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ABSTRACT

The paper consists of two major parts. In the first
part a top-down structured view is given in which
image processing is presented as part of a decision
making procedure. The importance of a wide view on
decision making and data preparation is stressed and
some examples are given of different application
fields with the same basic decision theory. The role
of Remote Sensing as a unifying concept is discussed.

The second part consists mainly of examples of
applying the concept of mapping to the intensity,
multispectral, spatial and temporal domains. For
human decision making, knowledge of visual perception
is important in mapping colour and pattern features
into the "brain domain'.

It is shown that image processing for automated
decision making and human decision making is
essentially the same. The human interpretor should
have more knowledge of elements of decision theory.
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INTRODUCTION

When asked to review a certain field, one is tempted
to do just that. One would have to catch up with a
year's unread literature, sort things and present
who's been writing what.

A disadvantage of review type of papers is that they
tend to direct one's attention backward. Another
problem specially found in the field of image
processing applied to remote sensing data is the huge
confusion in terminology, most of the review would
have to be spent on definition of terms. Many wheels
are reinvented but get different names. (Remote
sensing is a typical intellectual escape field).

As an alternative to a review paper, I will present

a ''view'" paper. My aim is to present digital image
processing as a mental tool kit which is to be used
for problem solving. In problem solving and invention
it is necessary to be+able to work with different
levels of abstraction of our '"problem world". It is
equally important to work with abstractions of digital
image processors. Present day computers are mostly
unsuitable for image processing. We should not let our
thinking be limited by Von Neumann machines.

My view will include more fields than are usually
understood to belong to DIGITAL IMAGE PROCESSING. In
the section with examples of current standard
processes I will stay within the more conventional
boundaries and even omit some of the more interesting
examples like the relation between Digital Image
Processing, Photogrammetry and Cartography.

DIGITAL IMAGE PROCESSING - WHAT IS IT?

Firstly we recognise that it is a complex combination
of methods and techniques applied to somthing which
is very hard to describe. Many views are possible and
to capture the complete picture, many angles of view
must be studied from a level of sufficient high
abstraction.

Abstraction is essential for understanding, it enables
us to see the common elements in apparently unrelated

fields. In order to communicate our abstractions we
need a common language, code, symbolism, formalism.
Two way's of abstract thinking can be discerned: the
formal logic way, which produces strings of causes and
effects, in the notation of an algebra of logic
entities and the pictorial, geometrical way of
thinking, the mental manipulation of 1Dy 2D and 3
Dimensional objects.

I prefer to think in the second way, to move and
transform "things'" in multidimensional spaces, because
it allows me to think multidimensional, I can handle
complex objects as a whole. When something has to be
proved formally or when a computer algorith has to be
defined, I go down to logic formalism and produce
essentially 1 dimensional strings of causes and effects
(with associated branchpoints of course).

Using this approach, it will be possible to explain
all ‘idea's in Digital Image Processing by the use of
pictures (2-D-projections). The corresponding
formalism is the formalism of mapping, vector algebra
on scalar- and vectorfields and some elements of
decision theory, pattern recognition, perception
theory and even some elements of physics.

"Digital Images', or rather digital representations of
images. A common characteristic of all '"Digital Images"
is that they are generated by spatial sampling of
spatial continues radiation fields. The measured
Intensity on Energy per sample area is digitised to
integer values.

The visual representation of one spatial sample area
is called a pixel (picture element).

In the monospectral case, our abstract view shows a
scalar field. In the multispectral case we "see' a
vector field. With repetitive image cover a time
component is introduced which can either be treated

as a parameter or as an extra dimension.

Take notice that through abstraction our view has
become tremendously wide. We can connect now the
processing of all sorts of scalar and vector fields
with image processing. Jist to give some examples:
digital terrain models — hill shading, the
differential equations of electrical-, temperature-
and density fields, the theory of membrane vibration,
optimum routing of transport, 2-D transforms and
filter theory, stereo terrain models, photogrammetry,
cartography, graphics (geo)databases, etc.

Digital Processing of images encompasses a wider field
even than Digital image processing. As already
indicated in its abstract form it includes the
processing of scalar and vector fields, however,
people like to make a distinction between processing
which results in '"normal' images with many greyscale
or colour levels and between classified image data
with few colours or symbols thematic mapping etc.

From an abstract point of view there is only a small
difference between image processing, pattern
recognition clustering and automatic classification.
The difference being: mapping from many — many states
(image processing) and mapping many — few states
(clustering, automatic classification).

The question from an educational point of view is:
can we place image processing and classification in a
common abstract framework and indicate possibly a
hierarchy of concepts?

A HIERARCHY OF CONCEPTS

If we want to evaluate idea's from literature or ifa
we want to give courses at application or academic
level we need a clear view on how different abstract
idea's are interrelated.
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DECISION MAKING

This is the most general concept. The final aim of our
activities is to be able to make decisions based on all
available data and knowledge.
DECISION MAKING ~ the ART of DECISION MAKING

~ the THEORY of DECISION MAKING

The ART of decimion makting is usually a component of
management and photointerpretation courses.

The THEORY of decision making is explicitly found in
Operations Research and Game Theory and is implicitly
found in Pattern Recognition, Artificial Intelligence
and Applied Statistics.

It is to be hoped that a closer relation between art
and theory will grow in future.

IMAGE PROCESSING

The theory and methods of MAPPING scalar- and
vectorfield data into representation domains which can
be discontinues:

AUTOMATIC CLASSIFICATION, CLUSTERING, REGION FINDING
or continues:

IMAGE ENHANCEMENT,

IMAGE SEGMENTATION

A parallel concept/process is segmentation of image

data fields into regions which have something in common.

