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ABSTRACT

To effectively correct skeletal disharmonies, by application of
external forces, the knowledge of the relationship between the
applied force system and the resulting epiphyseal, bony, and
sutural remodeling, influenced by muscle response, is necessary.
Recent advances in holographic numerical analysis allow accurate
quantification of these processes. In this paper, a new, non-
invasive method for holographic determination of bone motions,
in three-dimensional space, is presented and its use in studies
of skull bone displacements and in orthodontics is discussed.

630.



Introduction

Modern treatment of skeletal disharmonies and malocclusions utilizes the
application of external forces. In order to effectively use these thera-
peutic forces, mapping of three-dimensional displacements of bones with
correlation to biological changes is required. In the past, this problem
has been studied in a number of ways, using, for example, strain gauges,
brittle coatings, photoelasticity, as well as clinical observations and
mathematical modeling [1]. Because of their inherent Timitations, these
techniques did not always provide all the information necessary for devel-
opment of meaningful relationships between the applied force system and
the resulting periodontal, bony, or sutural remodeling. However, recent
advances in the field of hologram interferometry allowed to circumvent
some of these difficulties and permitted development of a new technique
for non-invasive quantification of bone motions in three-dimensional
space [2, 3].

Holography can be defined as a process in which, first, the optical infor-
mation about an object is collected and stored within a suitable medium
and, Tater, the information is retrived from this medium and made visible
in the form of an image. Out of the variety of the existing holographic
procedures [4], the most suitable technique for biostereometric applica-
tions is the double-exposure method. In this method, two consecutive po-
sitions of an object are recorded in the same photographic emulsion; the
object being displaced and/or deformed (by application of a force) between
the two exposures. Upon reconstruction of the hologram, two three-
dimensional images of the object are formed. Since both images appear in
coherent (laser) light and exist in approximately the same location in
space, they interfere with each other and produce fringes overlying the
reconstructed image. A1l information about the object's motion is stored
in this fringe pattern. Obviously, a unique deformation of an object,
for a given illumination and observation geometry, does produce a unique
three-dimensional interferogram, within a hologram reconstruction, from
which the vectorial motion of the object can be determined.

Holographic techniques are particularly useful in biostereometrics because
they are non-invasive, and provide rapid and accurate, three-dimensional
mapping of displacements over the entire surface of the investigated ob-
ject, as, for example, shown in Fig. 1. As such, they have already been
used in studies of displacements of human teeth [5-8], as well as in in-
vestigations of skull bone displacements [9, 10] resulting from external
loads.

Recent developments in the field of hologram interferometry [11] allowed
further improvement in the currently used procedures and extended their

utility in biostereometric applications. In this paper, the new general
relationships for determination of vectorial displacements directly from
holograms are presented and their use in representative biostereometric

applications is outlined.

Theory

In bjostereometrics, one often desires to investigate objects for which
the entire surface has moved and/or deformed. In such applications, it
is rather difficult to determine true fringe orders and, therefore, con-
ventional procedures of hologram interferometry do not apply. Instead,
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we may only determine fringe order number for the point on the object, cho-
sen for the origin of the coordinate system, to within an additive constant.
Let us call this additive constant @, and Tet us bear in mind that it comes
from the lack of knowledge of the abso]ute fringe order.

Usual methods of holographic displacement analysis eliminate the unknown g
from the system of equations by subtracting one member of the set from

the rest, or by subtracting pairs of equations [12, 13]. However, in

the subtraction process, the effects of some measurement errors can be es-
calated [14]. Nevertheless, we should note that in the case when the

first observation is made through a point”lying within the center of all
points through which observations are made, it does not matter whether we
introduce the additive constant Q, or simply use fringe shifts alone as dis-
cussed in References 12 and 13. The result will be the same. It is in the
case when we want to make observations in an arbitrary fashion, with the
first observation not being through the central point, that Q, must be em-
ployed; use of the other approach will give erratic results.

In holographic analysis, the scalar product of object's vectorial displace-
ment L with the sensitivity vector K is related to the fringe order number
n by The equation

KL = 27n = 0, (1)

where Q is the fringe-locus function, constant values of which define fringe
loci on the surface of the object. The sensitivity vector K, appearing in
Eq. 1, is defined as a difference between the observation vector K, and

the illumination vector K; (see Fig. 2), that is, N

K = K,- K, . (2)

Therefore, for each observation of a holographically reconstructed image

we can write an equation of the type of Eq. 1, relating the observation-
illumination geometry and fringe orders to the unknown object displacement.
Generally, four observations are required in order to determine the vecto-
rial motion of the object and the additive constant &,. However, it is com-
mon in holographic analysis to use more than four observat1ons in order to
reduce experimental errors. In cases such as this, one solves for the four
parameters that yield the Tleast-square-error in an attempt to satisfy the
overdetermined set of equations that is generated from the excess data.

