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Abstract 

A mathematical model and a computer program were developed by the 
authors to perform analytical aerial triangulation for space photography . 
In this paper, the mathematical model, the main headlines of the computer 
program as well as the results of a few tests are given . 

Introduction 

Large portion of the world are still very poorly mapped even at scales 
of 1 : 250,000 or smaller . The policy of making space photography available 
almost at no cost to the user, makes mapping from space photography more and 
more attractive . The authors of this paper were involved in a research pro­
gram to investigate the maximum possible accuracy for aerial triangulation 
using SKYLAB photography combined with very high altitude aircraft photogra­
phy and utilizing SKYLAB orbital parameters . Two versions of the bundl e ad­
justment technique and two associated computer programs were developed in 
connection with the study . The mathematical models, the computer programs 
as well as a few test results to show the efficiency of the programs are 
described in the paper . 

The idea of the bundle adjustment is to use the well known collinearity 
equations to establish two equations for each measured photo point and fur ­
ther to obtain a unique solution for the system of observation equations by 
least squares methods . The linearized form of the collinearity equations 
may be given by : 

where 
Ao + BV + W = 0 (1) 

o is the correction vector to the approximate values set for the 
unknowns, 

V is the residual vector, i . e . the correction vector to the 
observations, 

W is the misclosure vector, 
A,B are two matrices whose elements are the partial derivatives of 

equation (1) with respect to the unknowns and to the observations 
respectively . 

Least Squares Solution 

The principle of the least squares method requires the minimizing of 
the quadratic form V' PV, where P is the weight matrix whose elements are the 
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weights associated with each of the observations . The least squares solu­
tion of an equation similar to the linear form of the collinearity condi­
tions equations given by (1) can be written as: 

0 = N- 1u (2) where : 

N = A' M- lA (3) u = -A ' M- lW (4) 

M = BP - lB ' (5) 

By applying the least squares technique to solve the system of lineari ­
zed observation equations (1), one can see that two matrices have to be in­
verted, namely the matrix M (equation (5)) to form the normal equations and 
the matrix N (equation (3)) to solve for the unknowns . A direct method of 
computing and inverting such large matrices is not practical due to both the 
excessive amount of computer time and memory required and also because of 
the rounding off of errors in machine calculations . 

Several algorithms and computer programs have been developed using the 
method of adopting single bundles of rays as a unit to adjust a block of 
aerial photography; see for example, (4, 5, 6, 7 and 8), Keller (1967), 
Wong (1971) , Schut (1978) . To overcome the difficulties of calculating and 
inverting such large matrices (like M and N), the computer programs asso­
ciated with these algorithms only solve special cases of the general obser­
vation equations (1) . Also, one of the main goals of the previous programs 
is to adjust simultaneously as large a number of photographs as possible in 
the most economic way . But one should consider that for space photography, 
the cost portion for adjusting the photogrammetric measurements is negligi ­
ble compared with the cost for the entire mission . The main goal is to 
achieve the best possible accuracy for the aerial triangulation by using few 
photographs only . This reasoning indicates the need for a new algorithm 
using : 

1 . measurements of space photography , and 
2 . ground control points which are few in number and inferior in 

quality, 
3 . camera parameters for each exposure station, and a simultaneous 

least squares adjustment . It was hoped that such a system would 
produce better estimates for the measured coordinates of the 
ground control points and would supply accurate coordinates for the 
pass points . 

Two algorithms and their computer programs were developed . Although 
these algorithms are also special cases of equation (1), they are more 
suitable for the case of space photography . 

The First Algorithm 

In this algorithm the two collinearity condition equations are used to 
calculate two equations for each measured photo point . In these equations 
all the camera parameters are used as unknowns, while the ground coordinates 
are treated in two different ways : 

i) the coordinates of the control points are used as observations, 
ii) the coordinates of the pass points are used as unknowns . 

To explain this new algorithm assume that one starts to form the normal 
equations by calculating the contribution of all the observed control 
points, followed by the contribution of the unknown pass points . Then, the 

012. 



design matrices A, B and W may be given by: 

A = 

B = 

w = 

where 

' ' ' . ' . . ' 

'I ' , ' I I' 

' A I 0 
I I 

-------~----------

A• : A •• 
II I 

I 
I 

B I II : 0 
-------+------+----1 I " •• 

0 : 0 : III 

(equations associated with 
observed control points) 

-(equat1ans-assac1atea-w1tii ____ _ 
unknown pass points) 

(equations associated with 
-- ~~~~~~~~-~~~!~~!_P~~~!~2 ____ __ _ 

(equations associated with 
unknown pass points) 

(equations associated with 
observed control points) 

· -(equaHon:s-a:s:sc;cratea-wrtii--
unknown pass points) 

are affixed to any elements related to the camera para­
meters, ground coordinates and photo coordinates res­
pectively. 
are affixed to the elements associated with the observed 
ground control points and the unknown pass points 
respectively . 