This involves already some human. or algorithmic
decision.

IMAGE ENHANCEMENT

This is a very general term, which includes techniques
applicable to preparation for human- as well as
machine decision making. I would call the common
concept in both fields:

PROBABILITY CODING, LIKELYHOOD CODING

"class" probability can be coded in colour, in symbols
or purely numeric in a probability array. A practical
example of likelyhood coding is our method of
Multispectral Correlation Colour coding.

FEATURE EXTRACTION, FEATURE ENHANCEMENT

If we assume some knowledge with the user of the
system, he will be able to map the raw input data into
data which is much more specific and useful in the
decision making or likelyhood estimation phase of the
project, then would be possible with the raw data.
Feature extraction usually results in:

DATA REDUCTION and SIGNAL TO NOISE RATIO improvement.
Features can be SPECTRAL features or SPATIAL features
or a combination of both such as TEXTURAL features.
Characteristic changes of signals with time give
TEMPORAL features.

RADIOMETRIC~ and GEOMETRIC CORRECTIONS

In order to reduce this '"noise" component in the data
it has to be corrected. Sensor variation and
atmospheric influences necessitate RADIOMETRIC
corrections. Platform altitude variations and sensor
nonlinear scan require GEOMETRIC corrections, which
link digital image processing with PHOTOGRAMMETRY.

One keyword missing in the list of concepts is the
word REMOTE SENSING. The reason for this is that I
personally feel REMOTE SENSING is only a general
concept on the sensor side. Its main role in DIGITAL
IMAGE PROCESSING is to provide us with most of our
data (Landsat mainly at present). The question isthen:
isnt'it important to know the source of the data and
the details of the sensor system?

The answer of this question is: the provider of the
data should worry about correcting the data which he
supplies. The user should not have to worry about
low-level image processing often called PRE-PROCESSING
(However he should understand image processing well
enough to tell TELESPATIO why Nearest Neighbour

Geometric Correction is visually not acceptable on
vertical features, although the Root Mean Square
thinkers proclaim it a very reasonable method).

The only remaining connection between REMOTE SENSING
and IMAGE PROCESSING is in the domain of PHYSICS.

A working knowledge of Physics will guilde the Umer in
his selection of meaning full mapping ttransformmd from
all possible (spectral) mappings. I will illustrate
this in section with examples. .

CONCLUSIONS ON CONCEPTS

Privately thinking about the present situation in the
Processing of Remote Sensing data, I feel that we
should restructure our approach to research and
education in emphasising the combination of DECISION
MAKING and IMAGE PROCESSING. The link with REMOTE
SENSING is rather circumstantial. The links with GAME
THEORY, OPERATIONS RESEARCH, PATTERN RECOGNITION,
THEORY OF CELLULAR AUTOMATA, ARTIFICIAL INTELLIGENCE,
HUMAN PERCEPTION are more important, just to mention
a few.

EXAMPLES OF THE APPLICATION OF THE CONCEPT OF MAPPING
TO_CURRENT "STANDARD" IMAGE PROCESSING ALGORITHMS

First we need a (conventional) definition of our data
world then we will define four domains in and into
which mapping operations occur.

Single (spatial band) images are treated as scalar
fields.They allow mapping of-scalar —sscalar in the
intensity domain and mapping of a neighbourhood of
pixels into a new pixel (at a new location) in spatial
domain. Multispectral images introduce one extra
dimension. The ordered scalar values per individual
band form together a multispectral vector. All sorts
of mapping can be applied to such vector fields.

Time is the fourth variable and is related to e.g.
temporal changes in landuse, vegetation, temperature,
seastate etc,

Treating Multispectral data as vector fields is
allowed most of the time but one must be carefull not
to put apples and horses in the same vector.
Distinction must be made between measurements which
depend mainly on material properties (reflection) and
those that depend on a combination of material
properties and a state-variables like temperature

(— emission).

DEFINITION OF OUR DATA WORLD

As already indicated we will be mainly concerned with
Digital Image Processing as applied to Remote Sensing
data. We should not restrict application of Digital
Image Processing to Remote Sensing data only, such as
Multispectral Scanner (MSS) data, Thermal scanner

(THS) data, Digital Side Looking Airborne Radar

(dSLAR) data, but Graphics (Cartographic data), digital
terrain models and other geo-data bases belong also to
the 'problem-world" of digital image processing.

Why include graphics in image processing?

It is difficult to deny that in graphics we also work
with "images'" the only special thing about graphics

is data representation. In the old times when computer
storage was expensive, images were first compressed
into linc images, which were furlher compressed into
line-strings (with attributes). Nowadays with the
availability of colour raster-scan graphic systems
with high resolution (e.g. 4096 x 4096) the distinction
between computer graphics and image processing
disappears. Computer graphics is rediscovering most
existing image processing algorithms. A general view
must include all sorts of data which canbe represented
on a grid, even if intermediate storage is in string
format.
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PROBLEM DEFINITION

In general we want to map available digital data into
a presentation which is optimal for a certain group of
users.

Digital input has often many possible states, which are
not all relevant to the users definition of information.:
Mapping will mostly be from many states to fewerstates.
Two different aims can be discerned -

al to present all available data in such a way to the
human eye-brain combination that he can use his
unique capabilities to classify the image (photo
interpretation)

a2 to present the data in a computer classified form,
with main emphasis on the statistics of the

resulting data.

