
14th Congress of the International Society of Photogrammetry , Hamburg 1980 . Invited paper Comm . I I I Wg . 2 . 

A VIEW ON DIGITAL IMAGE PROCESSING 

N. J . Mulder- International Institute for Aerial 
Survey and Earth Sciences 
P . O. Box 6 , Enschede 1 the Netherlands 

ABSTRACT 

The paper consists of two major parts . In the first 
part a top-down structured view is given in which 
image processing is presented as part of a decision 
making procedure . The importance of a wide view on 
decision making and data preparation is stressed and 
some examples are given of different application 
fields with the same basic decision theory . The role 
of Remote Sensing as a unifying concept is discussed . 

The second part consists mainly of examples of 
applying the concept of mapping to the intensity, 
multispectral, spatial and temporal domains . For 
human decision making , knowledge of visual perception 
is important in mapping colour and pattern features 
into the "brain domain" . 

It is shown that image processing for automated 
decision making and human decision making is 
essentially the same . The human interpreter should 
have more knowledge of elements of decision theory . 
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INTRODUCTION 

When asked to review a certain field , one is tempted 
to do just that . One would have to catch up with a 
year's unread literature , sort things and present 
who's been writing what. 

A disadvantage of review type of papers is that they 
t end to direct one's attention backward . Another 
problem specially found in the field of image 
processing applied to remote sensing data is the huge 
confusion in terminology , most of the review would 
have to be spent on definition of terms . Many wheels 
are reinvented but get different names . (Remote 
sensing is a typical intellectual escape field) . 

As an alternative to a review paper , I will present 
a "view" paper . My aim is to present digital image 
processing as a mental tool kit which is to be used 
for problem solving . In problem solving and J.nventi·on 
it is necessary to be ·able to work with different 
levels of abstraction of our "problem world" . It is 
equally important to work with abstractions of digital 
image processors . Present day computers are mostly 
unsuitable for image processing . We should not let our 
thinking be limited by Von Neumann machines . 

My view will include more fields than are usually 
understood to belong to DIGITAL IMAGE PROCESSING. In 
the section with examples of current standard 
processes I will stay within the more conventional 
boundaries and even omit some of the more interesting 
examples like the relation between Digital Image 
Processing , Photogrammetry and Cartography . 

DIGITAL IMAGE PROCESSING - WHAT IS IT? 

Firstly we recognise that it is a complex combination 
of methods and techniques applied to somthing which 
is very hard to describe . Many views are possible and 
to capture the complete picture , many angles of view 
must be studied from a level of sufficient high 
abstraction . 

Abstraction is essential for understanding, it enables 
us to see the common elements in apparently unrelated 

f ields . In order to communicate our abstractions we 
need a common language, code , s ymbol i sm , formal ism. 
Two way's of abstract thinking can be discerned : the 
formal l ogic way , which produces strings of causes and 
effects , in the notation of an algebra of logic 
entiti~s and the pictorial , geometrical way of 
thi nking , t he mental manipulation of 1D 1 2D and 3 
Dimensional objects . 

I prefer to think in the second way , to move and 
transform "things" in multidimensional spaces , because 
it allows me to think multidimensional , I can handle 
complex objects as a whole . When something has to be 
proved formally or when a computer algorith has to be 
defined , I go down to logic formalism and pr oduce 
essentially 1 dimensional strings of causes and effects 
(with associated branchpoints of course). 

Using this approach, it will be possible to explain 
all ·idea's in Digital Image Processing by the use of 
pictures (2- D-projections) . The corresponding 
formalism is the formalism of mapping , vector algebra 
on scalar- and vectorfields and some elements of 
decision theory, pattern recognition , perception 
theory and even some elements of physics . 

"Digital Images" , or rather digital representations of 
images . A common characteristic of all "Digital Images" 
is that they are generated by spatial sampling of 
spatial continues radiation fields . The measured 
Intensity on Energy per sample area is digitised to 
integer values . 
The visual representation of one spatial sample area 
is called a pixel (E.!:£ture element) ·. 

In the monospectral case , our abstract view shows a 
scalar field . In the multispectral case we "see" a 
vector field . With repetitive i mage cover a time 
component is introduced which can either be treated 
as a parameter or as an extra dimension . 

Take notice that through abstraction our view has 
become tremendously wide. We can connect now tne 
processing of all sorts of scalar and vector fields 
with image processing . Just to give some examples: 
digital terrain models -hill shading , the 
differential equations of electrical-, temperature­
and density fields, the theory of membrane vibration , 
optimum routing of transport , 2-D transforms and 
filter theory , stereo terrain models , photogrammetry , 
cartography , graphics (geo)databases , etc . 

pigital Processing of images encompasses a wider field 
even than Digital image processing . As already 
indicated in its abstract form it includes the 
processing of scalar and vector fields , however , 
people like to make a distinction between processing 
which results in "normal" images with many greyscale 
or colour levels and between classified image data 
with few colours or symbols thematic mapping etc. 

From an abstract point of view there is only a small 
difference between image processing, pattern 
recognition clustering and automatic classification . 
The difference being: mapping from many -many states 
(image processing) and mapping many- few states 
(clustering , automatic classification) . 

The question from an educational point of view is : 
can we place image processing and classification in a 
common abstract framework and indicate possibly a 
hierarchy of concepts? 

A HIERARCHY OF CONCEPTS 

If we want to evaluate idea ' s ~rom literature or ifa 
we want to give courses at application or academic 
level we need a clear view on how different abstract 
idea ' s are interrelated . 



DECISION MAKING Geometric Correction is visually not acceptable on 
This is the most general concept . The final aim of our vertical features, although the Root Mean Square 
activities is to be able to make decisions based on all thinkers proclaim it a very reasonable method)· 
available data and knowledge . 
DECISION MAKING T the ART of DECISION MAKING 

- the THEORY of DECISION MAKING 

The ART of decieion making is usually a component of 
management and photointerpretation courses . 
The THEORY of decision making is explicitly found in 
Operations Research and Gari\e Theory and is implicitly 
found in Pattern Recognition , Artificial Intelligence 
and Applied Statistics. 

It is to be hoped that a closer relation between art 
and theory will grow in future . 

IMAGE PROCESSING 

The theory and methods of MAPPING scalar- and 
vectorfield data into representation domains which can 
be discontinues: 
AUTOMATIC CLASSIFICATION, CLUSTERING , REGION FINDING 
or continues: 
IMAGE ENHANCEMENT . 

IMAGE SEGMENTATION 

A parallel concept/process is segmentation of image 
data fields into regions which have something in common •. 
~his involves already some hu~~.or algorithmic 
decision . 

IMAGE ENHANCEMENT 

This is a very general term, which includes techniques 
applicable to preparation for human- as well as 
machine decision making . I would call the common 
concept in both fields: 
PROBABiLITY CODING, LIKELYHOOD CODING 
"class" probability can be coded in colour , in symbols 
or purely numeric in a probability array . A practical 
example of likelyhood coding is our method of 
Multispectral Correlation Colour coding . 

FEATURE EXTRACTION , FEATURE ENHANCEMENT 

If we assume some knowledge with the user of the 
system, he will be able to map the raw input data into 
data which is much more specific and useful in the 
decision making or likelyhood estimation phase of the 
project, then would be possible with the raw data . 
Feature extraction usually results in: 
DATA REDUCTION and SIGNAL TO NOISE RATIO improvement . 
Features can be SPECTRAL features or SPATIAL features 
or a combination of both such as TEXTURAL features . 
Characteris+.ic changes of signals with time give 
TEMPORAL features . 

RADIOMETRIC- and GEOMETRIC CORRECTIONS 

In order to reduce this "noise" component in the data 
it has to be corrected . Sensor variation and 
atmospheric influences necessitate RADIOMETRIC 
corrections . Platform altitude variations and sensor 
nonlinear scan require GEOMETRIC corrections, which 
link digital image processing with PHOTOGRAMMETRY . 