Accordingly, the elements of the above questions can be explained as 
follows: 

are the matrices which represent the partial derivatives 
of the Collinearity Condition Equations (CCE) with respect 
to the unknown camera parameters and associated with the 
observed control points and the unknown pass points res­
pectively, 
are the matrices which represent the partial derivatives 
of the CCE with respect to the unknown ground coordinates 
of the pass points and of the observed ground coordinates 
of the control points respectively, 
are two unit matrices which represent the partial deriva­
tives of the CCE with respect to the photo measurements 
and associated with the observed control points and the 
unknown pass points respectively, 
are the misclosure vectors associated with the observed 
control points and the unknown pass points respectively . 

Moreover,~the above matrices can be written in more detailed forms as 
follows: 

= B = 

0 

o--------o 

"1)2 

' 
' 

'o 

0:13. 



. 
AII 

WI 

where 

a. 
1 

(neq., 6m) 
1 .. 
a. 

1 

(neq. ,3) 
1 

b . 
1 (neq . ,3) 
1 

w. 
1 

(neq. , 1) 
1 

m 
k,n 

= 

= 

ak+l 

ak+2 

A. = 

~+n 

wl 

w2 
WII ' 

w3 

ak+l 

0 

0 

wk+l 

wk+2 
= 

w k+n 

o--------o 

a k+n 

are the partial derivatives of the CCE with respect to the 
unknown camera parameters and associated with the ground 
point i, 

are the partial derivatives of the CCE with respect to the 
unknown ground coordinates XG, YG' ZG of the pass point i 

(~.=0 when processing the observed control point, i.e. 
wh~n i£k), 

are the partial derivatives of the CCE with respect to the 
observed ground coordinates XG' YG, ZG of the control .. 
point i (b.=O when processing the unknown pass points, 
i.e. when 1 i>k), 

is the misclosure vector associated with the ground 
point i . 

is the number of camera stations 
are the numbers of points with observed and unknown ground 
coordinates respectively, 
is.the number of equations associated with the ground 
point i and this number is equal to twice the number of 
photographs with the image of the ground point. 

One space photography covers a relatively large area, and it may be 
practically sufficient to adjust only a few of the photographs at a time. 
Then, if the unknown ground coordinate vectors ~f 1 are eliminated, the re­
duced system of normal equations can be written ls: 

k+n .. -1 
N L: n.. -I n . n. 

i=k+l 1 1 1 

or in abbreviated form: 

NR 8 
(6m,6m) (6m, 1) 

8 

= 

. 
= u 

UR 

(6m, 1) 

k+n 
- L: 

i=k+l 

.. -1 .. 
n.. n . u . 

1 1 1 

Since the size of the NR matrix.is relatively small, the unknown correc­
tions to the camera parameters o can be easily calculated as follows: 
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0 -1 
UR = NR (6m , 1) 

where 
k+n 

and 

or 

-1 N l: a! " = ffi · a. 
J. 

i=l 

.. .. ' n -. - a. 
J. J. 

fi -. - a! 
J. J. 

k+n . 
u = l: 

i=l 

.. -·a! u . = 
J. J. 

m. 
J. (neq. ,neq.) 

J. J. 

- 1 m. 
J. 

- 1 m. 
J. 

-

-1 m. 
J. 

J. J. 

" i=k+l, k+2, k+n a . .... ' 
J. 

.. 
and i=k+l, k+2, k+n a . ... ' 

J. 

- 1 a! m. w. 
J. J. J. 

and i=k+l, k+2, k+n w. . .. ' 
J. 

is the nonzero submatrix of the M matrix associated 
with the ground point i, 

.. .. -1" 
m

1
. = b. p. b . 

J. J. J. 

+ .. -1 p. 
J. 

for i=l, 2, ... , k (associated with control 
points) 

... -1 
m. = p . 

J. J. ... 
p . 

(3' 3) 
pi 

(neq . ,neq.) 
J. J. 

for i=k+l, k+2, . .. , k+n (associated with pass points) 

is the weight matrix for a ground control point i 

is the weight coefficient matrix for the measured 
photo coordinates associated with the ground point i. 

.. 
Then, the unknown corrections (o.) to the ground coordinates for any 

point i, can be calculated by back suBstitution from equations similar to 
the following equations : 

. •. -1 .. , o. = n . u . 
J. J. J. 

The Second Algorithm 

.. -1 - ' - n. n. 
J. J. 