We will concentrate our examples on processing the
data for human decision making, but it must be
understood that the same processing concepts are used
in preparing the data for automatic classification.

FOUR DOMAINS

If we agree that digital image processing is just a
matter of mapping input into some output presentation
we only have to define the domains and the mapping
rules.

First the domains

1 Intensity domain, usually a range of integer numbers
which have a one-fo-one relation with Remotely Sensed
intensities in some part of the E.m. spectrum. Most
data is available in the byte range (@..255), scalar
Bi(except for digital SLAR (¢..64.¢9@))

2 Multispectral domain:

With one elementary sample area on the ground,
intensity values for many spectral bands may be
related. We may order MS-data into MS vectors, with
the ordered intensity value's per MS band as elements
B = (Bl,B?, i .BN)

3 Spatial domain
Each sample (loosely called PIXEL=picture glement)

has a position vector, related to the centre of the

pixel, associated with it, x, ¥ etc., B(X). Often we
will have to map a neighbourhood Nx of x into a new

pixel at position y : B(Nx) — CT(y)

Time domain

As satellite data is inherently repetitive, time must
be included in image processing. Time is treated as
an extra dimension or as a parameter

B(x,t) @ B(x,t;) - Bx,t,)—> Clx.at,,)

MAPPING IN AND FROM INTENSITY DOMAIN

Typically we only consider_one MultiSpectral (MS)Band
at a time say B, (xX,t) and x,t or the other Bi—Bands do
not influence the mapping of e.g.

Bi(x,t) — Ci(f,#) . *
A special case is the mapping of a simple Band B into
colour (colour vector C=(C c Cor)

e e BLUE’ EEN’
B(X,t) — C(X,t) HhENN" D

The nature of possible mappings is scalar — scalar

and scalar — vector. Let us first look at ways to map
scalar x — scglar y. We are used to functions like
y=1/x, y =x", y = VX, y = log x etc.; in fact we map
x — y(x). The mapping is usually defined as y = f(x)
but can equally well be defined by a Look-Up-Table(LUT)
which stores for each possible x the corresponding y.
In digital image processing the use of LUT's is
possible because x is most often defined as an integer
in the byte range (0¢ x <256). Result y can be rounded
or scaled and rounded of to the nearest integer.
Depending on the number of consecutive mappings, y will
be storegsin byte range or double byte range
(ogyg2™)
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Example 1: y = 2°
The corresponding LUT: y(x) has the following structure
for x = @ to 15

x=[0 1 2
y=|1 2 4

Using LUT's isxa very efficient way ofsmapping. Instead
of computing 2" for each of the say 10 pixels in a
typical image file, x is used as the address for
getting data y(x) stored in array y.

3 4 5 6 d .
8 16 32 64 s

eeos 15|

cetrssed

X

Example 2 : y.=a,+b.x., radiometric correction.

A linear radigme%rig gorrection can be performed in two
ways. Practicality of each method depends on the number
of different sensors per spectral Band.

In case of Landsat, each of the 6 sensors in a swath
can have its own y.(x.) table, which needs not only
contain a linear cgrréction but might as well include
antilog decompression.

In case of a CCD array we have too many sensors, we
would need too many LUT's. It is more efficient to
store the a, and b,'s in a table and perform the multi-
plication ald addition with a special fast(integer)
processor (e.g. 200 ns/correction).

Understanding mapping one band into colour assumes some
knowledge of colour theory.

COLOUR_THEORY

In the practice of colour t.v. screens and colour film
writers like the Optronics C-4300, we only have to
define the colour intensities or densities in three
colours. Usually technical systems work with a RGB set
(Red, Green, Blue). Instead of a 7(colours of the rain-
bow)dimensional 7-D space, we only have to worry about
a 3-D RGB colour space, as shown in Fig. 1. By using
LUT's for each colour or by using hybrid electronic
antilog devices we can linearize the relation between
digital R, G, B values and perceived intensities.
Remember that most biological sensors have a logarith-
mic response — theory of perception.

FIG.1
-
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Fig.l. 3-D colour space,with base vectors RBG Red,Green,
Blue on (0,255).In the colour cube 2 colour triangles
can be constructed,the RGB triangle and the CMY triangle.
Transformation to polar co-ordinates gives HSI vectors
(Hue,Saturation,Intensity),I = R+G+B, S =I-normalised
radial distance from the white point, H =angular pointer
to the spectral colour.

A physiologically meaningful transform supported by
colour t.v. practice is from RGB coordinates to HSI
(Hue, Saturation, Intensity, 2 angles + 1 radius)
coordinates. I = R + G + B and defines the diagonal
plane in which the colour vector C = (R,G,B) is
located, S: Saturation is the radial distance from the
main diagonal to C, if S = @ the colour is grey/white,
if S = max then we have a maximum saturated colour; S



is normalized by division by I, S/I—S is an angular
measure. Hue is also an angular measure, it indicates
the sort of colour (points to part of the rainbow).

Back to mapping intensity into colour.
Example 3: thermal false colour, given digitized ther-
mal values from ¥ to 7, assign a colour to each thermal
level (density slicing). The following LUT will perform
the trick. As an exercise trace the path of mapping the
1-D line value @ to 7 on the 3-D colour cube.