One keyword missing in the list of concepts is the 
word REMOTE SENSING . The reason for this is that I 
personally feel REMOTE SENSING is only a general 
concept on the sensor side . Its main role in DIGITAL 
IMAGE PROCESSING is to provide us with most of our 
data (Landsat mainly at present) . The question isthen : 
isnt'it important to know the source of the data and 
the details of the sensor system? 
The answer of this question is: the provider of the 
data should worry about correcting the data which he 
supplies . The user should not have to worry about 
low-level image processing often called PRE- PROCESSING. 
(However he should understand image processing well 
enough to tell TELESPATIO why Nearest Neighbour 
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The only remaining connection between REMOTE SENSING 
and IMAGE PROCESSING is in the domain of PHYSICS. 
A working knowledge of Physics will guide the user in 
his selection of meaning full mapping t~ansform~ from 
all possible (spectral) mappings . I wil1 illustrate 
this in section with examples . 

CONCLUSIONS ON CONCEPTS 

Privately thinking about the present situation in the 
Processing of Remote Sensing data , I feel that we 
should restructure our approach to research and 
education in emphasising the combination of DECISION 
MAKING and IMAGE PROCESSING . The link with REMOTE 
SENSING is rather circumstantial . The links with GAME 
THEORY, OPERATIONS RESEARCH, PATTERN RECOGNITION, 
THEORY OF CELLULAR AUTOMATA, ARTIFICIAL INTELLIGENCE, 
HUMAN PERCEPTION are more important, just to mention 
a few . 

EXAMPLES OF THE APPLICATION OF THE CONCEPT OF MAPPING 
TO CURRENT "STANDARD" IMAGE PROCESSING ALGORITHMS 

First we need a (conventional) definition of our data 
world then we will define four domains in and into 
which mapping operations occur . 

Single (spatial band) images are treated as scalar 
fields . They allow mapping of- scalar -.. scalar ~the 
intensity domain and mapping of a neighbourhood of 
pixels into a new pixel (at a new location) in spatial 
domain . Multispectral images introduce one extra 
dimension . The ordered scalar values per individual 
band form together a multispectral vector . All sorts 
of mapping can be applied to such vector fields . 

Time is the fourth variable and is related to e . g . 
temporal changes in landuse , vegetation , temperature, 
seas tate etc , 

Treating Multispectral data as vector fields is 
allowed most of the time but one must be carefull not 
to put apples and horses in the same vector . 
Distinction must be made between measurements which 
depend mainly on material properties (reflection) and 
those that depend on a combination of material 
properties and a state-variables like temperature 
(- emission) . 

DEFINITION OF OUR DATA WORLD 

As already indicated we will be mainly concerned with 
Digital Image Processing as applied to Remote Sensing 
data . We should not restrict application of Digital 
Image Processing to Remote Sensing data only, such as 
Multispectral Scanner (MSS) data, Thermal scanner 
(THS) data, Digital Side Looking Airborne Radar 
(dSLAR) data, but Graphics (Cartographic data), digital 
terrain models and other gee-data bases belong also to 
the "problem-world" of digital image processing . 

Why include graphics in image processing? 
It is difficult to deny that in graphics we also work 
with "images" the only special thing about graphics 
is data representation . In the old times when computer 
storage was expensive, images were first compressed 
into line lmages, which were furLher cornpresBed into 
line- strings (with attributes) , Nowadays with the 
availability of colour raster- scan graphic systems 
with high resolution (e.g . 4096x 4096) the distinction 
between computer graphics and image processing 
disappears , Computer graphics is rediscovering most 
existing image processing algorithms . A general view 
must include all sorts of data which can be represented 
on a grid, even if intermediate storage is in string 
format . 



PROBLEM DEFINITION 

In general we want to map available digital data into. 
a presentation which is optimal for a certain group of 
users . 

Digital input has often many possible states, which are 
not all relevant to the users definition of information,, 
Mapping will mostly be from many ;;tates to fewer states. 
Two different aims can be discerned · 

al to present all available data in such a way to the 
human eye-brain combination that he can use his 
unique capabilities to classify the image (photo 
interpretation) 

a2 to present the data in a computer classified form, 
with main emphasis on the statistics of t he 
resulting data. 

We will concentrate our examples on processing the 
data for human decision making, but it must be 
understood that the same processing concepts are used 
in preparing the data for automatic classification. 

FOUR DOMAINS 

If we agree that digital image processing is just a 
matter of mapping input into some output presentation 
we only have to define the domains and the mapping 
rules . 
First the domains : 

1 Intensity domain , usually a range of integer numbers 
which have a one-to-one relation with Remotely Sensed 
intensities in some part of the E.m . spectrum. Most 
data is available in the byte range (0 •• 255), scalar 
B. (except for digital SLAR (0 •• 64,000)) ---

1 

<: Multispectral domain: 
With one elementary sample area on the ground , 
intensity values for many spectral bands may be 
related . We may order MS-data into MS vectors, with 
the ordered intensity value's perMS band as elements 
ii = (B1 ,B

2
, ••• BN) 

3 Spat ial domain 
Each sample (loosely called PIXEL=£icture ~ement) 
has a position vector, rela!ed to the centre of the 
pixel, associated with it, x, yetc . , ii(x) : Often •·1e 
will have to map a neighbourhood Nx of x into a new 
pixel at pos ition y : n(Nx) -+ C(y) 

4 Time domain 
As satellite data is inherently repetitive, time must 
be included in image processing. Time is treated as 
an extra dimension or as a parameter 

BG,tl : B(x,t1 J - B(x,t2J- c(x,t.t12 J 

MAPPING IN AND FROI4 INTENSITY DOMAIN 

Typically we only consider one MultiSpectral (MS)Band 
at a time say B. (x,t) md x,t or the other Bi-Bands do 
not i nfluence tfie mapping of e.g. 

Bi (x ,tl - ci (¥,. tl 
A spec ial case is the mapping of a simple Band B into 
colour (colour vector C=(CBLUE'CGREEN 'CRED) 

B(x,tl -- c(x,t) 

The nature of possible mappings is scalar -+ scalar 
and scalar -+ vector. Let us first look at ways to map 
scalar x -+ sc2lar y. We are used to functions like 
y = 1/x, y = x , y = VX , y = log x etc .; in fact we map 
x-. y(x) . The mapping is usually defined as y = f(x) 
but can equally well be defined by a Look-Up-Table(LUT) 
which stores for each possible x the corresponding y. 
In digital image processing the use of LUT's is 
possible because x is most often defined as an integer 
in the byte range ( 0 ~ x < 256) • Result y can be rounded 
or scaled and rounded of to the nearest integer , 
Depending on the number of consecutive mappings, y will 
be store~6in byte range or double byte range 
(0~ y<2 ) . 
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Example 1: y = 2x 

The corresponding LUT : y(x) has the following structure 
for x = 0 to 15 

Y
x =-- ~7o1 __ ~1~~2--~3~~4~~5~~6 ___ 7~~--~·~··~·~1~5~1 

. 2 4 8 16 32 64 , , o ' 1 • • 1 

Using LUT's isxa very efficient way of6map~ing. Instead 
of computing 2 for each of the say 10 pixels in a 
typical image file , x is used as the address for 
getting data y(x) stored in array y. 

Example 2 : y.=a.+b
1
x., radiometric correction . 

A linear radi3metrH! dorrection can be performed in two 
ways . Practicality of each method depends on the number 
of different sensors per spectral Band. 
In case of Landsat , each of the 6 sensors in a swath 
can have its own y.(x.) table , which needs not only 
contain a linear c3rr~ction but might as well include 
antilog decompression. 
In case of a CCD array we have too many sensors, we 
would need too many LUT's . It is more efficient to 
store the a. and b.'s in a table and perform the multi­
plication atld addit\ion with a special fast(integer) 
processor (e . g. 200 ns/correction) , --

Understanding mapping one band into colour assumes some 
knowledge of colour theory. 