In this algorithm, the two collinearity condition equations are also 
used to form two equations for each measured photo point . The application 
of these equations is as follows : 

1 . all the camera parameters are used as observations, 
2 . the ground coordinates are used in two different ways when compared 

with the first algorithm : 
a) the coordinates of the control points are used as observations, 
b) the coordinates of the pass points are used as unknowns . 

To form the normal equations for the least squares adjustment, one has 
to calculate theM matrix given by equation (5) . Here, in the second al­
gorithm, the B matrix contains partial derivatives of the collinearity con­
dition equat ions corresponding to both the coordinates of the ground control 
points and the camera parameters . Hence, it is impossible to calculate the 
contributions to the normal equations for either points or photos indepen-
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dently of the others . Accordingly, the whole A, B, Wand M-1 matrices have 
to be calculated before it is possible to calculate any contributions to 
the normal equations . However, to reduce the computing time and memory spa­
ce, all the ground control points are used as one group followed by all the 
pass points as another group . In this way, theM matrix is partitioned 
into four smaller submatrices which can be calculated one after another . 

Assuming that one starts to calculate the observation equations asso­
ciated with all the control points and thereafter calculates the observa­
t i on equations of all the pass points, then the design matrices A, B and 
W can be written as follows : 

where: 

A " rQ ___ =f - ---- ---------~;~~~~~~~~~!:;~I~;:l~-:~~~---- -----1-A (equations associated with 
· the pass points) 

B 

w 

= t ~ _ t_:! __ l ~ - ---r~~~~:~~~~~~i:~~~~~~l~-:~~~---- - - -- -: 0 : 0 :· I (equations associated with 
: : : II _ the pass points) 

(equations associated with 

= - ------- -
___ !~~-~~~!~~!_E~!~!~2 _____ ______ __ __ ____________ _ 

(equations associated wi th 
the pass points) 

A, B, WI' WII have the same definitions and detailed expressions as 
for the first algor1thm , 

is the number of stations with observed camera parameters . 
are two matrices which represent the partial derivatives of 
the Collinearity Condition Equations (CCE) with respect to 
the observed camera parameters and associated with the ob­
served ground control points and ground pass points respec­
tively . 

The only unknowns in the case of the second algorithm are the ground 
coordinates of the pass points "8 which can be calculated directly from : 

8 = N- 1u 
(3n, 1) 

where : 
1\ ... II 

,, 
N = A' M22A U= -eX M' 12 wl + A. • M22WII) 
A -1 -1 
M22 = (M22 - Ml 2 Mll Ml2) 
A -1 1\ 

Ml2 = -Mll Ml2 M22 

' · -1 . .. " -1 " " - 1 
Mll = BI p B' + B p B' + PI I 

Ml2 BI 
. -1 •· I 

= p BII 

BII 
0 -1 . ' « -1 

M22 = p Blr + p 
II 

and . is the weight matrix for the measured camera parameters . p 

0:1.6. 



Since the collinearity condition equations are linear with regard to the un­
knowns, only one iteration is necessary to reach the final solution . 

Aerial Triangulation Test Results 

Several aerial triangulation tests were performed using the two compu­
ter programs to adjust some of the SKYLAB space photography (scale 
1 : 2,900,000), & a combination of SKYLAB and very high altitude aerial photo­
graphy (scale 1 : 120,000) with and without utilization of SKYLAB orbital 
parameters . Although some test results were given in previous publications 
(1) and (2), the full details of all the tests and their analysis are given 
in the author's thesis (3) . Here, only a few tests will be described in or­
der to show the efficiency and the capability of the developed programs . 

One model of SKYLAB photography (S-190 A camera) covering the areas of 
Windsor in Canada and parts of the State of Michigan, in the U.S .A., was 
adjusted using the developed bundle adjustment programs. Seventy six points 
were identified in the model and their ground coordinates were measured 
from either 1:25 , 000 or 1 : 24,000 scale maps of Canada and the U. S.A . res­
pectively. It was assumed that space photography would not be used for 
aerial triangulation in areas for which large scale maps exist. Consequen­
tly and to simulate real conditions, map coordinates were rounded off to 
the nearest 100, 200, ... to 1,000 m. The differences (or residuals) bet­
ween the map coordinates and their rounded values, as well as the Root Mean 
Square Errors (RMSE) for each case were calculated. Table 1 shows the 
RMSE's as well as the Absolute Values of the Maximum Residuals (AVMR) for 
each case. 