Bi CLUT:

Bi [} 1 2 3 4 5 S} 2

C Red [/} @ @ @ 255 255 255 255
C Green @ ¢ 255 255 255 @ @ 255
CBlue @ 255 255 @ [4] ¢ 255 255

Colour Bk Bl Cy Gr Yel Red Mg Wh

Given a basic understanding of mapping and the use of
LUT's it should be easy to understand the following
mapping procedures in Intensity domain:

Radiometric correction, range compression-decompression,
log-antilog, gamma correction, linear stretch, linear
compression, inverse, square, square root, scaling,
density slicing with or without colour coding, film
sensibility corrections, mapping for linear perception,
intensity to density mapping.

A more or less special case is histogram equalisation/

(100% / 16).

When using Histogram mapping, care must be
taken to make sure the output histogram is constant

in perception space.

In ease no histogram is available one can assume &a
histogram e.g. Gaussion, log-Gaussion, Poisson etc.
and use the corresponding cumulative distributions to
map the desired output distribution into the input in-
tervals of the Y(X) LUT.

In general man can always define a better intensity
mapping for visual inspection than the crude maximum
Entropy rule can provide. We use manual interval-on-X
setting or define the mapping functions interactively
with a graphic screen and X-Y table, trackbell or such.

A rest—group of intensity mapping to be mentioned are:
level slicing, bit slicing, sawtooth mapping,
thresholding.

Level slicing can be regarded as a very primitive way
of classification (we map many—few states). The most
extreme case is mapping from many intensity levels in-
to 2 levels. Corresponding classes are: object and
background. A binary valued image is produced.

In Thermal Infrared image processing it could be de-
sirable to map radiation intensities into equivalent
black body temperatures by use of Plank's law. In

entropy maximisation mapping. The aim of this mapping
is to generate an output Y(X) with a flat frequency dis-
tribution Py, maximising

g2
Y

Py 2log Py

which is a (poor) measure for total information content
of a picture. It maximizes surprise when looking only at
one pixel at a time, forgetting the neighbour pixels.

Examples of: histogram equalisation.

An image of e.g. 107 points has a histogram on Band 1 =
Bi as shown in Fig. 2. All data is in the range (0,63).
The eye can only discern about 16 grey steps. Map (0,63)
into (0,15) using the cumulative histogram of Fig. 2.

FIG. 2

vm)t T

2551
2231
191
1591
1271
951
631
32

Freq, ———
Cum.freq.----

50%

0%

Fig. 2. Histogram equalisation X—=Y(X) using a cumulat-
ive histogram on X. A division on Y(X) in 16 equal in-
tervals is mapped through Xf(X) into unequal intervals
on X. A LUT is built up with constant Y(X) within the
thus found intervals.

The correct histogram equalisation table Y(X) is found
by first mapping 16 "intensities'" with an interval of 16
through the cumulative histogram graph Fig. 2 into irre-
gular intervals on X.

In applying X—=Y(X) X-intervals will be small where Fre-
quency (X) Fx—=Px is high. When Px is low a larger in-
terval on X is needed before 1/16 of the total number of
data points has accumulated.

The output frequency distribution Fy will consist of
spikes at 0, 15, 31 etc. with empty space in between.
The spikes will have approximately the same height
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practice the I.R.sensor is calibrated with a black
body source of known temperature and a Tbl (I) LUT can
be contructed to map Intensity I—Tblack.

MULTISPECTRAL DOMAIN MAPPING

In multispectral domain each pixel is now associated
with an ordered number of spectral bands Bi(x,t). With
four MSS bands a 4-D space can be defined with 4-D
vectors B = (B4,B5,B6,B7)T. Vectorfield B(x,t) can be
transformed (mapped) in many different ways, This
section will be limited to pixelwise tranformations

B(x,t)—=C(x,t). Therefore we can omit parameters x and

t in our discussion on MS-Domain mapping; B—C.

Spectral Bands are the result of mapping the continues
Energy-wavelength through a set of filters into a
series of discrete values, one value for each filter.
Figure 3 illustrates what happens. Each filter is de-
fined by its transmission Ti()) over a limited wave-
length interval. Given a spectrum B(1) the sum of the
energy transmitted power through the filter is:

' 00
Bi =J’ EA.Tid .dA
< ao:

For a sampled spectrum over e.g. the wavelength inter-
val from 0.4/um tol.0,umwith d =60 nm,E and Tib:come
vectors E(1)"and Ti(l/ with each 600/60 = 10 elements.
Rewriting our formula for Bi we getl:

10

Bi = &

121 E1.Til

This is a vector "dot" or "in" product, Bi is a
scalar, it can be interpreted as the Spectral Correla-
tion of unknown E, with spectral mask Ti.
Traditionally filters Ti have been designed on vague
technical grounds, without a direct link with image
processing. My proposal has been to design a set of
filters such that Ti(A) coincides with the E(L) of
globally occurring spectral classes like Water, Vege-
tation and Bare Soil. In this way class—probability
coding will already occur at sensor level.




Fig.

The prcbabilities

Bv visual inspectiocn we may Cten cone lude Lhat ool o
the 4-D ~asc of Landsat, PC3 and P34 contain ne informa-
tion which is not already incliuded and well expres-ea in
POl and PC2. Varian:e is howev.r never eguivalent with
information. It only relates to possible information
storage capacities. This sort of findings lead tc the
concepts »f intrinsic dimension and feature extraction.
Our general finding is that the reflectance spectra of
natural materials can completely be described with .2 or
3 reference spectra viz. the intrinsic dimension or de-
gree of freedom in reflection spectra is or 3. B

Bl

3. Filters T1,TZ2,T3 map spzclral
intuv 3-D vector B = (B1,B2,B3)T. Sp..tr.l filters can
b. regarded as stored spectra which are correlatedwith
input cpectra B(}1).

cigrieturs

for other ¢ lasses rthen Water, Soil

and Vegetation can be derived from lirear combhinations

of Pw,

into

Ps and Pv. Clas-
colour space or through a classilier

preobabilit.es can be mapped
into class

labels which in turn can be mapped tlirough a colour
LUT into a colour coded cla=sifica*ion map.