COLOUR THEORY 

In the practice of colour t.v . screens and colour film 
writers like the Optronics C-4300, we only have to 
define the colour intensities or densities in three 
colours. Usually technical systems work with a RGB set 
(Red , Green, Blue). Instead of a 7(colours of the rain­
bow)dimensional 7-D space , we only have to worry about 
a 3-D RGB colour space, as shown in Fig. 1. By using 
LUT's for each colour or by using hybrid electronic 
antilog devices we can linearize the relation between 
digital R, G, B values and perceived intensities . 
Remember that most biological sensors have a logarith­
mic response _. theory of perception . 

FIG . 1 

RBG _ Colou r cube HSI _CoOrdinat es 

Fig.l . 3-D colour space,with base vectors RBG Red,Green, 
Blue on (0 ,2 55·) . In the colour cube 2 colour triangles 
.can be constructed, the RGB triangle and the CMY triangle. 
Transformation to polar co-ordinates gives HSI vectors 
('HUe ,Saturation , Intensity) ,I= R+G+B , S =!-normalised 
radial distance from the white point, H =angular pointer 
·to the spectral colour . 

A physiologically meaningful transform supported by 
colour t . v . practice is from RGB coordinates to HSI 
(Hue , Saturation, Intensity , 2 angles + 1 radius) 
coordinates. I = R + G + B and defines the diagonal 
plane in which the colour vector C = (R , G,B) is 
located , S: Saturation is the radial distance from the 
main diagonal to c, if S = 0 the colour is grey/white , 
if S = max then we have a maximum saturated colour; S 



is normalized ·by division by I, S/I-S is an angular 
measure. Hue is also an angular measure, it indicates 
the sort of colour (points to part of the rainbow) . 

Back to mapping intensity into colour . 
Example 3 : thermal false colour, given digitized ther- · 
mal values from Q! to 7 1 assign a colour to each thermal 
l evel (density slicing) . The following LUT will perform 
the trick. As an exercise trace the path of mapping the 
1-D line value ¢ to 7 on the 3-D colour cube. 

~GLUT: 

Bi ¢ 

c Red ¢ 
c Green ¢ 
c Blue 0 
Colour Bk 

1 2 3 4 5 6 7 

¢ ¢ ¢ 255 255 255 255 
0 255 255 255 ¢ ¢ 255 

255 255 0 ¢ 0 255 255 

Bl Cy Gr Yel Red Mg Wh 

Given a basic understanding of mapping and the use of 
LUT's it should be easy to understand the following 
mapping procedures in Intensity domain: 

Radiometric correction , range compression-decompression, 
log-antilog, gamma correction, linear stretch, linear 
compression , inverse , square, square root, scaling, 
density slicing with or without colour coding , film 
sensibi l ity corrections, mapping for linear perception, 
intensity to density mapping. 

A more or less special case is histogram egu.alisation/ 
entropy maximisation mapping. The aim of this mapping 
is to generate an output Y(X) with a flat frequency dis ­
tribution Py, maximising 

H = L Py 2log Py 
y 

which is a (poor) measure for total information content 
of a picture. It maximizes s urprise when looking only at 
one pixel at a time, forgetting the neighbour pixels. 

Examples of: histogram equalisation . 
An image of e . g . 107 points has a histogram on Band 1 = 
Bi as shown in Fig. 2. All data is in the range (0 ,63). 
The eye can only discern about 16 grey steps . Map (0,63) 
into (0,15) using the cumulative histogram of Fig . 2 . 

FI G. 2 

Freq. 
Cum. tr e q . ~--· 

50°/o 

10 20 30 40 50 50 70 
~e1 x 

Fig. 2. Histogram equalisation X_.Y(X) using a cumulat­
ive histogram on X. A division on Y(X) in 16 equal in­
tervals is mapped throughLf(X) into unequal intervals 
on X. A LUT is built up with constant Y(X) within the 
thus found intervals . 

The correct histogram equalisation table Y(X) is found 
by first mapping 16 "intensities" with an interval of 16 
through the cumulative histogram graph Fig . 2 into irre­
gular intervals on X. 
In applying X-+Y(X) X-intervals wi ll be small where Fre­
quency (X) Fx--Px is high . When Px i s low a larger in­
terval on X is needed before 1/16 of the total number of 
data points has accumulated. 
The output frequency distribution Fy wi ll consist of 
spikes at 0 , 15, 31 etc . with empty space in between . 
The spikes will have approximately the same height 
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( 100% I 16 ) . 

When using Histogram mapping, care must be 
taken to make sure the output histogram is constant 
in perception space . 

In ease no histogram is available one can assume a 
histogram e.g. Gaussian , log-Gaussian , Poisson etc. 
and use th~ corresponding cumulative distributions to 
map the desired output distribution into the input in­
tervals of the Y(X) LUT . 

In general man can always define a better intensity 
mapping for visual inspection than the crude maximum 
Entropy rule can provide. We use manual interval-on-X 
setting or define the mapping functions interactively 
with a graphic screen and X- Y table, trackbell or such . 

A rest- group of intensity mapping to be mentioned are: 
leve l s licing , bit slicing, sawtooth mapping, 
thresholding . 

Level slicing can be regarded as a very primitive way 
of classificatio~ (we map many--few states) . The most 
extreme case is mapping from many intensity levels in­
to 2 levels. Corresponding classes are: object and 
background. A binary valued image is produced. 

In Thermal Infrared image proc essing it could be de­
sirable to map radiation intensities into equivalent 
black body temperatures by use of Plank's law . In 
practice the I.R.sensor is calibrated with a black 
body source of known temperature and a Tbl (I) LUT can 
be contructed to map Intensity I-+Tblack . 

MULT ISPECTRAL DOMAIN MAPP I NG 

In multispectral domain each pixel is now associated 
with an ordered number of spectral bands Bi(x,t). With 
four MSS bands a 4-D space can be defined with 4-D 
vectors B = (B4,B5,B6,B7)T. Vectorfield B(x,t) can be 
transformed (mapped) in many different ways , This 
section will be limited to pixelwise tranformations 
R(x,t)-+C(x , t). Therefore we can omit parameters x and 
t in our discussion on MS-Domain mapping; a~c. 

Spectral Bands are the resul t of mapping the continues 
Energy-wavelength through a s et of filters into a 
serie~ of discrete values, one value for each filter. 
Figure 3 illustrates what happ ens. Each filt er is de­
fined by its transmission Ti ( )..) over a 1 imited wave-­
length interval. Given a spectrum B()..) the sum of the 
energy transmitted power through the fil ter is: 

Bi . = f 0

EJ,. . Ti1. .. d.A 
_oo.:. 

For a sampled spectrum over e.g. the wavelength inter­
val from_0.4 1um t~l.O{umwith d =60 nrn,E and Tih ~ orne 
vectors E(l) and Ti(l with each 600/60 = 10 elements . 
Rewriting our formula for Bi we get : 

tO 
1=1 Bi El. Til 

This is a vector "dot" or "in" product, Bi is a 
scalar , it can b~ interpreted as the seectral Correla­
tion of unknown E, with spectral mask Ti . 
Traditionally filters Ti have been designed on vague 
technical grounds , without a direct link with image 
processing. My proposal has been to design a set of 
filters such that Ti(A) coincides with the E(A) of 
globally occurring spectral c lasses like Water, Vege­
tation and Bare Soil . In this way class-probability 
coding wj ll already occur at sensor level . 
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Fig. 3. Filters Tl, T2 ,TJ map ~P~~clr~d _igr.atur, BlA) 
intu .3-D vector !i ~ 1Bl ,B 2 , B3) T. Sp .. : '!'.1 l fi llers can 
tH r !.:garde d as s t o r'Pd spec tr .~ wt:icr, are ct~!·re laltd ·,.;Lth 

i r,put . pectra B().). 

The pr ·Gbabilitie~ f o r other : lasses rh~:!r, iA' ::~ter , So jl 
a.11d V·.: g ,·~ta t.i on c ar. be rle r i•/ec:l f r om l i r·~; l r c.omh i r:at ions 
of Pw, Ps and Pv . Clas. probab il i~ _ es r~n De mapped 
i~ ~.~· L:o lour Rpace or t hrough a cl as~ i rier· int. u c l ass 
labt.~ls wh i ch in turn can be mar;p,.d t. ! ,rough a co l our 
LUT i ntn a colour code d cla~ s, fi 2a~i0n map. 