Let us assume that we successfully recorded a double-exposure hologram of
an object that has experienced some kind of a motion between the two ex-
posures. The hologram was processed and, now, we make multiple observa-
tions of the fringe pattern, seen within the hologram reconstruct1on, as
shown in Fig. 2. If the first observation is made along direction Kz
through some arbitrary point on the hologram, then, we can write an equa-
tion relating the arbitrary constant @, to the sca]ar product of the un-
known object displacement L with the sensitivity vector K , corresponding

to this first observation, as
I I
K'L =\Q, =\Q,o, (3)
where, according to Eq. 2,
I I
K =K,- K, . (4)

Next, the view is changed from observation along 5% direction to that along
Kz direction. During this change, while continuously observing the object,
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we count the fringes that pass across the point of interest on the object.
In this way, we determine the observed fringe order, more commonly known

as the fringe shift, n!s>2, which relates to the change AR!'»? in the fringe-
locus function via

ASY" = 272 | (5)
thus giving
2 2 1,2
K« L = Q%= o+ AOD™. (6)
Following the same procedure, we may determ1ne the fringe shifts n!sM for

other changes in observation from the K2 direction to the KT direction and.
in general, we may write equivalents of Eqs 4 to 6 as

m m
K = K, -K, . (7)
I,m
AL = 2™ (8)
and
m m I,m
K L = =80+ A", (9)
respectively, wherem =1, 2, ..., r, with r being the total number of ob-

servations. We should note, that for m = 1 Eq. 7 is equal to Eq. 4, Eq. 8
gives AQ'»! = 0, and, finally, Eq. 9 yields Eg. 3. In this approach, how-
ever, r has to be equal to or be larger than four (that is r 2 4) because
in addition to the three unknown components of the displacement vector L
we must also account for Qo which is also an unknown. Therefore, from
Eq. 9, we have

K"- L - o= AQ" , m=,2, ., r. (10)

Since L and Q, are common to all r equations, the set of equations given
by Eq. 10 can be combined into a single matrix equation

[K,—l]<L> - AQ (1)
A &20
where [K, - 1] is a rectangular r x 4 matrix, (
and (A@) is a column r x 1 matrix. Defining th
sitivity vectors as G, that is,

K,-1] = ¢ , (12)

) is a column 4 x 1 matrix,
O[K, - 1] matrix of sen-

M@Ir—

we can write Eq. 11 as

g(5> AQ . (13)

Finally, solving Eq. 13 we obtain

<&|§) - [QTQT(QTAQ) ’ 14)

where Qo 1S equ1va1ent to the fringe order that would have been assigned
to the fringe passing the po1nt of interest on the object, while observ-
ing it along the direction Kz, had the zero order fringe been identifiable.
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The displacement L computed from Eq. 14 represents total motion of the ob-
ject under investigation. This total motion results from a superposition
of both, object motions induced by the applied external force (e. g., tooth
motion due to orthodontic forces) and the natural motions (e. g., gross
head motion). Therefore, in order to develop meaningful relationships be-
tween the applied force system and the resulting biomedical remodeling, we
have to be able to account for both of these motions. This can be done

by resolving the mot1on L; at any point i on the obJect into corresponding
bulk body translation L and rotation § [2], that is,

L, = Lo+R,x0, i=1, 2, ..., q (15)

In Eq. 15, q denotes the total number of object po1nts considered in cal-
cu]at1ons, and R;j is the space vactor, from the origin of an arbitrarily
chosen coordinate system to the ith point on the object, defined as

R = xT+ y]+ z.k , i=1,2,..., 9 (I6)

with Xis Yis and zj being components of R; in directions of the unit vec-
tors 7, J, and k of the Cartesian coordinate system, respectively.

The set of q equations given by Eq. 16 may be written in a matrix form as

(Li) = [,I. Ea](léc’) v =h2,, 9, (I7)
and solved [2] to obtain
<9> §IEF-L, i=,2,...,9 , (18)
where .
- [N R vy Qs (19)
= ET? : (20)

I is the 3 x 3 identity matrix, and Ri is the a 3 x 3 antisymmetric matrix
correspond1ng to the space vector R; defined in Eq. 16.