LINEAK TRANGFORMS

Shift,
forms in feature space (or measurement .pace),

lirear trans-—
Shift

rotation, linear projeclion arc

of axis or shift of .origir is implied i additive haze

corrcction. The haze contribution in M3-vector B is
also a vectorial quantity H which is added to signal
5, o
= S+H
to get S we apply
5 = B-H
This essentially means a shil%t of -oordinate system in

measurement space which is specially important in cen-

tral

projection mapping and mapping ii:to angular coor-

dinate sy. tems.

The

Principal Componentis

(PC) Transform is a rotation

of
ance

the measurement space axis on axis of maximum vari-

of a covariance matrix on the M5 domzin of a sam—

vle set of MS pixels. As shown in Fig. 4 the new PX-

axis

coincide with the main axis of an eiliptical

cluster.

¥

Fig.

vector base E1,E2 Rotation.
vectors
in Bl,B2.

PCY —=

4, Mapping a cluster from vector base Bi,B2 on
and B2 are the eigen-—
of a covariance matrix defin=d on the cluster
After rotation the data is mapped to Princi-

pal Components (PC) axis.

The box needed for packing the cluster in B-spac
bigger than the box needed in PC- pac .

is
A PC transfor-

mation orders the data on variance and has inherent

"data compression" properties or better 'data packing"

properties.

Each PC component rorresponds to a PC pic-

ture. Starting with the PCl picture with biggest vari-
ance each successive PC will have a lrwer variance.

The PC-transform can be used as a defauit MS mapping for
ordering the data in featur» space and dimen<ionality
reduction, which is essential for understanding the na-
fure of data and the position ot clusters. A PC-trans-
form is completely defermined by the chc:ice of the sam-
ple set on which the rovariance matrix wiil be compu?tf

X ~Transforms are a succession of rotations 1n FS (FPea-
ture Space) in which at each time the axi and the
amount of rotation about that axi . has to be rpecificd.
It can be used in an interacti ¢ way and «nsures the
thogonality of the FS axis.

{17 S

Linear Projection, MS Correlation, MS Filters are dif-
ferent names for the same mathematical trick. Take a

filter or correlatisn veatcr Fi for each vector B in the
file:

fi = B.Fi

fi can be interpreted as a projecticn of B on Fi or a MS
correlation of B with a characleristic vector Fi or as a
digital MS filter. In Multispectral Correlation Colour

Coding Fig. 5 we first correlate each B with stored sig-
natures W,V,5 and then map the result through a -.»lour
triangularisation transform. The combined mapping is a

linear transform:

.

_[R]  [sass.s6,57) [ 2 -1 1) fﬂ

C=|B| = jwaws,we,w7) ' -1 2 -1lase| 2
G Va,v5,v6,v7] { -1 -1 JJ

E

from 4-D B vector to 3-D C vector in colour space. The
three 4-D axis on which all data is projected are not
orthcgonal but fit well to the prcblem.

FIG.5
W _Water t s
_ ° PC2 !
S Soil ;
¥ Vegetation _ |
1 J
Red I
Blue \\\\ j
-

—
PC2
Green

Fig. 5. MS Correlation Colour Coding, shown in a PCLl,PC.
subspace., B is first correlated with §,V and W "slored
spectra', next the data is transformed to colour axis

using Z = 1/3 (W+V+S). Red = S-Z Blue =

W-Z Green = V-7.

So far no physics was invoelved in our selection of map-
ping procedures. However, some knowledge of outdoor
physics is useful. Sunangle variation, shade and shadows
are usually not features of the classes or materials we
want to discriminate between. A transformation which
eliminates illumination variations is useful.

Taking the ratios of 2 bands in case of 4 bands M3S i«
proof of feature space blindness, 12 differernt ratics
are possible and the results have to be interpreted a:
tangen! s of angles on 2~D subspaces of a 4-D cube.

A much better solution is tc normalise the data on
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which is useful for topologiial tfealurces, it givo a y
strong relicf impression in mowdtaincu terrain, "y S Reg
= PC2 ‘\ g max
85 .
Before this sort of mappiang throusgh the . rigin of cen- < \ i 9
tral proje-tion mappings the right origu shoeto o e X, /‘\5,_ “
used by performing the haze corre-tion: LN b
_ N ‘-21 %
B = (B-M)/2, (Bi-Hi) ‘ \\g .
1=] 5 N N \\\
s i R N ¥ N
otherwise the angle. implied in 2 are jnflaonced by Red: g
an artifact and are not representative For e data, PC1 —
FIG 6
136 FPig. 7. Subk titation in linear and qeadratic fun tions

for probability encoding. Projection of Bi cn n 15
squivalenl Lo calculuting the distance from Bi Lo |
sxeept Tor oL addive constan' . "Distance” too a2 Line can
Booused as 4 provability measure. Cilip e can bte mupped
into saus L gstipates.

sian orobabilit

Figure 7 (left) mappe” Bi i-1 Lo % into a red ‘nteo ity
which "noerease, towards S. In our cxampl=