The map coordinates and their rounded values for 28 well distributed 
points were used as control in a series of eleven aerial triangulation 
tests . The differences between the adjusted ground coordinates of the con­
trol and pass points and the map coordinates and the RMSE's of these diffe­
rences were calculated for all tests . Tests no . 1 to 11 in Table 2 show the 
RMSE ' s and the AVMR ' s for the eleven tests when the coordinate$ of the 28 
control points were either the map coordinates or their values rounded to 
the nearest 100, 200, ... or 1,000 m respectively. Test number 12 in Table 
2 shows the RMSE's and AVMR's for one test using the second bundle adjust­
ment algorithm and when the coordinates of the control points were rounded 
to the nearest 500 m. 

Conclusions 

Appropriate applications for space photography are for areas where 
there is no ground control as such, except point coordinates obtained from 
small scale maps . Accordingly, in such aerial triangulations the coordina­
tes of the ground control must be treated as observed values and must be 
adjusted when solving the photogrammetric system. This idea led to the de­
veloping of two new bundle adjustment algorithms, which could be efficien­
tly used for the aerial triangulation of space photography and when the 
available ground control is of inferior quality. In the first algorithm 
the coordinates of the ground control as well as the photo measurements are 
used as observations in the collinearity condition equations . Then, point 
by point, the contributions to the elements of the normal equations are cal­
culated. The system of the normal equations can then be solved yielding the 
corrections to both the unknown camera parameters and the unknown ground 
coordinates of the pass points . Due to the nonlinearity of the collineari­
ty condition equations with respect to the unknowns, more than one itera-
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tion is necessary to reach the final solution . Finally, point by point, the 
residuals of the photo-measurements, and the ground measurements (if the 
points are control points) can be calculated . 

In the second algorithm, the camera parameters, the ground coordinates 
of the control points and the photo measurements are used as observations in 
the collinearity condition equations . Although the second algorithm can ri ­
gorously treat the case of space photography for which all orbital parame­
ters are used , its solution requires more computer time and memory . In this 
algorithm, the contributions to the normal equations can not be calcul ated 
one point after another. Instead, first the contributions of all the con­
trol points must be calculated as one unit and then the contributions of all 
the pass points as another unit . The only unknowns in this algorithm are 
the .ground coordinates of the pass points and hence the collinearity condi ­
tion equations are linear with respect to these unknowns . Therefore, only 
one i teration is necessary to reach the final solution . Finally, the resi ­
duals for all the measurements and their variance-covariance matrices can be 
calculated if needed . 

During the investigation., the camera parameters supplied to the authors 
by NASA were not well defined. Moreover, due to some inherent difficulties 
during the mission the parameters were also not reliable . Accordingly, the 
camera parameters and their weights resulting from the solution of the first 
algorithm were used as observations in the second algorithm. Hence , the si­
gni ficant improvement of the accuracy of the results obtained from the se­
cond algorithm compared with those of the first algorithm should not be used 
to draw any final conclusion. 
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Table 1 RMSE and AVMR for the rounded control points 

Coord. Ontario area 
Rounded to Nwnber RMSE AVMR 
to of 

points X y z X y z 
(m) (m) (m) (m) (m) (m) 

100 m 28 27 33 28 48 49 46 

200 28 62 61 64 99 100 97 

300 28 93 85 86 148 140 144 

400 28 122 119 141 190 197 199 

500 28 152 127 182 248 222 246 

600 28 162 174 201 296 300 297 

700 28 210 193 216 346 310 303 

800 28 233 248 240 373 387 372 

900 28 267 254 266 432 449 444 

1000 28 282 267 278 446 488 461 

500 3 130 157 161 157 222 242 

500 7 165 119 152 247 222 242 

500 14 150 132 154 247 222 242 

500 21 157 132 173 247 222 246 

0:19. 



Table 2 RMSE and AVMR (Ontario model using the first and second bundle adjustment algorithm) 

Serial no. RMSE of control points AVMR of control points RMSE of pass points AVMR of pass points 
of test 

X y z X y z X y z X y z 
(m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) 

First bundle adjustment algorithm 

1 01 01 00 02 01 00 35 40 148 104 127 394 

0 
2 22 30 28 46 80 45 40 39 162 92 127 394 
3 37 45 62 91 96 99 37 46 128 116 122 374 

1\J 4 52 44 84 112 104 151 52 34 148 96 136 397 
0 5 53 66 138 105 104 220 46 58 194 141 183 532 

6 76 84 175 138 166 243 69 44 130 149 168 325 
7 34 76 196 113 165 292 39 53 191 98 126 385 
8 68 65 209 116 161 313 75 62 205 168 155 386 
9 114 107 228 247 221 337 100 88 210 203 248 406 

10 86 111 241 155 273 396 88 88 193 181 239 385 
11 40 63 280 91 133 474 36 58 286 122 108 588 

Second bundle adjustment algorithm 

23 34 53 170 76 159 242 36 41 157 100 129 357 


