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ABSTRACT 

Multiple focal setting self- calibration is applied in a photogramrnetric test 
project, partially designed to ascertain the practicability of employing a 
non-metric camera (the Hasselblad SOOC) for laboratory structural testing . 
A simultaneous recovery of "stable" camera calibration parameters relating 
to three focussed object distances is afforded by the inclusion of focal 
setting-and block- invariant additional parameter sets in the photogramrnetric 
adjustment. The mathematical formulation of the multi ple focal setting 
self-calibration technique is reviewed and shortcomings in the functional 
model which arise when using an "amateur" camera of unstable inner orient­
ation are noted . Results obtained in the investigation are evaluated, and 
the accuracy and precision attained are discussed with reference to the 
image coordinate residuals, the derived camera calibration parameters, 
object point determinations , and invariant measures of precision . 
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INTRODUCTION 

Numerous and varying applications of close- range photogrammetry in 
engineering and industry have been reported in the literature (see, for 
example, the review by ATKINSON, 1976) . In applying photogrammetric tech­
niques to the solution of three-dimensional measurement problems in a labor­
atory environment, occasions can arise where the use of metric cameras is 
neither feasible nor economically justifiable . This is in spite of the 
fact that there are a number of commercially available close-range photo­
grammetric cameras which possess the flexibility and versatility tradition­
ally afforded by "amateur" cameras . One such occasion prompted the 
reported investigation. 

This paper details a preliminary investigation carried out to ascertain 
the practicability of conducting engineering laboratory structural testing 
and monitoring by analytical photogrammetric means, employing an available 
Hasselblad 500C non- metric camera . The paper presented is a revised and 
shortened version of FRASER (198Gb), and the following discussion stresses 
two principal aspects of the investigation: the application of multiple 
focal setting self-calibration (FRASER, l980a) to a non-metric camera, and 
the accuracies obtained in such an application . Initially, features of the 
photogrammetric survey conducted are detailed . This is followed by a review 
of the mathematical formulation of the multiple focal setting self-calibra­
tion technique and an outline of the additional parameter model employed . 
Finally, a discussion of the results is presented and the accuracy and 
precision attained in both object point determination and in the recovery of 
" stable" camera calibration parameters is detailed. 

DETAILS OF THE PHOTOGRAMMETRIC SURVEY 

System Geometry and Data Acquisition 
In the photogrammetric context, two features of the data acquisition 

phase of the test survey carried out for the investigation are noteworthy: 
the use of photographs taken at multiple focussed object distances , and the 
fact that the 500C was fitted with a Distagon 50 mm lens. With regard to 
the latter feature, although the metric quality of very wide angle photo­
graphy has been shown to be most adversely affected by inner orientation 
instability and film unflatness (KENEFICK , 1971), a 50 mm lens does exhibit 
a large working depth of field which can be an asset in confined laboratory 
situations . 

For the test project reported, an existing three-dimensional target 
field comprising 43 points was used . The target array, a portion of which 
is shown in Fig . l, covered an area of 2.5 m2 in the assigned XY plane, to 
a depth of 0.7 m. Object space control comprised solely scale; the origin 
and orientation of the reference coordinate system could be arbitrarily 
assigned. Because of the lack of an object space control configuration, 
developed methods of analytical data reduction for non-metric imagery, such 
as the Direct Linear Transformation (DLT) (ABDEL-AZIZ & KARARA, 1971) and 
the more rigorous treatment of BOPP & KRAUSS (1978), were deemed impractical. 

The object target array was imaged from 10 exposure stations, arranged 
in a convergent configuration with all camera axes directed towards the 
centre point of the target field (see FRASER, l980b) . Photographs were 
taken at three magnifications : three from focussed object distances of 2 m 
and 3 m, and four from l m. The convergent configuration, coupled with the 
three dimensional object point distribution, was adopted to enhance the 
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recovery of the Gaussian focal length, or principal distance, ci 1at each 
focal setting . Also, to counteract projective compensation between the 
interior orientation elements x , y and the exposure station coordinates, 

. 
0

· 0 1' d h . 1 . f 1 nomlnally orthogonal kappa rotatlons were app le . T e lnc uslon o 0 
exposure stations may prove somewhat impractical and unnecessary for many 
routine engineering applications of close-range photogrammetry . However, 
in this investigation it was necessary to employ the camera configuration 
described in order to satisfy one of the aims of the project,· the recovery 
of "stable" camera calibration parameters . 