LINEAR TRANSFORMS 

Sl1if't, r tltati on, linear proj ect ion are : i r•ear t.r ans ­
forms in fe ature space (or m~n~u~·":' rn enf •. -pAr:~?) . Shift 
o f gxj s o r shift of .origir. i::-:~ imp llf. d ir: ?..r::dit i ve haze 
corrt ct ion. Th e haze {·r.;ntr i bu t ion in MS - vector B i -s-­
also " vectorial quantity R which is ;:,dded to signal 
s, 

ii S+H 

to get s we apply 

s 8-ii 

This essenti a lly me ans n. shirt:. uf ·o0 r'dir; atJ(' sy_,; ~e rn in 
meastu' e ment S [J ac e whjrh is SfH:>cially important in cen­
t ral projec tion rr. pping and mappir.g u:to a ngu lar coor­
d l na t e s y. terns. 

. ~ Pr·inc ipa l Compor1ents (PC l 1'ransf~rm iH a rota t i otl 
of th e measuremen t spac e ax is on axjs ,Jf mnxim um vari­
anc:f.~ or a co\ ari ance matr ix ~It < '-h~ M~5 domain of a sam­
yle• set uf MS pixel s . As sht1wr1 i11 Fig . 4 the new PX­
ax i [ c o incide with the mairl nx i s o f a11 ell i ~t i cal 

cluster . 

Fl G 4 

PC1 -

Fig. ~. Mapping a clu3ter froJn vec·tor bas e ~1,§2 o n 
vector base F.1,E2: Rotation. St. and F.2 are the ei gf?n­
vectors o f a c ovariance matrix define ci. on t:he cluste r 
i :1 Bl,B2. Afte r rotation the d3 t.a is rnpped t•, Princi ­
pal Somponents (PC) ax is. 

The b ox needed for packing th L' clu -· ':er i n 8-spac t. is 
bigger than the box needed <n PC- .par • A PC transfor­
r.Jation orders the dn.ta on vari ar .. ·e a.r1 ci has inherent 
"data compression " properti es or bet~er 11 da ta packing" 
pr.opert....i es. l!: ac h PC CL•mponent ro r."' esponds lo a PC pic­
ture. Starting with the PCl picture with higgest \tari ­
ance each suc cessive PC wl.l l have a 1' we r v ariance. 

R-... ~~ ill}ijl(' ( t .it ~ ll '.Yf·' :r. ay · I' I •.'ll l"OIIl ludc u,.tl ' · .' . 
th e 4 - D :· .· l :-j l (•~ LanJ,Ht l, Pl' J C!nd PCLl contain n•• tnt"cn~m a ­

tion which ls not alr eady includerl a11d v.·e ll f'xp r e~; ed in 
PC: 'in d PC2 . VBrian~e is ho· ... ·t:!··J ·~ r nev· ),~ E=ql~~vaJ. en-t ~,o..·ith 

infor matlon. It on l y r e lates t ·J ~ossible i nf<1 rrr.P.~_ i on 

s to ragP capacities . This sort, of findings b~ad h ; th,.., 
concepts Jf in tr insic dimens ion and f"e ature ex trac~ i ':ln . 

Our genera l finding !s that th~ refl ec tance spectra of 
natural mater i a l s c an C'Jmplet:e ly b e described w; t h .. : fJr 
3 referr':lc e spec lra vi z . the i:.tr in E"-i l dimensior, ' Jr dt> ­
g:.~ ee of f ree dom in re f l ec tion spectra is or 3. -­
The PC- transform can b 0 used as a defnul t. MS mapping for 
orderir.g the d a ta in featurp s pace and dim f.m ni o nall Ly 
redw;t ion, whi ch is essential fur undt.~ rstanding th~: n·J ­
i,ure of data and the J'Osition uf cLust.Prs. A PC - trans ­
f orm i s completely determi r;f' d by 1.h e c hcu·E of 1. h 1~ ~arr­

ple se t. Oil whi -:.: h the r·ov arianc e matrix lJi J i l D...:! comp1..:t c d. 

0(-Transfo rms are a succe·· sion cf ruta ~;ons 111 FS (FE!a ­
t ure Space} in wh i ch at ~ach ti m~-! the etx i . and t he 
amount of rota t ion a bout thR. t axi h as t.rJ be - peri fL-· d . 
lt c an be used in an intt.• ract_ i E: way a nd ~ns11n::. s t.he ur­
thogonal i ty of the fS C>xis . 

Lin ear Projec t ion, MS Correl at i on , HS Filters are dif­
ferent names for t he same ma:hem<'3 t.i cal t ri ck. Take a 
f i lter c, t .. =:orrelat i ·~n vec t-cr Fi for each ver t uc 8 i l l the 
fi.l <e: 

fi iU'i 

fi can he interpreted as a pr•J jf:~ctlr;.n of 8 q n Fi or a MS 
r_; urrel at.ion of B with a ~~har acteris ti : ec tur' Fi ''r as a 
digita l MS filter. In Mult i sp et' tra l Corre l ·>tinn Co l 'Ul' 

Coding Fig . 5 we f irst correlate eac h §with s torad sig­
nature s W,V,S and then map the result through a 1lour 
triangulari sat ion tr ansfo rm. The combined mapping is a 
lin e ar tra nsform: 

_C [R] f S4, '>5, S6 , ~7 1 
B = lW4,W5,W6,W71 
G V~,V5,1H,V7 j 

r ? -1 -ll r B~, 
-1 2 -11 1/ . 151 

[ -1 ?j . " 136 
- 1 l 8'7 

f!"'orn 4-D B vector to 3 -0 C vector in co lour :~ pii\.P. Thf' 
three 4-D a xi s o n wh i c h a ll dilra is proj ec ted a re 1: ot 

orthcgonal but fit we ll to the problem. 

w waar 

s Sa i l 

v Vt gttatiOI"' 

FIG 5 

PC2 

-~ 
I 

Fig. ~. MS Correlation C•J lour Coding , s hown in a PCl,PC" :' 
subspace . B is first correl a ted with S,V a nd W ",;Lored 
spectra .. , next t he da t a is trans f ormed to co l our axis 
using ~ = 1/3 (W+V+§I. ~ed = s-~ §I ue = W-~ Breen= V-~. 

So far r10 physi cs was involved in c,ur s~ l ection of m~~~ ­

ping procedures . However, s >me knowledge Jf outdoor 
phys i cs is useful. Sunarig le vari ati on , s hade and shodov.:s 
are usua l ly n ot featttr es of the class es or materi als we 
want tCl disr:rim inate hetween. A transforma tion which 
eliminat.~s illuminativn variat i ons is useful . 

T<iklng the ratios of 2 bands in case of 4 loands t>',,;s • c 
proo f of f eature s pace blindness, 12 d iffe rent rati 0~ 
are possible and the results ha<e to be in t .erpr·etPd a.· 
tan.P, f'tl~ :.; o f angl es on C:-D suUspaces of a 4-D C11be. 

