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ABSTRACT 

To effectively correct skeletal disharmonies, by application of 
external forces, the knowledge of the relationship between the 
applied force system and the resulting epiphyseal, bony, and 
sutural remodeling, influenced by muscle response, is necessary . 
Recent advances in holographic numerical analysis allow accurate 
quantification of these processes. In this paper, a new, non­
invasive method for holographic determination of bone motions, 
in three-dimensional space, is presented and its use in studies 
of skull bone displacements and in orthodontics is discussed . 
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Introduction 

Modern treatment of skeletal disharmonies and malocclusions utilizes the 
application of external forces. In order to effectively use these thera­
peutic forces, mapping of three-dimensional displacements of bones with 
correlation to biological changes is required. In the past, this problem 
has been studied in a number of ways, using, for example, strain gauges, 
brittle coatings, photoelast i city, as well as clinical observations and 
mathematical modeling [1]. Because of their inherent limitations, these 
techniques did not always provide all the information necessary for devel ­
opment of meaningful relationships between the applied force system and 
the resulting periodontal, bony, or sutural remodeling. However, recent 
advances in the field of hologram interferometry allowed to circumvent 
some of these difficulties and permitted development of a new technique 
for non-invasive quantification of bone motions in three-dimensional 
space [2, 3]. 

Holography can be defined as a process in which,first, the optical infor­
mation about an object is collected and stored within a suitable medium 
and, later, the information is retrived from this medium and made visible 
in the form of an image. Out of the variety of the existing holographic 
procedures [4], the most suitable technique for biostereometric applica­
tions is the double -exposure method. In this method, two consecutive po­
sitions of an object are recorded in the same photographic emulsion; the 
object being displaced and/or deformed (by application of a force) between 
the two exposures. Upon reconstruction of the hologram, two three­
dimensional images of the object are formed. Since both images appear in 
coherent (laser) light and exist in approximately the same location in 
space, they interfere with each other and produce fringes overlying the 
reconstructed image. All information about the object 1 S motion is stored 
in this fringe pattern . Obviously, a unique deformation of an object, 
for a given illumination and observation geometry, does produce a unique 
three-dimensional interferogram, within a hologram reconstruction, from 
which the vectorial motion of the object can be determined. 

Holographic techniques are particularly useful in biostereometrics because 
they are non-invasive, and provide rapid and accurate, three-dimensional 
mapping of displacements over the entire surface of the investigated ob­
ject, as, for example, shown in Fig. 1. As such, they have already been 
used in studies of displacements of human teeth [5-8], as well as in in­
vestigations of skull bone displacements [9, 10] resulting from external 
loads. 

Recent developments in the field of hologram interferometry [11] allowed 
further improvement in the currently used procedures and extended their 
utility in biostereometric applications. In this paper, the new general 
relationships for determination of vectorial di splacements directly from 
holograms are presented and their use in representative biostereometr i c 
applications is outlined. 

Theory 

In biostereometrics, one often desires to investigate objects for which 
the entire surface has moved and/or deformed. In such applications, i t 
is rather difficult to determine true fringe orders and, therefore, con­
ventional procedures of hologram interferometry do not apply. Instead, 
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we may only determine fringe order number for the point on the object, cho­
sen for the origin of the coordinate system, to within an additive constant. 
Let us call this additive constant ~0 and let us bear in mind that it comes 
from the lack of knowledge of the absolute fringe order. 

Usual methods of holographic displacement analysis eliminate the unknown~0 
from the system of equations by subtracting one member of the set from 
the rest, or by subtracting pairs of equations [12, 13]. However, in 
the subtraction process, the effects of some measurement errors can be es­
calated [14] . Nevertheless, we should note that in the case when the 
first observation is made through a point•lying within the center of all 
points through which observations are made, it does not matter whether we 
introduce the additive constant ~0 or simply use fringe shifts alone as dis­
cussed in References 12 and 13. The result will be the same. It is in the 
case when we want to make observations in an arbitrary fashion, with the 
first observation not being through the central point, that ~0 must be em­
ployed; use of the other approach will give erratic results. 

In holographic analysis, the scalar product of object 1 S vectorial displace­
ment l with the sensitivity vector ~ is related to the fringe order number 
n by Ihe equation -

K • L = 21rn = f2 , ( I ) 

where~ is the fringe-locus function, constant values of which define fringe 
loci on the surface of the object . The sensitivity vector ~. appearing in 
Eq. 1, is defined as a difference between the observation vector ~2 and 
the illumination vector ~ 1 (see Fig . 2), that is, -

I< = K2- Kl ( 2) 

Therefore, for each observation of a holographically reconstructed image 
we can write an equation of the type of Eq . 1, relating the observation­
illumination geometry and fringe orders to the unknown object displacement. 
Generally, four observations are required in order to determine the vecto­
rial motion of the object and the additive constant ~0 . However, it is com­
mon in holographic analysis to use more than four observations in order to 
reduce experimental errors. In cases such as this , one solves for the four 
parameters that yield the least-square-error in an attempt to satisfy the 
overdetermined set of equations that is generated from the excess data . 