Data Reduction 
As an alternative to the DLT approach it was decided to treat the SOOC 

as a pseudo-metric camera and apply the recently developed multiple focal 
setting self-calibration technique which incorporates constraint equations 
enforcing a linear variation in radial lens distortion with changing princi­
pal distance . This method has previously been applied to close- range metric 
camera calibration (FRASER, 1980a) . 

The Hasselblad SOOC had been modified so as to provide fixed image 
frame reference marks. Two fiducial marks had been etched into the sides 
of the camera's picture frame, but these were by no means geometrically 
stable since the image frame formed part of the removable film magazine. 
Further sources of instabi lity were the lack of a film flatness control 
mechanism, and uncontrolled film processing. 

To achieve a rigorous functional model for the self- calibration of a 
non-metric camera , based on the collinearity condition, additional para­
meters for lens distortion, interior orientation and image deformation need 
to be carried for each photograph separately , as in both the DLT and the 
formulation detailed by FAIG (1975) which i~ based on the coplanarity 
condition . For photograrnrnetric surveys employing more than half a dozen or 
so exposure stations this requirement can be computationally cumbersome. For 
the reported self-calibration investigation it appeared more practical -
though less mathematically rigorous - to include additional parameters 
relating to particular image subsets. These focal setting- invariant para­
meters modelled the lens distortion and perturbations to the Gaussion focal 

\ . 
length at each of the three focussed object distances . Block-invariant 
additional parameters were also included in the self-calibration formulaticn 
in order to compensate to some degree for the error introduced through inner 
orientation instability and image deformation. By the use of a flexible 
systematic image coordinate error correction model it was hoped that the 
Hasselblad SOOC would yield a similar order of accuracy to that expected 
from an equivalent close-range metric camera . 

ADDITIONAL PARAMETERS 

Selection 
The normal equation matrix decomposition algorithm used to factor the 

indefinite "bordered" matrix of the multiple focal setting self-calibration 
(referred to in a following section) was found to be less computationally 
stable in situations where other than statistically significant additional 
parameters were included. For this reason, a number of standard self- cali­
brating bundle adjustments were initially carried out to enable the deter­
mination of the most suitable focal setting- and block- invariant additional 
parameter sets. Parameters which did not prove to be statistically signifi­
cant were suppressed . 

The individual terms comprising the vector of additional parameters 8 
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can be represented by the following expressions for the image coordinate 
corrections 6x and 6y : 

6x 6xF + 6~ 

6y 6yF + 6yB 

Here, 6~ and 6y contain terms relating to a specific principal distance 
ci, whereas the ~xpressions for 6~ and 6yB comprise the selected bloc~­
invariant terms. Of the additional parameter sets chosen for the prel1m­
inary self-calibration adjustments, the model yielding the most favourable 
results from the point of view of statistical significance and the minimi­
sation of the vari.ance factor estimate &2 was the following: 

0 

4 2 2 
+ xr Ki2 + (-x/c)dci + (3x +y )Pil + 2xyPi2 

2 2 4 
+ yr Ki2 + (-y/c)dci + 2xyPil + (x +3y ) Pi2 

and 
-x

0 
+ a

1
xy + 

-yo + bl x + 

where de. represents a correction to the initial estimate c., K. and K.
2 are coefficients of radial lens distortion, P.

1 
and P .

2 
are

1
the

1
aecentef1ng 

distortion coefficients, and the parameters a~, b . lafgely represent 
1 1 

empirical correction terms . 

For the SOOC, calibrated values of the principal point coordinates 
(x ,y ) are only appropriate to a single attachment of the film magazine 
sigce

0
the camera's picture frame is removable . To a lesser degree, this is 

also true of the image frame orientation with respect to the camera body . 
Principal distance is affected in a similar manner , although the values ci 
at each focal setting are perturbed to a greater extent by variations in the 
position of the image "plane " due to the lack of a film flattenting mechan­
ism. The treatment of the principal distances ci as stochastic unknowns 
has the effect of largely compensating for any scale error in the measure­
ment of "calibrated" fiducial mark coordinates. These coordinate values 
were simply determined by comparator observations on a single photographi c 
image, where the principal point was established as being at the intersec­
tion of the two film frame diagonals. Thus , whereas the affinity term b

2
y 

and the non-perpendicularity of axes term b
1

x usually refer to shortcom1ngs 
in comparator calibration , they can be interpreted more in this case as 
providing a correcti on to the systematic error introduced by the assumption 
that the principal point of the SOOC lies at the intersection of the two 
film frame diagonals at one selected exposure . 