A muc~ b~tter sulL:tior~ is t o ~orma lis e tl1e data on 
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1.- i t....=:t J , - ~_ f J ~·r ' •. ~. 1 "\• l 11 

f".J 

b' i ~ Bi/.La ~lil'i ~ l 

The corresponding feature . pOt": : ' n:a~~>ir. t_~ L -;: • . . wr; i :; 

Fig. 6. All data points are pruJe~-t·.-·d t.hru' 1·'rl ll! :1ri­
gin 0 into a diag0na l 1plan l:" r~.r.· - j. 11 1 J(_ , !t.' !l ( ar . 
o nly be used in the 3-n cA. v , i n gen• r - 1 r: HH f·J -D 
space th ':.· sum n orm tt ~ ar , :Jfi•rm -...- i 11 ~13.~· thf1 ·_Ll t·. a :n; :· 
N-1-Dim. subspace. We ret8 in IB L o, J n • r·· r . . . t :; unagc 
which i s u:'~ eful for t:)pol ogL ;;l t'~-:::aL LU't:~. , it g;,\ 8. 

strong 1eli t. f 1mp.ression in mnUJ tt . air:(~ l· 1~ · : ' r" '1'l 

Befort..; this ... nrl of mappi ng Uu·oq._h 'ht · ,~lgi. , ,. · 

tral ..e_rojt:.• ~ tion Hlt-"tppln ~;~; t h f- r it.;l1t .-; r .i~ltl :;h . ' 1. 

used by perfurmi ng t: ht~ l1az. E.· c.orr·_-r ti un : 
N 

8· (8-H )/ ~J (B i-Hi) 

otherwise t.he angl t:. impli e d i11 1?' .3.r•· i~·:fl·; •. r,r"•· :J b1 
a n arti fact !:ind are no1, r~·tJrt':S t!~~L t +, ) .,-'t~ fur :. :1 - ,1 ,t ....... 

fiG 

; · ~t(' l~r: eat ~r;_ .. Li. ~; . n·r:1 · u.·.td ir1 the pr· . .,, ~: .. .J ' ;J:tl iif-1.!' qH 

tJ Ul c .. d_;;_. ( t vi:."N~d as mappir;g i. h · B V(:>Ct(J I~ dctt"• i: . ' -, 
b~~t ,,f d ~ , Luwe, r'ro rn st rat g_!;t ;_i, .. 

~.- l;.;l~r ~ 7 ~h~~ ... -s h r' w prL'} ·c1l~,.: r: cn llj in-pn ·:.,r t ·_, ' · ·-11"' !' . 

e .. ~ nr 1 in·=~-;. '.J.J'c u~-::.,:· u f '1, PC.. hspa· - ~· a n. , ~ :'J rl\ll?mfm t 
. -/l spate f ·; f':-:dPlpJ e~~ . 1'!:e 1: ..... ' !. r. d , f Pl i E.'S ci· ::o:H: J · ~ 

~ ) ther f a!tJr~ r·aces ~s ~e~ ! . 

FoG 7 

PC 2 

PCl-·-

Fiv . '/ ~3~Jl. ~.~r-~:ti !.n in !ln~ ·n~ qnd q 1_ 1adra:..i c fun ~ ti :"l ~1s 

f0.r proh at•i.. l i.t:v ,::.~r .. oding . Project ..ic,n 0f Bi O t· ;1. 
· Qll i "~il c..,r. L 1.0 c a Jc: . .1L:. r.; n P- -Hv · distance fr ·)in i{i ·Lr) l 
·.:< · ... - ~,t :~.~r .. 1; a.ddi Vf- --l:; !""lst..u:: '. "Ul .t :·:Hi C ( ' " V: ;~ l~ n• "' c.ll: 

u :~Pd : l'-i ~ prr)habl ! .i ty rr.ea ·.- ure. L l l ip t~ .• can t'F' ·n·.tpp~·d 

inl_.o ·-~-::li...;~;~ir:- p :.:w:Jbab~ll L~· ~:: .. · . t · i~a~e·~. 

t ipur-p 1 ·. l~f+) r:-tapJ.H:·· Bi i -- 1 to c-) i nto n rP(j 'n l r •• i ty 

BS Nl •i c h ·,-,c c ea:.,e , towards S. l r; our cxampl ~ 

Sum Norm Vector_ Norm 

Fig. 6. ~-;urn-Norm (left) ana Vect •n -No nn (r·1 gh tJ . 
Nor·ming the data pro.iect.; a r lu ; '· ·'r of Ja':.3 !'rom J--D 
into a ?. -D subspace, which is a 11 p _l'lnl_. n 'i:t ca.se o f the 
Sum-Norm and a 11 Spherico.l surface" i r ·thi• ·as •.' ' .\f Vec:-
tor-Norm. Angular separ::J+ .. ion of dar. a vel: t· _)c B .-Jn~ 
not c hange. Vector length 181 only In af G·:L~d . 

Mark th~.~ close correspondence betwe•:!n t.he H~;r ·:o lour 
transform and the sum-norm t ransform. The only problc~m 
remains , dimension reduction. We u~~f.' n PC -trans f orm or 
a MS-correlation transform to map e.g. 10-banc! -: um­
norr.ted MS . data in t o a 2 -V Hue Etnd Saldr· :. i on pla11f: 
(diagonal plane in rolour cube). The sum "'an l.>f' mapped 
onto I or treated a~ a ::.epa1 ·atr~ bl ac k & wh l 1. t: r c• l ief 
overlay on rhe colour d.:J. ta. Fur-tner~ rnt ':i+_inn•., and 
st.retchc s in 3-D co l ·.J ur spd.c f> :_an be 11 ;~ d r_, ; .:.:! .~~lanee 

t.he im=lge pre ·~ entation. 

Vectur-Norm or Dil'ect ion--Cn=: .. .:!:.D.S: is a r:el:-3.tt'd t"c• ··hnil.JW2 

to sum-norm it is matllem3ticall ,v 'llore ·-leganl. ~J·,t. c:_M-­

putation a lly rr.ore invo l J ed. It lS als 'J n u t 1·1 '. h e S -i me 

direct mrin ner related with t he hSI c ... :l .._~.,tr c e:u rJ:na t t. 
system 

v 

fi 

as the sum--norm is. Definition: .:ec:t ~:.r l·,n ,t; th 

81 ~V/; 1 sL 2 

B/liil ; ii /V , Di ~ Bi / IBI 

All dat a points B are prujet_:- t- ·-.. d Lht'•Jugh th •_. '! ' i ~ ul f)n 
the surface of a spher('. A ~~---n ,-·lq~~Lt-! r will b1 ~ pro-+ 

jerted into a (N-1)-Dim. C' l ,_•-1 te r (";n t !"!P sphe: ' t' . 

I n Fig. 6 the angle bet.. ' en !Ji an J ii is J.i. R/ li:i/ !1a .. 
also th . meaning of n.. co~ in· ~ J. i. 1 s !.J S :. nlLy rall ~Hi a 
direrti on cosine. Li c-;s2;.j-;: J.. J.. J ,).~ hnJ B ar·e l-tJ 

polar coord inate equi v ::~ler. ~ comp -. ment • _,f B4, B5 and 
B6 in Fig. 6. 

T 
1. : ·~ 3 .8-z.s = 0 L' 2 11,1: n 

Heel ;:; ;] .8- ., ,t; , (' Hed )o./..• u l -- p Rf•d ·• 
:; 

T11c: read er '. 3.n a ::: i 1 y \.' ·r·i t t : H.1. 1· t ht: ill•:·a~ . Lr !' ·Jr h··d 1 ~; 
ydl. t~) pr0je•·ting BonD;-; 8nd ~ ~bt..r a ~·;g 2.·'3. S wi\l 

b e thf~ ..,..f,l. red pix~! in the St't . . lr~L1~· int; r:.t ,-· umpi~ · ~,, ;· ·}­
ldur rl.•th:d . ('l ,PC2 f·:> .• t:ure Rp1C: ~ . 

F'i gure 7 1 r· ight) sh·Jws 3.rl •:: x arr.pl e 'Jf the use ... f' · .. Fl'ldrn.-

1.i ·.: dif:L.ar. C(-?' fur ·+jrJns for p~·· '.)babllity co l ! Lr c· u dl.ng . 
El!.ipt..irni function~; Qs and Q\· are inl e racti"J f<y dPf:iJf 
r>.g. o n a graph i c s~· re(·n wi t.h a scatte=>r,grarn o f u·,. ::;·-lm- · 

pl e ~ el 0n PCl and F''..; .~ . Based OT! the c lu ::> len:;; in U1e 
: .-ca ttergram approximate-: >:." lli pse:..; are dJ'h.'""rt ur axi · Indi­
cat.ed for t.llose cla~· - es of lnt~rest. A pci 111. P 1'1 :·'=~.J. -· 
Lurl spa~A will have di'"':tcu1ce H .g. ds t o e lliJ: r , d·w· 
t· : · Q .• , et<:. Di~tClr.re ~-; ds, -jv ... tc . nr~ r:"!ar'P d i nt il t.. . g . 

i:;:.uss i. <)n pr•obabi l: .. ~ es Ps at t( ! Pv . Each P i s r'lHpp (•d in to 
:1. r· ulotlr inLt.:;llS:ity Y.Jht c h i_~, maxim um a-1, tile c"'ntl · ~"· <:1f Ut• 

E~llip ; fltltl decrea3· ~i; outw--,f·d. In CU!"' ·. Xf011 1Jl€ · r l ,:: • ? 