B-".8 il Red >y elre Red =

o

The reader can casily verify thar the measurs rar kKed is
Sum Norm vector _Norm ptal to projesting B on ns and subtra g 2.8. 8 will
be the rnret red pixel in the set. Im
lour roded (7'1,PC2 festure space.

ine a compiete ooe

Fig. 6. sum-Norm (left) and Vector-Norm (right).
Nerming the data projects a cluiler of data from 3-D
into a 2-D subspace, which is a "plane” in case of the 3 : 2 .
= ﬁ & = }3 y = e . Figure 7 !right) shows an example of the use (f guadra-
Sum-Norm and a "spherical surface" ir the caso of Vec- ) . R & s 5
. -l s 1.ic distarce furctions for probability coliwur cuding.
tor-Norm. Angular separation of dara vectasr: B does S y = « i ot AR s
Elliptical functions Qs and Qv are interactively defiarA

not change. Vector length | Bl only is aftected, ) . < :

e.g. on a graphic screen with a scattergram of th. zam-
ple #el on PCl and FCZ. Based on the clusters in iLhe
neatlergram approximate <llipses are drawn or axi- 1ndi-
cated for those clas=es of interest. A pcint, P 11 fea-
Lure space will have distance e.g. ds to ellip. O , dv
Qv, etc. Distanres ds, dv etc. are mapped into c.g.
Gaussion probabilities Ps andg Py, Each P ig mapped into
a colour intensity which is maximum al the cantie of th
ellip 3 and decreases outward. In cur oxenple [17.

Mark the close correspondence between the HSI ~olour
transform and the sum-norm transform. The only problcm
remains,dimension reduction. We use a PC-transform or
a MS-correlation transform to map e.g. 10-band <um-—
normed MS data into a 2-D Hue and Satur-zion plane
(diagonal plane in colour cube). The sum car be mapped
onto I or treated as a separate black & white relief
overlay on the colour data. Further rotation. and

. .f. Ps-=Red and Pv-+Green, which leads 'o a quadratie
stretches in 3-D colwur space can be usad to -nhance . 4 o % o S
e — set of eguni-colour lines, with yellow on the (3,1 2

the image presentation. i A % - ;
g¢ pres genal. The at e principle is appiicabls !> more tha; 2

~lasses, with any colour for the centr s f the clar es.

Vector=Norm or Direction-Cosine is a related technique
to sum-norm it is mathematically more ~leganl but coim-
putationally more involved. It 1s also not 1 (he sume

#=Dimensional LUT's

direct manner related with the KSI[ coleour ceordinate Procedurss like probability colour coding and olas 2iFfi-
system as the sum—-r‘or‘m is, Definition: vectorlength cation involve for each pixil in the file, guadratic
equations, division, subtraction and expor-untiaticr, 1§
V = \/Z El Licz problem can be reduced to a 2-D feature spi oo, b
mu.ih more efficient to applyv the trecedure first ¢ D
D =B/|Bl = B/vV, Di = Bi/IBl = <o Ad pace ard :tore the result in a 2-D LUT and map the data
{file threough the LUT. In general
All data points B are projectsd through the origin on B r -
the surface of a sphere. A N-N cluster will be pro- r (F¢1,pc2) =0 = (R.G,B; L%
jected into a (N-1)-Dim. clu:ter on the sphe:r
In Fig. 6 the angle betw:en Bi and B is 2i. B/ Bl na. with a cont inue 0 range and variation
also the meaning of a.cocin: A1 18 usually called a we are still in image processing. I
direction cosine, 2i cos22i = 1. Ad,AB and B oare th ipace is sogmented ascording to some .
polar coordinate equivalent component: of B4, B5 and few regions with discontinues colour assighment we are

B6 in Fig. 6. in tie domain of antomatic classification.
i would put the boundary between image proccossing aed
rultispeclrsl classif ,
lours wr ¢las.es.

cation at about 16 dirorere co-
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SPATIAL DOMAIN MAPPING

In spatial domain mapping the posilion pornier x in
F/7,t) is importar’ ana he relation ot a pixel o its
reighbours becomes important. We reed & defl.uition of
Meighbourhcod. On roctapgilar sample réstecs -4 or
N-8 rneighbourhoods are used, hexagonal raster. have
nice symmetric N-6.

N1 N1 N2 N3 N1 17
Ne x N3 N4 x NS N3 x N4

N4 N6 N7 N8 N5 N7

N-4 N-£ N-6

Time t in B(X,t) will not play a role as a feature and
will be omitted in the nctation of this chupis=r,

Two major distinctions can be made i Gpal.al Domain
mapping; Global, Integral Transiorms and Lucal tra.s-
forms.

Global, Integral transforms are e.c. Digital Fourier
Transform (or Ilntegral), Hadamard Transform, cousire
transform, Karhunen Loéve or PC transform evc.

The main reason for the use of global transfcrms are:
availability, electrotechnical brainwashing and laczi-
ness. Many people arc conditioned o think in leoms of
high, low and band pass filters and try to design beau-
tiful filters in frequency domain which give horrible
results in spatial domain.

Example 1 a linear Fourier transform on a line of 51.
pixels maps a 512-D vector through a 512x51Z complex
vairued matrix (Fourier Kernel!} into a 51.-D ccaplex
vector in frequency domain. This sort of mapping i:
only useful if it leads to feature extraction or data
reduction. However, image features are usually local
features, globhal transforms only mix thing= up. The
only use for Fourier transforms in feature exftraction
is in applying it to images with sine or cosine spa-
tial variations in intensity.