Although film deformation influences cannot be expected to remain con­
stant for each non-metric camera image, the assumption was nevertheless made 
that significant components of introduced systematic error could be compen­
sated for to a large degree by the empiri cal terms of 6xB and 6y . The 
investigation results indicate that this assumption was reasonab~y valid . 

Structure of Additional Parameter Matrix ... ( . ) 
The additional parameter coefficient matrix Bj

1 
fo r an image point 

observation j on a photograph taken at focussed object distance s . can be 
represented in the form of two submatri9es : the coefficient matrii of the 
focal settin~ -;- invariant parameters, ... B~~), and that for the block-invariant 
parameters, B~~) . The structure of B ., Jthe resulting additional parameter 
matrix for a sfngle i mage point j, will assume the fol l owing form where 
point j is imaged on three photographs , each taken at a different focal sett-



ing: 

... ( 1) 
0 

.. (l~ BFj BBj 

B . 0 
... ( 2) 

0 
... (2) 

B . BBj J FJ 

0 0 
... ( 3) ... ( 3) 
BFj BBj j 

If a total of kF focal setting-invariant ... and kB block-invariant additional 
parameters are used in the formation of B., the resulting normal equation 
submatrix BTwB. (see FRASER, 1980a) will ~e block-diagonal with dimensions 
(kF x kF), sy~etrically bordered by a border of width kB. 

MULTIPLE FOCAL SETTING SELF-CALIBRATION 

This self-calibration adjustment formulation is essentially a special 
case of multiple close-range camera self-calibration (FRASER & VERESS, 1980), 
The method is viewed as being most applicable in photogrammetric surveys i n ­
volving photography taken at three or more finite focal settings with a 
long focal length camera which displays a pronounced lens distortion profile. 
BROWN (1972) and ABDEL-AZIZ (1973) have derived working formulae for the 
description of symmetric radial lens distortion variations with changing 
magnification. After linearization, these formulae can be recast as linear 
condition equations: 

(l) 

In the present investigation, preliminary self-calibrating bundle adjust­
ments revealed that at the three focussed object distances si (i.e . at prin­
cipal distances ci) only the coefficients Kil and Ki 2 of the distortion 
functi.on 

~ri = Kilr3 + Ki2r5 + Ki3r7 + 

were statistically significant . The vector 8~ in Eq . l is then given in 
expanded form as 

"''T 0 h [dKll dKl2 del dK2l dK22 dc2 dK31 dK32 dc3] 

where dci , dK. 1 and dKi 2 represent corrections to the initial estimates for 
c i, K. and K~2 . The matrix H has dimensions (2x9) for this case and the 
indivi~ual tefms of this matrix are evaluated as functions of the approxi­
mate values for the principal distances and lens distortion polynomial 
coefficients (see FRASER, 1980a) . The vector F comprises two discrepancy 
terms . For practical implementation the parameters dci can normally be 
suppressed without influencing the final adjustment solution. 

The no~mal equation system of the self-calibrating bundle adjustment is 
expressed by the standard matrix equation : 

A Tp AX - A TPL = 0 ( 2) 

Here, A is the design matrix, P the weight matrix, L the vector of discrep­
ancies, and X the vector of unknown parameters, given as 

XT = [6T 6T 6T] 

where 8, 8 and 6' represent the vectors of corrections to the exterior orien­
tation elements, the object space coordinates. and the additional parameters . 
The parameters '6~ are contained in 6', leading to the incorporation of the 
linear constraint, Eq . 1, into the normal equation system, Eq . 2, according 
to Helmert ' s well-known method : 
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where K is a vector of Lagrangian multipliers. 
c 

[
ATPL l 
-F j 0 ( 3) 

The solution of the equation system, Eq. 3, for the object space coord­
inates 6 and the camera's calibration parameters contained in 5· can require 
special computational consideration since the "bordered" normal equation 
matrix becomes indefinite, rather than positive-definite, with the incorpor­
ation of the constraint equations. Thus, if a direct solution is required 
and symmetric storage isuse~decomposition methods such as Cholesky and Gauss 
eliminationwith full or partial pivotting will fail. Details of the decom­
position algorithm for symmetric indefinite matrices used in the present 
investigation are given in FRASER (1980a; b) . 

SELF-CALIBRATION RESULTS 

The results obtained using the multiple focal setting self-calibration 
with linear constraints were essentially comparable with those produced in 
the standard self-calibration adjustment in terms of the attainable accur­
acy of object point coordinate determination. However, the former approach 
yielded results of more favourable quality when judged by the magnitude of 
theaposteriori variance factor estimate a2 and the attainable precision of 
"stable" non-metric camera calibration pa~ameters. In this discussion only 
selected results of the multiple focal setting self-calibration incorporating 
lens distortion constraint equations are detailed . Further results are given 
in FRASER (l980b) . 

