination requires a three—-dimensional S—transformution and criterion
matrix. These can be obtaired as a generalisation of the planinetric
solution. This has been elaborated in [ 8] , a short sketch will be given
in this zection.

A cartesian x, 3, z-system must be defined b means of seven parameters.
These are the coordinates of two pointe plus one more parameter. For the
latter one is apt to chose a coordinate (in most cases the z-coordinate)

of a third point. An anal;sis of the coordinate computation in R3 leads
however to a principal choice, which is gsomewhat different.

When two pointe in R, are kept ac fixed, the plane containing these two
plus a third poiut can rotate freel: ou the line connecting the first two.
Onl; when the direction of the normal vector to this plane is kept as fixed
as we' , the position of the third peint can be determined by means of an
observed length ratio and angle. The position of other pointe can be
determined relatively vith respect to the first group of three b, means of
length ratios and angles. If r and s are the first two points and t is the
third, then this S-system is called (r, s; t)-system.

When the normal vector ig parallel or nesrl: parallel to the z-axis of the
coordinate system, then the choice of the z-coordinate of the third point
as seventh element is an allowable approximation. Moreover, in nearly flat
terrain one can use the x, vy, z—coordinates of two points and the z-coor-—
dinate ¢f a third point as an S-bagse.

The formulae for S—transformations in Ry between systems with S-bases of a
rigorous type are much more complicated th-r those in Ry,

They will not be given here. For systems with the less rigorous t:pe of
S—base, the S—transformotion can be derived according to the method of
section 2.7. One should keep in mind, however, that the latter is only
applicable urder certain restrictions.

From experience with photogrammetric bLlocks and terrestrial networks we
know that the relative positioning of points in the vertical sense is less
precise than in horizontal sense. We 2lso learned that the vertical
positioning 1is to a great extent stochasticall; independent of the horizon-
tal positioning. Thece considerations were important for the construction
of a three—-dimensional criterion matrix in[ 8] . Another important feature
was the fact that large pointfields are approximatel: curved over a sphere.
The matrix developed in [ 8] consists of two independent submatrices defined
in a fictitious coourdinate s;stem : one for spherical heizhts and one for
"horizontal positioning over the sphere. These sulmatricec are designed
so that the precision of the relative positionineg of points is only
dependent on that relative positioning itself, and rnot on the actual coor-—
dinates of the polnts. In this way a covariance matrix has been obtuined
for pointfields with a "homogerneous and isotrcuic inver precision". Tuner
precision means the precision of the ancles and length ratios (and spheric-—
al distances) which desribe the internal reometr: of the network completely
An S—transformation will transform the matrix from the fictitious coor-
dinate system to an operational O-system.

Earth curvature is negligible for pointfields which cover small areas.

In that case the three—dimensional criterion matrix of [ 8] cun e simpli-
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fied to a combination of the matrix for heights and the matrix for the

complex plane as given in [1] .

3. Application in photogrammetry

3.7. Connection of photogrammetric blocks and ground control

Section 2.1. referred to the use of S-systems for block adjustment.
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This will be elaborated in this section.
Suppose terrestrial (x,y)-coordinates
have been computed for points in a net-
work with (u,v) as the S-base. A point
densification will be made for a part
of the network by means of aerotriangu-
lation. According to the method pro-
posed in section 2.1. an internal block
adjustment will be made first independ-
ent of ground control. To be able to
compute coordinates, points r and s

will be used as an S-base with their terrestrial coordinates, which are

then considered as not stochastic.

For other ground control points in the

block we obtain now two sets of coordinates.

x<p>(r’S)

p (I‘,S)
X(p)

and

X(t)(u;v)

+ (u,v)
X(J)

the photogrammetric coordinates
computed with respect to base (r,s)

the terrestrial coordinates
with respect to base (u,v)

These two sets of coordinates have been computed in different S-s;stems.
Therefore we find for expectational values :

(p)(r’s)

5! 50

f.(P)(r’S)’

|
|

.t)(uvv)

§§t)(u,v)

But if we apply (5.1) to transform the terrestrial coordinates from (u,v)-
system to (r,s)—s;stem, we obtain the condition equations

p)(I‘,S) %(t)(r’s)

§§t)(r,s)

if we suppose that there are no systematic deformations in the block.