· ."' · Ps --- ~t-"'d ar;d P J·-Gl-~"f•n, •.whi c h lt.ad ~ 1 (• a quadr::ti •· 
3t•t" uf Pqni -- :cl0llr 1 ine , ¥:) t"h y,::>llo~· o r, tilf (; . : ) -! a­
g:(.• nH.J. Thc-• 1.t >'-'t"! princ iple is aprilc,JlJl." ~- .. , rn~---.r·' !. l1a1 

·:.ta~>se--, with any C' Z) lour fnr the cen+.:.r· ~ 1,[ t~it~ ('!~· t'~. 

;~ -Dirn~-::l"l3luflal LUf' s 

Proredur .:-~ Jik~" pro habilit."f C' 1.d UUI' (Od i r ~ -"l:.d :· ! ;1 ifi· 
< ~ - ttior, involve for each pi.x ~ l in the f'j l r.• , 4'> -tC.!r'H"' :t · 
f:qu at:ions, divis1on, subt-.ra1· t .. i')n and expu r.· < ntl~~i r-r . . 1: 
!__. : 1·:- or· .1 1-lem r:::an be r ·,~ du :; ed t "' a ; 1- D f· .':at •;re ~~p t ( .• ~ : t ~ · 

mu·. i1 :•.e r e e fficient t.o appl ·v· Lht:? !-rc =-f~ d u r ~ .. fi r._t. ' , -D 
J:ace ar.d ::tore the r· · ~:; ul t i.n a / -f• Lil T a1;1 mHp the dn.ta 

f'! 1r· 'hn'ugh the L1'1'. ln gen eral 

r· ( •'(' 1 , PC C' _: 

· ·· ~t h a c_...·n~ i n<J.• r · r ~ g( .. , nd · .. ' a!·ial.l•Y; ·.;f C l~'t - ~-D · l 'q,_·r-

w~ art ~_;t.i l l i~1 imag~ · prvce .-. -=- ing. If our ;? ---0 ~-, tt. u'~ l: 

. pa(c- is h'bme n•,•. d a.-;.· pcc'Jing t,,) S('ffiP d (" ·: i ~' i ''I1 r · ·l 1• , 1 

f r•w regi on~ wi l i l j ~:-- r''l1t. in lJ es L<.l i our uss iK.!.:-.,• 11t. - ~ -· nt ·t· 
JP l .. ~ :hrn;1in -:· f ~1tomr~t..ic- class ifi catiou. 
, ·},lo•lld p,__.~. U:"' t ·,Jurn.L":!.rv t; ,_t we Pr. imagt: r.•r c : : - ;c;ilt ~ .·t:d 

1 !;l t-i.:-:;l ~ ' ; '~ r ~• l la~ 3 i!:-~ ('atjor. at Jh-_u~. ~G ri1· .:n,1-.t' 

lours ._)r :· l."'J.:..,_.e, . 
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SPAT JA L 0(JMA lN MAP!' IN,; 

lr, spE:t tial domain mapping the pu !.dl. i.. .. Hl pn1:1t~·r /.. :r-. 
r:~:- , t~ iF:. i.r-.porta:' ana h~ !'e l.:lti<;:l ' < ·1. pix~ - 1 tu it.~· 

~ . eighbours becomes .i.nportn.n1. We :. eed d (iEf.LitioL of 
Ne ighbourl<c•o d. On ~- .. -rrar·g·:~ ar sample rc ;tt>-""":- r~ -Ll or 
N-8 r.e ighbourhoods are used, hexac :-Yla1 rn.s t •:·r .J £t,qve 
nice symmetric N-6. 

Nl 
N? x N3 

N4 

N-4 

Nl 
N4 
N6 

N2 
X 

N7 

N-f 

N3 Nl f i ~· 

N') iVJ X N4 

Ntl N? N7 

N-6 

Time in B(it,tl will not play a rol e as a f '' ature and 
will be omitted in the notation of this ·~ h-.r · •·•r 

Two major distinctions car, ~)e mad e j;, :;pd~_,;c:.:.l Domain 
ma;Jptng i Global, Integral Trans1orm.::; and Luc3L · ra .'~­
forms. 

Global, Integral trun~form~.; are e .C", Digital f<' -,;uri·:·r 
Transform (or Integral), Hadamard Trancforrr, -.:c.si,·e 
transform, Karhunen Loev e or PC t:-an ~ forrn e1 ... c . 

The main reaso n for the usf• of glvbal t.cans :c.r ms ~1re: 

availability, electrotechnic a l bra .i r:w::ts h1ng and ~ali ­

ness. Many peuple art.: condi tit.•ned 1·.o \.1-:irtk i r: ,,_:--ms ~J !" 

high, l ow and hand pass fi 1 ters and try to d'"sign l•ea ~: ­

tiful filters in frequen cy domain whict. give horr·ible 

( , p•t·t : .. , , ,, r ;l l• · Hll : ·pm ;ri - :-->( El r : . Th t• <~: . l .v pl :·nt ~ : i ld·· •'>;­
pl;\n~t. J ~ - ~ ~ !·, ,t· !.lu .. ~ . : r : •J •· :1! i ~• :Jc•·t!t. . t , ) tnt t ' ~HTr~ •!i;u r•·v 

wi ~h IMD li .. ~print <er ouLput ( 19fr'-h · ·due,. 

FIG . 

t r x 
I 

o- l1ne 1" 

NN L•n tnterpolol•on 

i'ig. R . Ke ;.unpl Lng o~~ L:::tndsat. raster "x 11 w:i th skew into 
:, r.w SQ11 :-1re raster "0''. rlear •:: st Neighbo ur maps the old 
''x" \~ on~ . aLr .• .: d ir, a :.~·x79 hox ct-nt.ered on 11 0 11 into "o". 
Linear· nterp.)la+:lO' · mn.p ~ "x" vn1L, t' S in a box of ll4x 
l !JSnf' vi ~ t 8 l.ri<J.ngul':lr we J gh t ~ ng f u nc. t l()Ti into ''o" . 

A!::i ~;howr. .in F ig. E. t.hert~ ar t=> two comoo nents in th(' map­
ping:addre"" ca l culat L m ;u .d iCJtensi t.y mappi ng. x--Y and 
6 ( Ni() -ll( Y) . 
Mappjq~ X - Y 1·; a s~.mple photogrammc t.ric problc~m. r:or 
b(NX\ ·•RIY ~ w" lllustrat:e NN-cl.,ar e st Neighbour and L. 

results in spat ial ~amain. INT. Linear interpolntion mapping. In NN-mapping a 57m 
x?~1 box, c enter • don Y ....:. ' 'o 11 has a weight = 1 ins ide ar,~ 

Examplt.:! J. : a linear Fouri e r transform on a line nf 51 . we ight "!":" 0 Otltside the h~Jx. For ea· ~ h r•ew "o" th~ box 
pixels maps a 512-D v-ector through a 512x51.::: complex fu:w t: lnn is r-uJtiplit~d with t.h•"! val'J•. -5 at 11 X". The di-
va1ued matrix (Fourier Kernel) :nt.o a 51..-::--D rc.. .nplex rM :nslons of the box ens_Ire that only nne "x" value will 
vector in frequency domain. This sort of mapping i:; b £· i.n each box . The one 11 X" vaiuP is mapped i.nto 11 0 11 po-
only useful .if it leads to feature extra (.; tion or dat.a :..> l t ion. I n Llra:·ar Interpolat~ian mapping the hvx Ls twice 
reduction. Ho· ..... ever, image feature~ are •1sually local a·:; high nr.d wide but t ,hf' weighting function is trtaru;:J-
featurcs, global transforms only mi x thing<> ·Jp. The l a r with value l i n the cer .tre and (il at the border" <> f 
only use for Fourier transforms in featurf extract ior. 
is i.n 8.pp l ying it to images with s ine or co "'.>i ne spa­
tia l v nriation£ i~ intensity. 