Let us assume that we successfully recorded a double-exposure hologram of 
an object that has experienced some kind of a motion between the two ex­
posures . The hologram was processed and, now, we make multiple observa ­
tions of the fringe pattern, seen within the hologram reconstruction, as 
shown in Fig . 2. If the first observation is made along direction ~~ 
through some arbitrary point on the hologram, then, we can write an-equa­
tion relating the arbitrary constant ~ to the scalar product of the un­
known object displacement l with the sensitivity vector ~ 1 , corresponding 
to this first observation,-as -

K
1 

• L ( 3) 

where, according to Eq. 2, 

K1 
= K1 

- K 2 I 
( 4) 

N~xt, the view is changed from observation along ~~ direction to that along 
~2 direction. During this change, while continuously observing the object, 
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we count the fringes that pass across the po i nt of interest on the object . 
In th i s way, we determine the observed f ringe order, more common ly known 
as the fr inge shift, n1

•
2

, which relates to the change 6~ 1 • 2 in the fringe­
l ocus function via 

I\ (")1,2 = I 2 
U~L 27Tn' , ( 5) 

thus giv ing 

( 6) 

Fo l lowing the same procedure, we may determine the fr inge shifts n1 •m for 
other changes in observation from the ~; direct i on to the ~~d i rect i o n a n d ~ 
in genera l, we may write equ i valents of Eqs 4 to 6 as 

l<m = I<; -1<1 (7) 

nl,m 1 6~L = 27Tn ,m ( 8) 

and 
( 9) 

respectively, where m = 1, 2, ... , r, with r being the tota l number of ob­
se rvations . We should note, that form= 1 Eq . 7 is equa l to Eq . 4, Eq . 8 
gives 6~ 1 • 1 = 0, and, final ly, Eq . 9 yie l ds Eq. 3. In this approach, how­
ever , r has to be equa l to or be l arger than four (that i s r ~ 4) because 
i n addit i on to the three unknown components of the disp l acement vector L 
we must also accou nt for ~0 which i s also an unknown. Therefore, from -
Eq . 9, we have 

m (") A n l,m K • L - ~ Lo = U .l L , m=l,2, ... , r. (10) 

Since L and ~0 are common to all r equat i ons, the set of equat i ons gi ven 
by Eq .-10 can be combined into a sing l e matr i x equat i on 

[!$, -IJ(~o) = 6!1 , (II) 

where [K, - 1] i s a rectangular r x 4 matr i x, (k) i s a co lumn 4 x 1 matrix, 
and (6QJ is a co l umn r x 1 matr i x . Defining the0 [~, - 1] matrix of sen ­
si t i vi ty vectors as §, that i s, 

[!S ' -I J = G ,..., (12) 

we can write Eq. 11 as 

(13) 

Finall y, so l ving Eq. 13 we obtai n 

(14) 

where ~ i s equ i valent to the f ringe order that wou ld have been ass i gned 
to the fringe passing the point of interest on the object , whi l e observ ­
ing it al ong the direction~~. had the zero order fr inge been i den tifi ab l e. 
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The displacement h computed from Eq. 14 represents total motion of the ob­
ject under invest1gation. This total motion results from a superposition 
of both, object motions induced by the applied external force (e . g., tooth 
motion due to orthodontic forces) and the natural motions (e. g., gross 
head motion). Therefore, in order to develop meaningful relationships be­
tween the applied force system and the resulting biomedical remodeling, we 
have to be able to account for both of these motions. This can be done 
by resolving the motion ki at any point i on the object into corresponding 
bulk body translation ko and rotation @ [2], that is, 

Li = L o + Ri x e, i=l, 2, ... , q (15) 

In Eq. 15, q denotes the total number of object points considered in cal­
culations, and Ei is the space vactor, from the origin of an arbitrarily 
chosen coordinate system to the ith point on the object, defined as 

R. = x.l + Y;J + z.k, i =1,2, ... , q (16) 
I I I I 

with Xi,AYi, and Zi being components of Ei in directions of the unit vec­
tors i, j, and k of the Cartesian coordinate system, respectively. 

The set of q equations given by Eq. 16 may be written in a matrix form as 

i=l,2, ... ,q' ( 17) 

and solved [2] to obtain 

c-1 gT L· . 2 ~ ~ ' I= I, ' ... ' q ,....., ,....., I (18) 

where 
S = [r R.J , i = I, 2, ... , q , 

,....., "'I 

~ _ er ';:::::/ 
- 1--1 ~ ,...., ,...., ,...., ' 

( 19) 

(20) 
l is the 3 x 3 identity matrix, and Ei is the a 3 x 3 antisymmetric matrix 
corresponding to the space vector Ei defined in Eq. 16. 