A general yard-stick for the usefulness of global spa-
tial mappings is their possibility for feature extract-
ion. Eigenfunctions of the spatial process should pe
optimum in this sense¢ but spatial features are hardly
ever global and usually local.

Fast Fourier Transforms are often used for filterinug.
In some cases it may be faster than the equival nt di-
gital convolution. Because F.F.T. is a matrix mult:i-
plication with many coefficients, calculaticns must be
done with high (double or triple) precision floaring
point processors. On the other hand digital conuolu-
tion can be done with faster integer pro - with
expected improvement in processing time through the
use of parallel processing. F.F.T. has of ccurs. the
same conceptual disadvantages as the traditioral Fuu-
rier Transform.

sor

Local Transforms

The information of a pixel and i1ts loral neighbours is
transformed into a new pixel value maybe mapped in a
different location:

B(N®)-—D(%)

A simple example of this sort of mapping is

Example 2 resampling and geometric corrsctions.
Given two Landsat MSS scanlines with sample distance
in-scan = 57m, scanline 1 is No. € of the previcus
swath and scanline 2 is scanline 1 of ftlhe next =wath,
In between swaths a 24m shift occurs due to Earth-
rotation. We want the data skew-corrected and r «.m-
pled to an 80m square grid. (The Landsat sample grad
of 57m by 79m is ridiculus in view ot the point spread

Cinet v of aboul §um in-scan, Yhe only plansible eox-
planaticsn fer whe L5079 ealio seems Lo ome compl iaaee
with IMB li.eprinter output (196"-i¢ ~ duc™
FiG. 8

| ipaiaiiata 40 / I B T

| ' | !

| é) | | ®.6F ©.3) | f “

| | x O | s, | © x ® x line 6

I | ! |

. . [ _J

| r - |

! | | 2.9 @ |

| 1 i N | | . "

=0 | X o X XO=————% o X ® x Line 1

1
| ! | )
p— [ I

I

in Interpolation

vig. 8. ke ampling of Landsat raster "x'" with skew into

new sguare raster '"o". learcst Neighbour maps the old
"x'" conlained in a §7x79 hox centered on "o into "o'".
Linear interpolatior maps "x'" values in a box of 1l4x

158 via a lriangular weighting function into "o".

As shown in ['ig., £ there are two components in the map-
pingtaddress calculation ard intensity mapping. X-+Y and
B(NX)—=B(Y).
Mapping X—=Y it a simple photogrammetric problem. For
L(NX)-+B(Y) we 1llustrate NN-Nearest Neighbour and L.
INT. Linear interpclation mapping. In NN-mapping a 57m
x74 box, center'd on Y = "o" has a weight = 1 inside anu
weight = O outside the hox. For ea~h new "o the box
function is multiplied with the values at '"x". The di-
mensions of the box ensure that only ene "x'" value will
ve in each box. The one "x" vaiue is mapped into "o" po-
sition. In Linear Interpolation mapping the box is twice
as high and wide but the weighting function is triangu-
lar with value 1 in the centre and @ at the borders of
the box. The size ensures that always two "x'" points are
mapped into "¢". The closest '"x'" has the highest weight.
Without saying so we have used the concept of digital
convolution. Althcugh two images car be convolved we
iually will convolve an Urage with convolution-opera-
tor: a box Neighbourhood with a weight for each point of
the Neighbourhood. Spatial Correlation is equivalent
with convolution except for cases of asymmetric cpera-
Lers which should be mirror reversed in case of convolu-
tion. Convolution is also related to operator-Algebra
which is apptiied in the ficld of systems analyses and
pecially in sysiems which are describhed by differential
equatiovns ~r differen e equations in digital computa-
tions.

Dilfercnce-NOparators which are of much use in digital
image processing arc:

D-] ) 1 1 runnivg  average,
' 11 smcothing operat or
(¢} .
D 1 identily, original imige
1
1’8 -1 1 d/dx
N grad—edge dete tor
-1 a/d /
1 /dy
o¢ c 10 2 2
: ' g a ..
1 -4 1 ~ + —, 2-D Laplace operator
o 1 ¢ dxf dy*© Lexture enhence-
ment
Mo~ t useful image erhancement "filters'" can be con-

siructed as @ linear ~ombination of D¥ operators or
peated nelf and cross convoluation of nx coperators.

Y@=

et of spatial correlation "veo-

A minimaum rthogonal

tars" in N-3 are:
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31 1 1 L -i i-1 - !
=y goBl=y g B, By Delta 4 —s - & 2  PRF
I 2 1
Each pixel and its 3 Neighbours can be treated as one
new data vector. Mapping h@-3 in the same way gives The +im ¢f Deconvolution is to {ind an operator which
11 1 1 transtforms the Point Response Funclion (PRF) as close as
11 <1 -1 pos.ible back Lo the original single pixel value 24
H = 1 -1 -1 1 Lhe Local 4-D Hadard Transform (delta funclien). 1t is easy Lo prove thal the doconve—
1 o1 i =i lution operator must have scme negative Neighbourhood
valuee, Alway 4 compronise has to be fuund between

sharpness f{delta function) and "ringing" ripples around
Lthe contral value.
As resampline with NN or interpolaticn involies smooth-
ing we ombine the operations:

gemetrical correction, resampling, interpolation and
deconvelution into one generalized "convolution' opera-
tor.

e ddea, of Bpetetor Alodbra wam Be exbenied b6 4 Dec&n Slnt:on wperators and comparable operators like
2 i E -, g -t 5 L M - s, v P . > 1 i i

clude not only in-products within the operator Neigh~ {QD -D7) produce erhanced, more brilliant and sharp
bourhood but also include logical functions and state 1M2&¢ - The eye-brain ystem 1s not mach bothered by the
transition LUT's lraditionally predicled noise enhan ement.,

4-D data vectors are mapped in 4-D Hadarard domain fea-
ture space. This feature space can be used for further
mapping. Local features can be coupled through image
syntax or by iteration in a pyramid fashion using 1/4
of the pixels in each next iteration on the previous

h@ map.

