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ABSTRACT: 

An automated method for finding and extracting water regions from Synthetic Aperture Radar (SAR) imagery 
is presented. Three automated water finders are implemented for experimentation with two sets of SAR 
imagery obtained from the areas of Elizabeth City and Asheboro, North Carolina. The input radar image 
is first segmented into four categories of terrain features. They are water, field, forests, and built
up areas. Water regions from the segmented image are extracted and the remaining image is eliminated. 
Noise appearing on both water and non-water regions is smoothed and thus completes the automated water 
finding task. A second water finder with a relatively higher threshold for the region growing process 
was designed for extracting shallow water regions from same SAR images. Discrimination of non-water 
features having water like gray values is accomplished by using a third water finder equipped with an 
additional capability of computing and examining region properties. 
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INTRODUCTION 

The problem with automatic extraction of water 
bodies from radar imagery has been the subject 
of research for same time. In the past, various 
pattern classification methods have been applied 
to sampies of both Synthetic Aperture Radar (SAR) 
and aerial photographic imagery. In many cases, 
when the sampies of the water regions were homo
geneaus and each sampie contained only the water 
category, a highly successful classification 
accuracy was obtained (Fox and ehen, 1988). For 
all past experiments mentioned above, an image 
sampie size of 32 by 32 pixels was used. This 
sampie window size was found to be optimum for 
these studies, even though the size of the sam
pIe window can be varied arbitrarily. 

One of the major drawbacks of a statistical pat
tern classification system is its inability to 
classify sampies containing two or more terrain 
categories. This problem occurred most often 
when the sampie window was moved across the 
boundary of different image regions or catego
ries. A totally different approach was proposed 
by Chen and Hevenor in arecent paper (Chen and 
Hevenor, 1990). In that paper, they tried to 
overcome this drawback by first segmenting the 
entire SAR image into four categories of terrain 
features where the boundaries were weIl preserv
ed. Extraction or classification of the terrain 
features was then easily performed afterwards. 
In this paper, the technique described in (Chen 
and Hevenor, 1990) was used as a preprocessor 
to segment a given SAR image into four terrain 
categories of water, fields, forests, and 
built-up areas. The water regions are then 
extracted, and the remaining image is eliminated. 
The extracted water regions are smoothed and thus 
completes the desired automated water finding 
task. A second water finder was designed for 
finding shallow water regions that requires a 
relatively higher threshold value on the 
region growing operation. A third special 
water finder was implemented for extracting 
only the largest water body from all water reg
ions found from an image. Discrimination of 
non-water features having water like gray 
values was also accomplished by the use of this 
third water finder. 
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SYSTEM DESCRIPTION 

Two sets of SAR imagery were used for testing 
three automated water finders described below. 
The first set of SAR imagery was X-band, and 
HH polarization which was taken over the Eliza
beth City, North Carolina area with a UPD-4 
radar system. Approximately 200 SAR images 
were digitized, and stored for various feature 
extraction tasks. Each digitized image con
sists of 512 by 512 pixels and each pixel con
tains 8 bits. Each image represents a ground 
area of approximately 1.6 by 1.6 square miles. 
The second set of SAR imagery was also X-band, 
but was VV polarization. This set of imagery 
was taken over the Asheboro, North Carolina 
area. Each image also consists of 512 by 512 
pixels of 8-bit length, and an entire image 
covers a ground area of approximately 0.8 
by 0.8 square miles. Two SAR images that con
tain water regions were selected from this set 
of imagery for testing the automated water 
finders. 

Most of the images selected contain area 
features such as water, fields, forests, built
up areas, and same linear features such as 
bridges, roads, railroads, and boundaries 
between area regions. The required algorithms 
for performing automatic water finding task 
were all written in the C programming language 
and implemented on a SUN 4/330 microcomputer 
system for the purpose of transferring them to 
a development laboratory. 

METHODOLOGY 

There are several algorithms that are required 
to automatically segment and extract water 
regions from SAR imagery. The process for the 
automated water finder for SAR images consists 
of the following steps: 

1. Load the desired digitized SAR image from 
the disk to the computer. The image will 
be shown in black and white on the display 
monitor. 

2. Based on its gray level, each pixel of the 
image is assigned a corresponding pseudo
color for easy viewing. 



3. 

4. 

5. 

ASobel edge operator is moved sequentially 
through the entire image for edge enhance
ment. Appendix A describes the Sobel edge 
operator. 

In order to eliminate the noise produced by 
the edge operation and the noise appearing 
on the original image, a lowpass filter is 
passed through the whole image. The low
pass filter is described in Appendix B. 

After the lowpass filtering, a technique 
called "region growing" is employed to 
merge together pixels which have similar 
gray values. A commonly used simple re
gion growing technique is explained in 
Appendix C. For our case, the region grow
ing technique was modified to become a two
pass process as described below. First a 
threshold value T is set. The selection 
of a threshold value T requires a lengthy 
process (Nagao and Matsuyama, 1980) which 
will be described in detail in aseparate 
subsection of this paper. 

Once the threshold value T is selected, 
the first-pass of the region growing 
operation is performed as follows. A 
control pixel for region n (or category 
n), called Pcn' is selected arbitrarily 
from the image. Usually the unlabeled 
upper left pixel in the image is assigned 
as the control pixel Pcn' The next step 
is to sequentially compare the gray value 
of each pixel with that of Pcn as given 
by (1): 

IG(i,j) (1) 

where G(i,j) is the gray value of the 
pixel P(i,j) and Gcn is the gray value of 
the control pixel Pcn' The subscript n 
signifies that the control pixel is for 
the category n. 