The comnection of the block with the terrestrial coordinate system can be
completed by means of an adjustment according to standard problem I based
on these condition equations. From this adjustment all photogrammetric
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poin?s wéll get a correcgion due to their correlation with
8 (r,s
}_{_i(p) il l:_fp)
correction unless these are made zero for practical reasons in a so-—called
"pseudo least squares" solution (see [1] §7)-

The condition equations make a simple test possible for the detection of
gross errors in the terrestrial coordinates. The solution according to
standard problem I allows an adjustment in steps i.e.: step 1 an adjustment
using ground control points at the periphery of the block and step 2 an

ad justment using points in the centre of the block. So the practice of
using test blocks does not have to be changed, but the tests for finding
deformations in the blocks can be made more rigorous according to [7] .
Some experiments on this method of adjustment have been made by J%rgensen
[6]. Although the method has been explained for planimetric blocks, it can
be applied for three—dimensional blocks as well.

. The terrestrial coordinates will also get a

3,2. Stripwise block adjustment

Another possible procedure for block
S— adjustment is the following :
AM wWoH Suppose we have a bundle block which
A will be used for point densification

f in a three-dimensional network with
j 2 I S-base (u,vi;w). In the first step of
YA A 8 < computation the terrestrial points are
2 CE N | q transformed from base (u,vi;w) to (2,331).
l A 2 The first strip is adjusted and coor-

dinates are computed with respect to
S—base (2,331). Then a connection is
e made between the terrestrial coor-
dinates and the strip coordinates
according to the method of section 3.7.
After this step the strip I coordinates and terrestrial coordinates form
one system ((2,3;1)-system) which is then transformed to base (4,5;2). The
same procedure is repeated for strip II and soon until the last strip has
been adjusted. The final result is a rigorous bundle block adjustment
where the block coordinates form one system with the terrestrial coor-
dinates. If required, the whole system can be transformed back to the
original base (u,viw).
In this procedure only a small set of equations has to be solved (one strip
per step of the adjustment, on the other hand sufficient background memory
should be available for the variance-covariance matrix of the computed
coordinates to be able to find the corrections for these coordinates after
each step of adjustment. In this way one could think of a block adjustment
which runs parallel with the measuring process.

"
D
<
o BT,

M. Molenaar
I.T.C. — Enschede
January 1980

523.



Refererices

1. Baarda, W. : S—transformatione and criterion matrices.
-~ lletherlands Geodetic Commission, vols. nre. 1, 1973.

2. Bouloucos, T. ¢ The reliability of the observations of points in
planimetric independent model blocks.
- I.T.Co=Journ>l 1979-2,

3. Bouw, T. : On the evaluation of ground control data.

Molenaar, M. - I.3.P. Corngress Hemkurg 1980, pres. paper com. IIT.

4. Craterend, E. : Genauigke:tsmasse zeoditischer Netze.
— Deutsche geoddtische Kommission, Reihe A, Heft nr. 75,

1972.

5. Grafarend, E. : Geodetic applications of stochaztic processes.
— Physics of the Earth and planetary Interiors, 12-19/6.

6. Jgraenser, J. : A comparison of the precision and reliability of
terrestrial coordinates with those obtained from
photogrammetry.

- M.Sc. thesis P2 course, I.T.C. Enschede, 1980.

7. Molenaar, M. : Essay on emperical accuracy studies in aerial
1 (9] %
e.a. triangunlation.
- I.T.C.~Journal 1978-1.

8. Molenaar, M. : A further inquiry into the theory of S—transformations
and criterion matrices.
— in preparation, I.T.C. Enschede.

524 .