Using Eq. 18 and considering three or more points on the oqgect that expe-
rienced rigid-body motion (that is, g>3) the 6 x 1 matrix 7)) of corre-
sponding translations and rotations can be determined from = holograms.
If we are also able to determine total translation Lp and rotation gp at a
point P on the studied object (see Fig. 3), using, for example, procedures
deve]oped in References 12 and 15, then we can determine motions Lp.,q and
of this point P relative to the rest of the object [2]. 1In order to
ao gS we must first determine the rigid-body translation Lpy; ig at the point
P on the object, defined by a space vector Rp as shown in F1g 3, because
translations are position dependent. Therefore, using an equ1va1ent of kg,

17, we determine rigid-body translation at point P, that is,

L= [1 20](5) @

where Lo and § have values determined from Eq. 18 and Rp is a 3 x 3 antisym-
metric matrix def1n1ng the space vector Rp, from the origin of the coordi-
nate system to the point of interest on the object. Next, we subtract the
Lprig from the total translation Lp to obtain Lppe7, thus,
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LF:'el = LP LPng ° (22)
Noting that the rigid-body rotations are independent of the position on the
surface of the object we subtract @ (computed from Eq. 18) directly from
total rotations gp to obtain

6, 0,-96 . (23)

Equations 22 and 23 allow determination of translations and rotations at
any point on the object relative to the rest of the body.

Representative applications

The procedure described in this paper, is particularly useful in studies of
orthodontic tooth movement and in determination of displacements of skull
bones. In the following, we will examine two examples relating to the
above problems.

Let us first consider application of the method in the case where we wish
to determine motions of a point on the maxillary central incisor, defined
by a space vector Rp, and loaded in some arbitrary fashion as shown in Fig.
3. In order to obtain desired results we have to solve Eq. 18 by choosing
three or more points on the maxilla. Let us assume that we have decided

to compute translations and rotations of the patient's head based on mo-
tions of points defined by space vectors R;, R, and Rz and Tocated on the
right and left cuspids and the first molar, respectively; these three teeth
are not subjected to the applied force system and as such undergo only
rigid-body motion, if any, that might take place while recording holograms.
Then, solution of Eq. 18 will result in the components of vectors Lo and §.

Providing we can determine displacement Lp, Eq. 21 can be used to determine
rigid-body translation of point P at a known Rp on the maxillary central
incisor. Finally, from Eq. 22 we can compute Lpype], and with known gp we
can compute 8p.,7 from Eq. 23. Vectors Lppgy relate directly to the applied
force system.

As the second example, let us consider a problem of determining relative
motions of skull bones resulting from a force applied, for example, at the
maxilla (see Fig. 4). 1In particular, we are interested in translations
and rotations of the zygometic, frontal, and parietal bones.

From a holographic image, we can easily determine motions at various points
on the skull, using Eq. 14. Let us say, that points 1 to 3 are located on
the zygomatic bone, points 4 to 6 are on the frontal bone, whereas points
7 through 10 are on the parietal bone, as shown in Fig. 14. Then, space
vectors R; to Rs; together with the corresponding displacements are used to
compute, from Eq. 18, the translations Lp, and rotations g, of the zygo-
matic bone. Next, L0 and 6 as well as E p and gp are computed in a
similar way for the frontal and parietal bones, respect1ve1y Since all
of these translations and rotations are determined with respect to the or-
igin of the same coordinate system, simple vectorial subtraction will give
us relative vectorial motions of the bones.

The above procedure may be extended to determine sutural deformations.
This can be explained by considering relative displacement of points a
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and b located on the edges of the coronal suture, shown in Fig. 4. These
points are defined by space vectors R and R? with respect to the same x-
y-z coordinate system as used in prev1ous calculations. Then, using Eq. 21

we obtain L
Lﬂrig . l: l:, BO] < eff> ? (24)
and L
= °p
Lo, = [ 8] ( ep) : (25)
Finally, using Eq. 22, we compute the relative motion Labpe] to be
LGbrel - LOrig B l"brig g (26)

In a similar manner, bone displacements and relative motions at other points
on the skull can be determined and correlated with the applied force system.

Conclusions

The method for holographic determination of displacements, presented in
this paper, allows for accurate, non-invasive quantification of bone mo-
tions in three-dimensional space. The necessary parameters are obtained
directly from multiple observations of holographically reconstructed im-
ages and the governing equations are solved, for numerical values of vec-
torial displacements, as discussed herein. The use of the technique for
measurement purposes was briefly described by way of examples, which also
show possible ways of extending the current technique to other biostereo-
metric applications.
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Fig. 1. A photograph of holographically
reconstructed image of a typodont loaded
with a vertical force applied at the max-
illa. Note different fringe patterns on
individual teeth, corresponding to their
arbitrary displacements.
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Fig. 2. Observation geometry in hologram interferometry.
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Fig. 3. Geometry for holographic

determination of rigid-body motions

in orthodontic tooth displacement
studies.

Fig. 4. Geometry for holographic determination

of relative motions of skull bones.
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for clarity.