A general y ard-stick for the usefulnes • of global spa­
tial mappings is their possibility for feature extract_:: 
ion. Eigenfunc;t.ions of the spatial process shoulrl oe 
optimum in this sense but spatial features art· har·dly 
ever glnhal and usually local. 

Fast Fourier Transforms are often used fur fi l teri r,g. 
In some cases it may be faster- than the equi val. n t ~.­

gital ~~onvolution. Because F.F.T. is a 1natrix multi­
plit:at.i:..>n with many coeffi c if'n t s, c alcula~·. irns must be 
done with high (double or t r iplF ) preci s i ~ n f~nar i ng 
point processur:>. On thP other ha!Hl di g i t.al con· . . Jlu­
t i on c an bP done w.ith fas ter integer f. r c ··- · ~s~1 r ~ i tt1 
ex pee ted i mprov~ment in proce ~1 _; ing time ~ .h!~ ·.Jugl~ U te 
use of par·allel processing. F.F.T. has o i' ccUJ'S <. LJ,, 
same conceplual disadvantage s as the tr·aj1 t. : or. &l F·.;u­
ri. e r Transform. 

Local Transforms 

ThP in formation of a pixel and i t.; lu~al ne1ghbours i:=; 
transformed into a new pixel value rna;; be mapped in a 
different locatiun: 

A simple example ,>f this sort·. o f mappi"l~ is 
Exampl e 2 : resampling G.!'ld geometric c orr .;ct! on~•. 
Gi v en two Landsat MSS scanlines with sample d.istance 
in-scR.n .=. 5'/m, scanline 1 is No. E of t h e prf•v t •: us 
swath and scanl ine 2 is scanlin e 1 o f t"Le next" -wa t. L. 
In between swaths a 24m shift. or; cun-, due to Earth­
rotation. We want the data skew-~ : or-rt~ ~:ted ,1!id r · ·. Jll ­

pled to an BOrn square grid. (The i..andsat sample gr1d 

t.h c box. The si zr? ensurP:. that alway s two "x" pojnt-.s are 
mapped into " o '', The closest. " ;.:" has t h e highest weight. 

Wi t hou t saying so .,.;~ ha,Je us~d the :-oncept of digital 
cc1n elution . Althcugh two i~ages can be cottvolved we 
; ually will c;onvolve an ~:w1gc- wi t h convolution-opera­

.!_CJJ': a hox Neighbourhood with a Wf'ight for each point c•f 
t,he Neighbourhood . Spatial Correlation is equivalent 
with convolL:lion except for cases 0f asymmetric c•pera­
lors which sh<. ild be mirror rt='Vf?rsed in case of C( ;1vnlu­
t· i o rl . Con,rolution is also related t > operator-Algebra 
wh !ch i s app~ied en the: fi r·ld ,,f 'Y"tems analyses and 

p•· c i a lly in syc. :.<·m·3 whJ<:h are descrihPd by differential 
cguat i un s ·· r· Liifferer:··e equal ivns in digital comput.a·­
l i ons . 

Di r !'"c!~ (. ... II :"C-(1r,,~rat·lrS \1-.'hi c h are •>I muc h u · p Ln digi t al 
tmage process 1r1g at'c: 

-I 
D 

0 
0 

-l 

0 

(I 

-l 

G 
-4 

() 

d/dx 

r · ~a ;:'l i •:t ·:t \'f'cagt• , 

smco thii"1g oprr8 t Jl 

) gr a d-edge detP· t..:n· 
d/dy 

,, 
d'- _cL 

?-D Lap lace operator 
? dx ely 

. 
texture er.hPnce-
mc nt 

["10 .t useful imc-~P Cl ~ h~.tr~c•.'ment "f;l t f-"rs" can be cDn-
~~ t.r'•.ICt'::'d as C. 1 inf""· -•r , .. t,mhin<i+; ion o f D.X operators nr rt:=­
p P< Fl r.ed :-.t, lf lliie1 r~~o ~ s con · ·'JlJ r i c,n o f Dx opPralurs. 

of 57m by 79m is ridirulu:J in view of the iJOin t sprPf.l.c! A rnin1m jm -r-thogPn Bl et of ~:;patial c v:relat ion 11 \'P( ~-

t.) rS 11 i r1 N--'3 are: 
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' hl --! -1 ' h~ -} 
-1 ' h3 

·-1 
-1 

Earh pixel and it~. 3 Nei ghboun; ca; o be tr<ea~Pd as one 
new d l ia vee +.or. Mapping h¢-3 in L.11r s ar1e way )!,i v•: .-

l 

II 
-1 -1 

-1 - I 
1 . h1~ L ·-·al 4-Ll Htldard Transform 

-1 -] 

4-D dat.a Vel tors are r.!appe d in 11-D Hadar u_:Q d!Jma.i r, £~: 
tur~ space . This fPature spnC'e c::ul be used fclr LJrLher 
mapping. Local featur e 'J c an be C<HJpled through image 
syntax or b) iteration in a pyramid fashion us.i ng 1/4 
of the pjxels in eac h next iteration O!l the prev )ous 
h¢ map. 

The idea of Op,•rator Algebra cCin b· f'xten df'd t<l in­
clud e not on ly in-products within thP operator Neigh­
bourhood but also include logi~al functions and statr 
trans ition LUT 's. 

Ex amp I e 3 : The Game of 1.; fe. 
This game is played on a binary • aluod (0, lJ i mab<' 
I(X, t) wi',h N ~ 8. The nuw.ber of "1" '" i."Jcbourc; in N--B 
is first determined by •·on olution wi1: h: 

1 
0 " I(X,t )-•N(X,t) 

Log i "'·a1 mapping: 
; r r (X, t i 

if I (X, LJ 

Equivalent State 

It - ~I~ 
Nt = 0 

0 
0 

¢ a nd N ( l(, t J ~ J u,.,, 1( X, l tl I " I 

<. l s •' l(X,t+l ) • I) 

,.r1d N(X,tJ•2 or 3 tb•-•n l(X,t<l) 
e he l(X,t+lJ -' 0 

I.UT I ( t+1) LUT( It ,Nt) 

0 
1 
2 

Using the r:oncf!pt of a ~~ta t. e t.ran ~d~.ion LUT .i L L:..; very 

easy and ~lficient tG program all sorts of lcwal imag<' 
mappi ngs e.g. boundary findi ng, sc<>l~tonis ing regicn 
findin g etc. 

Local Histo gram mapping NX, N • 3x3 or N = 5x!1 is 
mapp eod into a h1stogram for each X, the rank ordet' i n 

the histogram is used as a cri teri Gn for the n e w ·aluc 
of the central pixel, e .g. 

B(NX)-+Ilist(NX)-C(l(J ~ modulus (Hist(NXi) . 

Can al s o be used jnterac t i ve ly e .g. for improvi ng Lo­
cal t Orts islency. 

Loc al Probabill ty Rel axa tion 

Tn the final · t.ages of an image proc t- ;sing prucedut·e 
we should have colour codPd clasc-. probabilities. So 
far we only have considered pro hab i liti t , derived from 
Multi s:->ec t ral features only . One s ho uld include se-: ond 
order s~atistics also. Some probabi lity vecrnrs a r e 
locally compat ib1e (mixed pixel s) F-ome ::Jr8 not. One 
soluLi o n to incrP.ase local conGis1 ency l s to change 
the probablli ty vector of each pixt:d ~ small amou:1 1 i 11 

each pass. The direction of the changeo is guided by a 
probabi 1 i ty consistency matrix. The pre c ess i s t ·ep cat­
ed un t il no improv e ment is achie~ed anymore . In that 
case the probability Vt! r: tors car, b . mapped into en l our 
domain . 