Image Coordinate Residuals 
As a result of the multiple focal setting self-calibration adjustment, 

the following root mean square (RMS) values of the image coordinate residuals 
Vxi and vy. where obtained: sx = ± 4.6 ~m and s = ± 5.4 ~m. On examining 
the patter~ of the residuals it was noticeable that the magnitude of the im­
age coordinatecorrections tended to increase with radial distance r. How­
ever, this trend has not as yet been quantified. In general, the magnitudes 
of vx. and vy . for points with r < 10 rom were in accord with the estimated 
stand~rd erroi of the AP/C image coordinate observations, about 2.5 ~m. For 
a number of points at the edges of the image format (r > 25 rom) magnitudes of 
four and five times this value were encountered. Even with this apparent 
bias in the distribution of the residuals vx. and vYi' it will be assumed 
for the remaining discussion, which stresses

1
quantitative aspects of the 

obtained precision, that &2 is a sufficiently representative estimate of the 
a priori "true" variance 

0 
factor cr~ . 

Radial Distortion and Gaussian Focal Length 
Fig. 2 illustrates the plots of the radial lens distortion functions 

obtained for the focal settings s 1 , s 2 and s
3

, along with the adjusted 
Gaussian focal lengths c

1
, c

2
, and c

3
, and their a posteriori standard 

errors . Tests of statistical signifJ.cance involving null hypotheses Ho of 
rank (Ho) = 2 were carried out and all parameters Kil' KiZ were found to be 
highly significant at the 5% level. The distortion functl.on displaying the 
highest precision was that for focussed object distance s

1
, where at a radius 

of r = 25 rom, the standard error crA of the distortion function b.r, given by 
Llr 2 

cr
2 

r6cr2 + r 10cr + 2r8 cr 
b.rl Kll Kl2 KllK12 

was found to be lcrb.r;tl 5 ~m . Although not shown, the distortion curve for 
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s
1 

obtained via the standard self- calibration technique nearly coinci deswith 
tne one plotted for the 1m object distance in Fig . 2 . However, this is not 
the case for the curves ~r2 and ~r3 . The linear constraint equations , Eq . l , 
have the effect of leaving the most preci se function ~r1 unaltered , whi l e 
bringing ~r2 and ~r3 into conformity with it , such that the functions show 
the required linear variati on with changi ng magnificati on . At the radi us 
r = 25 mm , values of Ia~ I = 6 ~m and Ia~ I = 8 ~m were obtained . 

r2 r3 

Precision of Object Point Determinations 
A measure of the average precision of selected object poi nt coordinates 

can be obtained by 

-2 
where ax is an estimate of the mean vari ance of the chosen u~ coordinates , . c ~ 
and L ~s the relevant sub- matrix of the variance- covariance matrix L 

C XX 

Estimates of average precision were determined for two object point 
coordinate samples . For the f i rst sample, comprising 20 poi nts in the tar­
g~t midfield , values of lax YJ = 140 ~m (pooled estimate for planimetry) and 
JazJ = 200 ~m were obtained ~ At the target field centre the a posterior i 
standard error of object point coordinates was found to be Jax . J ~ Jay . J ~ 
80 ~m and laz . J ~ 1 30 ~m . For the second sample comprising th~ coordl~ates 
of six points~lying at the vertical and lateral extremities of the target 
array the computed average standard errors were lax YJ = 320 ~m and Jcr I = 
460 ~m . In the first sampl e, between six and ten rays intersected eac~ of 
the 20 targets . However , the coordinates of points forming the latter sam­
p l e were determined by onl y three- or four - ray i ntersections . This partial ly 
accounts for the lesser reliability of the adjusted coordinates of these 
outlying points . 

Datum Invariant Measures of Precision 
In close- range self- calibration projects it is useful, and in some 

cases computationallyimperative, that all parameters - object space , 
exterior orientation and additional parameters - be regarded as stochastic 
unknowns . Initially, seven appropriate parameters need to be treated a 
priori as weighted observations to oversome a rank defect in the normal 
equation matrix ATPA . However, the stability of the adjustment is typically 
considerably enhanced by a~plying real istic a priori variances to all para­
meters . With the matrix A PA being of full rank , the parameter estimates X 
are still datum biased, as are the variance estimates expressed by the 
variance- covariance matrix L (BOSSLER, 1973) . 