Example 3 : The Game of Life.

This game is played on a binary .alued (0,1) image
I(X,t) with N = 8. The number of 1" n¢ ishbours in N-8 The classical error in the proce-sing of MT Multitcempo-
is first determined by convolution with: ral delta is to map B(X,t) and B(X,1+1) into the came
Ceature space and apply he local scientific subroutine

TEMPORAL DOFAIN MAPT (NG

. 1 1
1 0 1 = I(X,t)==N(X,t) ST . .
111 A simple mearingtul way of treating MY data is c¢.g.

Logi~al mapping: BiX,t) - B(X,t+1)—=C(X,1+1)

i i(f,l) = ¢ and N(X,t) = 3 then L(X.L*l) =] this is the process F change deteclion which is jmporl-
’ B wlse L(X,t+1) = © ant for monitoring processes which arc supposed to b
if I(X,1) = 1 and N(X,t)=2 or 3 then 1(X,t41) = 1 constant or show a predictable change.
else L(X,t+1) = 0 An improvement on this schema is prediction—correction
Equivalent State LUT : I(t+1)LUT(It,Nt) mapping:
It:O{O 0010000 0] B(X,t)—Pr(X,t+1).
1]0 0 1 1 0 0 0 0 0 Pr(X,t+1) - B(X,1+1)-=C(X,441) etc.
Nt = 0 1 2 3 4 5 6 7 8

This process can be repeated e.g. through the season.
Using the concept of a state transition LUT il is very }T‘vufv dﬁ?PTéirﬁlsg F? iunn?t’b% Tad? :lhhtglgh Lia
easy and elficient to program all sorts of local imagoe S0 Ubaky ages Lar Lorm of a skt ol Jypothesis

M prog = (X,1), each hyputhesis leads to a prediction. Predict-

: it Lo . 3

mappings e.g. boundary finding, sceletonising region L ; i

finding etc iont are then compared «ith measurements and the hypo-
* these are updated with extra information. This is the

proce:s of converging evidence or sequential decision
making. The prccess should be interactive.

Local Histogram mapping : NX, N = 3x3 or N = 5x5 is

mapped into a histogram for each X, the rank order in

the histogram is used as a critericn for the new -alue B(X,1)—~Hy(X,t)—Phy (X, t+1)

of the central pixel, e.g. ﬁhj(i,tﬁl) - B(X,t+1)=T(X,t+1)
E(X,t+1)-*ﬁy(i,f+1)—~ﬁhy(i,t+2)....... etc.

B(NX) —=iiist(NK)—C(X) = modulus {Hist(NX)).
All th= abore processing takes place in probability do-
Can also be used interactively e.g. for improving lo- main which can be visualised in colour.
cal consistency.

n tealnre space we have to think in terms of clusters
Local Probability Relaxation movitg in & yearly cycle for cegeltation classe . and
fittering a bit for "constani" classes because of imper-
fect radiometric and geometric corrections.

In the final -tages of an image processing procedure
we should have colour coded class probabilities. So
far we only have considered probabiliti<. derived from
Multispectral features only. One should include se:ond
order statistics also. Some probability vecrors are
locally compatible (mixed pixels) some are not. One

Accurate relative geometric corrections using a sophisti-
cated convolution operator or cubic convolution i+ a
first requirement for operational use of satellite R.S.

solution to increase local consistency is to change QL
the probability vector of cach pixel & small amount in
each pass. The direction of the change is guided by a &

x e < « . SUMMARY
probability consistency matrix. The process is repeat- ~———
ed until no improvement is achieved anymore. In that Starting with a genera) concept of image procecsing as
case the probability vertors can b. mapped into colour part of a decision making procedure., I have given ex-
domain. amples on how the mathcmatical tool of mapping is used

to convert raw data into colour coded class— or state-

Deconvolutior, image enhancement. probabilities. Spatial neighbourhood mapping can be used

Lo improve local consistency of class probability and
help in spatial 1mage segmentation as pre-classifica-
tion. The most interesting problems o-.ur where we in-
clude the dynamics of procetses on the earth's urface
as a movemert of veclors in a feature space. Using lhe
concept of probability vecters the w e of predictor—-cor-
reclor methnds i indicated which may include hypoihesis

In many sensors smearing of the image oocur:. for rea-
sons of optical limitations, electronic bandwidth or
platform motion. The response of the system to e.g. a
small light source on the ground (della fun-tion) will
not be dne non zero value but a group of v.lues 1ike:
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ruilding and testing in a converging :idencs metnod.

In my view, more emphasis should t» placed on the de-
cision preparaticn aspects of dig.tal imag: proce.sing
and less on traditional map making. in teaching and
understanding ,the concept of feature .paces ir very im-
portant.

More emphasis should be placed on mopnitoring and fore-—
casting, with integration of cther imape data such as
meteorological data, existing topo- ana other maps,
statistical surveys, etc.
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