Deconv o lut.Lo~", image enhanc ement.. 

In many sensors smearing oi the J.mage c. ~cur· Cor r~n­
sons of optira] limitati•.)IIS , elec troni c bn.ndwidth ,>r 
plat f orm motion. The r esponse nf thP s _y ~· tpm to e. ~> a 
small light source on Uw ground (dt•! La f'uncLionl will 
not be lme non 7.ero va lue but " group nf v 1 >:eo; l ikP: 

; '4 
1 

" PRF 

The •Jrn t..>f [' •c ~nvcdution is t'J fiitd a n P~H : rator which 
tr;~::u:: .; for~ms 1 he Point He ;pnnf:: e Func l i r) n ( PHF l a •; ( .. l 0se <:1:3 

pos ihlr~ h ac k to t.h~" original ~dngl F pix" l vrtlu<~ ,:·.1 
(dPl La !' ..;:lf. I ]!.>I t l. 11· is ei:J.sy Lo pro '' "' that ~h~· rl• .·1 o n 'l•,­
lutior. nper·ator must have sr me r1ega-t . i•Jt· Ne!ghhourho• Jd 
v3 ! · rPF , Alway ~ co, n r,ro~i s e has t o be f J Ur!d bctwe(~n 

sharpTit!f ·..; ~ liPlta functi o n ' and "ring ing" rirplcs arour1d 
lhP c•'n: r·a.t value. 
Ae:'j r(.· ·;B.Jnp .l in0 with Nr~ nr i nterpolat, ic;.n invul es r;mooth­
ing we.~ ·n mbine t ~~~ operu t.. i ons : 

e e ·,rn ·:•tr lc al correct i .JII, resampl ing, lnterpolatiun and 
de(·on ··-· lut~on in to on ~! generalL-·ed "COJIV(,} uti o n 11 opera­
tor. 

De ,;~n q lt d .:! Of I c;,pera t L'rs and CJmparable operators like 
(~D -D o::.l pr'•Jduc e er <han, ·ed, mc,r· t:o brilliant and sharp 
image . . The t~ye-brair1 ' ystem 1 s n 't m ... H.:h bu t.hered hy the 
lr·~rlit . i, · l nally ~)rPdi,:L ed nojse Pnharl ·ement . 

'!'l•:MPOR/1 1. [) <Wf, IN W,Pl ' lNG 

Th f c l a ~; sicnJ err·1c in t hr~ procc·-- ~;ing ot' MT Mult..i1 <• mp t)­
r·al deltu i ·; t.o map R(X,t) and B(X,I+l ) into u,,. '' arne 
!'t"aturc s pa··· ~ and appl y '.ht:' lcl!'c.ll sr: i < .. nt i ric SIIf. r t..Jutin~: 

I ilJrar-y , 

A ~;irnplt • mnur•ingrtil \ t'\Y v f "trcdling r.n datn is e.g. 

fi;x,tJ- FilX, t +lJ-CIX,t+ll 

lhi ·~ ls t:hf..' [.H·nce~·~; • , ; ' t 'hUJJB<' delr~c!. i on which _j~:; il11f1tJ['\­
an t for mo n i. tor i11g pr<wesse:· which tH' L ~;uppu~ f:'d h ~ b.· ·· 
constan t. or shnw a predlrtnble rtl8.T! f.'.t ' . 

An improV £! mcn1 un this schema is pred i cUon-curr cc t icm 
mapping : 

Ii(x, t l-Pr(X,t+l J. 
Pr(X,t+11 - Ii(i(,t .+l ) -• C (X, t •IJ etc. 

This p r ~,c w :-; c-!"ln b ~~ rer( :at.ed e.g. t hr t.11Jgh thf' season. 

ltl case n predict.iot• f'r· r:nnnot bt: made wi t.h high l "tl <.Htg h 

acr·uraf''/ Pr takes tht ~ rorrn of a set or hypothesj, 
i]:-(X, l), e ach hyp,;lh esis leads to a prediction. l'r e dict­
iotL. are the1 1 compared ·· i th measurements and the hy pc)­
t_hf>se ·_ a r e updat~_Jd w.ith E"Xtra informat. i o n. This is th e 
proce_s of convtr·ging c vider1ce o r segtJerltia l dec i s i o n 
mak i rt .P., . Thr~ pre ::ess sh.:Juld be in tera~, t. i · f~ . 

81 x, t J -- Hy ( x, t l - Phy ( x, t + 1 J 
Ph _' (X' ti 1) - B [X ' t + 1 ) ... (' (X ' • + 1 ) 

CIX,tqJ--Hy(X,t+~J-Phy(X,t+2J .• ... .. etr . 

All til ·~. abn Je proee~, si ng takes plare in probat1ili ty d o ­
ma ir wh LC'h e H.11 be v i sual i~;ed in ro l o ur. 

( rl (t '; ll.l !rl' ~ '{Jd.Ce WP h:lVf.." !.c) lJ1ink in IPnns of c-lu ~;Ll"I ' ~i 

~?~ ill n year ly r;ycl•! for ·egel:at ion l' l;ls~;(· ,j]Jd 
i.itterit rg l.i !Jlt. f:Jr " con~tant. 11 classt?f; b e cn.usc of imf...i t•r ­
fect ra rJiometr.ic and g~urnet.r.ic corr·ert.ions . 

Ac .: 11 r a t < .. relative g e omf· t. r j c c orrect itJ n s using a ~ ''Phi :. t 1-
c:ated '.: l)nvvlution •-.:1 pernt..o:~ n1~ cubic c onvolut ir.Ju _i ~ a 
first :'"'\~Ql!irr:>mPni for rJpera-ti·Hlal USt' Of sah:·llitf' [{.S, 
dal'-1. 

St.arti r :;:~ with a f.f•nera~ con ..: ept, of i mag~-· pro.· p~:si ng a~: 
part- t•f a dt -!C iS"i(;Il making prot~edure. I ha"~ gi ven f'X ­
;unples on h o:-'W the math c mat.ic31 too l cC mapping js UR (' rJ 
to c·orlV ''C l: raw data ir:to colour c~odecl rl~ss - '1r state ­
probab 1 1-'- tic,_ . ~:pat i a I nc- ighhourhood mapri "i can bP used 
L.c1 imprc1';f: lo(.' ll c .. ansj~ Lenc.: of clas s pc0bability and 
1~·-~lp jn sp :J.! __ jnl 1mag'::' S(•gmenta ti•.Jn as pre-class i fi t..: n-

l ion. TIJ P m'.)S l in t:r.rr> :.; t i ng prob 1 Pms c: · .• ur wh , ~r,... W{' : J ~ ­

rlud·· t )l·-~ dy n .·-un ics of pro• ·{·· -. sL:. -: H; the t:~art. h' :-: tH' fa~: t • 

;1s a muvr.m<.•r, t of vec ·t() r s in~ feAture Rpi .. we. !Jsinr \h e 
l'<)tir'"P ~ Of' Ul' 1bahi 1 i t'y \ 0. ··· t.c'L; thP I; ·~ of predi r·t c•r-('('lr­

r•·("\(Jl' rnc~th ·,ch: ~~- indic:at.cd whid""J rr:u,.- i: ~\ · lttd(· hypCJ,h~:~·li : ; 
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buildjng and testing in a convprging · 1 ck-nc 4 iiif~ t .. t! od. 

In my view, more emphasis should ~ ·- · placed un the de­
cision preparaticn aspects of di[> '?,81 it·1ag• p~·orP si~1g 

and less on traditional map making. ln :~ear:hing and 
understanding ,the ~bncept of feature ,pace,; i · ·o•>ry im­
portant. 
More emphas i u Hhould be plL~L ed un ffi(l[l i -t,c•r ing aucJ forl'­
casting, with integration nf ctt10r t:naR~ (lata fiU('I1 as 
meteorological data, exis~i.ng to~10- a~ 1 u~t1 e r maps, 
statistic;al surveys, etc. 
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