XX 

To a large extent the computational stability of a self- calibrating 
bundle adjustment can rest on the adequate definition of a fixed datum . One 
scheme adopted to define the reference coordinate system, which is popular 
in geodetic adjustment appl ications, involves the suppression of a number 
of appropriate parameters , this number being equal to the rank defect of 
ATPA (for a photogrammetric example , see KENEFICK , 1971 ) . A second, perhaps 
more common c l ose- range photogrammetric practice for minimum- constr aint 
adjustment is to assign very tight a priori constraints to seven object 
space coordinate parameters so as to define the scale , orientation and origin 
of the reference coordinate system . Under the firs t scheme , parameter est­
imates and their var iances are biased in what they refer to a fixed datum . 
A numerically similar situation arises for the second scheme . 

Negl ecting photogrammetr ic factors for the present ; in one sense the 
notable fall off in object point coordinate precision away from the target 
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field centre is to be expected in this case . Here, the reference coordinate 
system was established by fixing the XYZ coordinates of two poi nts in the 
target midfield, and the Z coordinate of a third, non-collinear point . These 
constraints were applied by simply assigning a priori standard errors of + 
l ~m to the seven parameters . Thus , rather than being measures of "absolute" 
precision, the a posteriori estimates Ox . , Gy . and Oz. indicate the precision 

l l l 
relative to the fixed control . 

An unbiased estimation of the quality of the self- calibration resul ts 
which relates to the object space can be gained by evaluating a reference 
frame invariant measure of precision . One such quantity which may prove use­
ful for direct quality comparisons with other measuring tools is simply the 
a posteriori variance a~ of a distance d . . between i and j, given by 

ij 2 lJ T 
aa .. =G .. 1: .. G .. 

lJ lJ lJ lJ 

where G is a row vector of the direction cosines £, m and n . 

G .. = [- £ - m - n £ m n] . . 
lJ lJ 

andl:.. is the appropriate submatrix of L: • Estimates of the standard 
errofJad .. were obtained for a number ofxaistances within the target field . 
The foll6~ing table lists the values loa .. I, the length d . . and the ratio 
loa . . l/d . . for the three l ines which are1~hown in Fig . l .

1
J 

lJ lJ 

line laa .. l (~m) d .. (m) lad · . 1/d . . 
lJ lJ lJ lJ 

a 186 . 91 1 : 4900 
b 107 . 56 1:5200 
c 210 1. 28 1 : 6100 

Throughout the midfield of the target array , a precision in distance deter­
mination of about l part in 5500 was achieved . However, for lines which run 
to the extremities of the field, the estimate falls to about 1:3800, or 
loa .. I ~ 260 ~m for a l m dlstance . 

lJ 

CONCLUSIONS 

This preliminary investigation has demonstrated that i t is feasible to 
employ non- metric cameras coupled with multiple focal setting self- calibra­
tion (both with and without linear distortion constraints) in close- range 
photogrammetric surveys where accuracies at the 5 ~m level (RMS value of 
image coordinate residuals) are sought . Further , by treating the " amateur" 
camera as a pseudo- metric camera it is possible to successfully recover 
" stable" calibration parameters (lens distortion and Gaussian focal length) 
relating to as many focal settings as are used in the photogrammetric survey . 

Notwithstanding the fact that the formulated functional model of the 
self- calibrating bundle adjustment adopted for this non-metric camera appli­
cati on lacks somewhat in mathematical rigour, the general accuracy obtained 
appears to be of the order expected had the DLT been applied (KARARA & ABDEL­
AZIZ, 1974) . The attainable precis i on is also only marginally lower than 
that antic i pated for a c l ose- range photogrammetric system employi ng a metric 
film camera (see , for e xample , FRASER, l980a) . In terms of relative accuracy 
the SOOC test self- cali bration adjustment yielded distance standard error 
estimates of about 1 part i n 5500 for lines of up to 2 m i n the target mid­
field. For object points lying in the same working area of the target array , 
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average precisions of jcrx, YI = 140 ~m and jcr
2

j = 200 ~m were obtained . 

For engineering projects involving laboratory structural testing and 
monitoring by means of a photogrammetric system comprising non- metriccameras , 
a significant advantage of applying the self- calibrating bundle adjustment 
is that no object space control network need be established . It is suffic­
i ent to define the scale, orientation and origin of the reference XYZ coor­
dinate system by assigning a priori variance constrai nts to either the 
required number of selected object point coordinates or to appropria te e x t ­
erior orientation parameters , thus enabling a minimum- constaint adjustment 
to be performed . 
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