Using Eq. 18 and considering three or more points on the o~ect that expe­
rienced rigid-body motion (that is, q~3) the 6 x 1 matrix (=~) of corre ­
sponding translations and rotations can be determined from = holograms. 
If we are also able to determine total translation kP and rotation ~P at a 
point P on the studied object (see Fig. 3), using, for example, procedures 
developed in References 12 and 15, then we can determine motions kPrel and 
e Pr 1 of this point P relative to the rest of the object [2] . In order to 
ao sS, we must first determine the rigid-body translation kPrig at the point 
P on the object, defined by a space vector EP as shown in Fig. 3, because 
translations are position dependent . Therefore, using an equivalent of Eq. 
17, we determine rigid-body translation at point P, that is, 

( 21) 

where Lo and e have values determined from Eq. 18 and EP is a 3 x 3 antisym­
metric-matrix-defining the space vector EP• from the origin of the coordi­
nate system to the point of interest on the object. Next, we subtract the 
kPrig from the total translation kP to obtain kPrel, thus, 
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L = L - L prel p prig 
(22) 

Noting that the rigid-body rotations are independent of the position on the 
surface of the object we subtract ~ (computed from Eq. 18) directly from 
total rotations ~P to obtain -

ep = ep - a (23) 
rei 

Equations 22 and 23 allow determination of translations and rotations at 
any point on the object relative to the rest of the body. 

Representative applications 

The procedure described in this paper, is particularly useful in studies of 
orthodontic tooth movement and in determination of displacements of skull 
bones. In the following, we will examine two examples relating to the 
above problems. 

Let us first consider application of the method in the case where we wish 
to determine motions of a point on the maxillary central incisor, defined 
by a space vector Bp, and loaded in some arbitrary fashion as shown in Fig. 
3. In order to obtain desired results we have to solve Eq. 18 by choosing 
three or more points on the maxilla. Let us assume that we have decided 
to compute translations and rotations of the patient's head based on mo­
tions of points defined by space vectors 81 , 82, and R3 and located on the 
right and left cuspids and the first molar, respectively; these three teeth 
are not subjected to the applied force system and as such undergo only 
rigid-body motion, if any, that might take place while recording holograms. 
Then, solution of Eq. 18 will result in the components of vectors ko and @· 

Providing we can determine displacement Lp, Eq. 21 can be used to determine 
rigid-body translation of point P at a known Bp on the maxillary central 
incisor. Finally, from Eq . 22 we can compute-kPrel, and with known ~p we 
can compute ~Prel from Eq. 23. Vectors kPrel relate directly to the applied 
force system . 

As the second example ., let us consider a problem of determining relative 
motions of skull bones resulting from a force applied, for example, at the 
maxilla (see Fig . 4). In particular, we are interested in translations 
and rotations of the zygometic, frontal, and parietal bones. 

From a holographic image, we can easily determine motions at various points 
on the skull, using Eq. 14. Let us say, that points 1 to 3 are located on 
the zygomatic bone, points 4 to 6 are on the frontal bone, whereas points 
7 through 10 are on the parietal bone, as shown in Fig. 14. Then, space 
vectors 81 to 83 together with the corresponding displacements are used to 
compute,-from Eq. 18, the translations ko~ and rotations §z of the zygo­
matic bone. Next, kof and @f as well as kop and ~p are computed in a 
similar way for the frontal and parietal bones , respectively . Since all 
of these translations and rotations are determined with respect to the or­
igin of the same coordinate system, simple vectorial subtraction will give 
us relative vectorial motions of the bones. 

The above procedure may be extended to determine sutural deformations . 
This can be explained by considering relative displacement of points a 
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and b l ocated on the edges of the coronal suture , shown i n Fi g. 4. These 
points are def ined by space vectors ~~ and ~b with respect to the same x­
y-z coord inate system as used in prev1ous calcu l at i ons . Then, using Eq . 21 
we obta in 

La. = [! ~a J Ceo~) (24) ng 
f 

and 

[l ~ b] ( ~Op) L = (25) brig • 
p 

Finall y , us ing Eq . 22 , we compute the relative motion kabre l to be 

Labrel = L Crig - L brig (26) 

In a s imil ar manner, bone displacements and relative motions at other po ints 
on the skull can be determined and corre l ated with the applied force system . 

Conc lu si ons 

The me t hod for holographic determination of displacements, presented in 
th i s paper , all ows for accurate, non -invas i ve quant i f i cat i on of bone mo ­
t i ons in three -di mens i ona l space . The necessary parameters are obta ined 
directly from mu lti pl e observations of holographically reconstructed im­
ages and the gove rning eq uat i ons are solved , for numerical va lues of vec ­
torial displacements, as discussed herein. The use of the technique for 
measurement purposes was bri efly descr i bed by way of exampl es , which also 
show poss i bl e ways of extending the current techn i que to other bi ostereo ­
metr i c app li cati ons . 
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Fig. 1. A photograph of holographically 
reconstructed image of a typodont loaded 
with a vertical force applied at the max­
illa. Note different fringe patterns on 
individual teeth, corresponding to their 

arbitrary displacements . 
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Observati on geometry in hologram in terferometry . 
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Fig. 3. Geometry for holographic 
determination of rigid-body motions 
in orthodont i c tooth displacement 

studies . 
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Fi g. 4. Geometry for holographic determinat i on 
of relative motions of skull bones. In this 
figure, some of the space vectors were omitted 

for clari ty . 
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