The gray values of all pixels that meet 
the inequality (1) are then summed and the 
result is added to the gray value of the 
control pixel. The resulting sum is then 
saved in a specially designed memory_ For 
a particular category n this summed quan
tity is expressed as SUMn' and is given 
below: 

SUMn = Gcn + L G(i,j). (2) 
all pixels met 

by inequality (1) 

Otherwise, the pixel under examination is 
left unlabeled. At the same time a 
counter, Cn • is incremented by 1 when a 
pixel is.added to the SUMn" This counter 
starts wlth a content of 1 so that the 
final count of the counter will indicate 
the total number of pixels added to 
the SUMn. This is expressed for the cate
gory n as follows: 

1 + Number of pixels met 
by the inequality in (1) (3) 
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This process of comparison continues 
sequentially for all unlabeled pixels in 
the image. When the process is completed 
up to this point, the SUMn is divided 
by Cn to obtain an average pixel value 
for a particular region category n as 

(4) 

The next step is to repeat the entire pro
cess described above, or computing (1) 
through (4) for the remainder of the 
pixels left unlabeled until all pixels on 
the image are labeled, and each pixel 
belongs to a particular region. This 
completes the first-pass of the region 
growing process. At this point, a number 
of average pixel values An for potential 
regions will be computed. 

The second-pass of the region growing pro
cess is similar to that of the first-pass 
except that the control pixel values, 
Gcn ' are now replaced by the correspond
ing average pixel values An' Also, when 
the value of a pixel is compared to a 
particular average pixel value, and if 
the absolute value of the difference of 
the pixels is less than the threshold 
value, the pixel under examination will 
be merged to that particular average 
pixel, rat her than adding it into the 
quantity SUMn . In other words, the value 
of the pixel under examination will be 
set equal to that particular average 
pixel value that it is being compared 
with. This process is explained in 
Appendix C. The second pass of the 
region growing process will continue 
until each pixel in the image belongs 
to a particular region category. The 
entire region growing process will then 
be complete. 

6. The number of region categories created 
by the application of the region growing 
process usually exceeds four. A simple 
pixel grouping routine is then used to 
further group pixels in the region grown 
image into exactly four categories. This 
routine functions as follows: The gray 
value of each pixel in the region grown 
image is sequentially examined. If it is 
larger than or equal to 100, it is set to 
150. If it is less than 100, and larger 
than or equal to 45, it is set to 65. If 
it is less than 45, and larger than or 
equal to 8, it is set to 25, otherwise 
it is set to 4. 

7. After the pixel grouping process, the 
entire image is segmented into exactly 
four categories, with each category 
assuming a different pixel gray value. 
The first three categories having gray 
values of 4, 25, and 65 represent water, 
fields, and forests, while the last 
category having several boundaries or 
edges with a gray value of 150 belongs 
to a built-up area. 

8. Having done the image segmentation for a 
given image as described above, the 



extraction or finding of water regions 
from the image is very straight-forward. 
Set all the pixels having a gray value 
of 4 to 0, and the remainder of pixels 
to 255. Now, we have an inverted binary 
image of water regions. 

9. In order to eliminate noise within the 
water regions which now appears as white 
spots of gray value 255 on the inverted 
image, a square box containing a 1 by 1 
pixel is made to scan through the entire 
image from the top left corner to the 
bottom right corner in a usual way. Any 
255 pixel (or 255 pixels) which can be 
successfully surrounded by this box repre
sents aseparated noise pixel (or pixels), 
and thus its gray value will be replaced 
to O. The size of the square box will be 
sequentially increased from 1 by 1 pixel 
to 16 by 16 pixels, and for each increase 
the same scanning and replacing process 
will be repeated. 

10. The inverted image is now inverted again, 
so all pixels within the water regions 
will be represented by a gray value of 
255. The noise on the non-water regions 
will appear as white spots of gray value 
255. The process discussed in Item 9 
will be repeated for eliminating noise 
from the non-water regions. 

11. The water regions which are represented 
by a gray value 255 will be set to 180. 
We selected the gray value 180 to repre
sent the water regions because it shows 
up as a pleasant dark blue color in the 
pseudo-color domain. This completes the 
entire water finding processes. 

12. A number of selected SAR images contained 
shallow water bodies. The water finder 
described failed to extract water regions 
from these images because the pixels 
within the water regions appeared too 
bright (have higher gray values compared 
to that of those pixels within a regular 
water region). A second water finder 
with a relatively higher threshold for 
the region growing process was designed 
to compensate this problem. 

13. Discrimination of non-water features 
having water like gray values is accom
plished by using a third water finder 
equipped with an additional capability. 
Just like the previous two water finders, 
the water regions and non-water regions 
having water like gray values are 
extracted. An algorithm called connected 
components (Hevenor and Chen, 1990) is 
applied next. The purpose of this con
nected components routine is to provide 
a unique label for each extracted region 
from the previous operation. The detail 
of the connected components is described 
in Appendix D. Various properties of 
each region such as area, centroid, 
elongation, perimeter, compactness, etc 
can be computed for discriminating non
water regions from water regions. For 
our case, only the property area needs to 
be computed since the largest water region 
always has the largest area among all 
regions labeled for all SAR images tested. 
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The calculation of area for each region 
can be made by taking a summation of all 
pixels within tne region. Finally, the 
gray value of each pixel within the 
region having the largest area is set to 
180, and the remainder of regions are 
eliminated by setting their pixels to O. 

Selection of an Optimum Threshold Value: 

The selection of a threshold value for the 
pixel based region growing plays a crucial 
role in the entire process. The selection of 
the threshold value should be adaptively 
determined by the image data under analysis. 
Using an improperly predetermined fixed 
threshold value for region growing would 
lead to a serious mistake and would end 
up in either undergrowing or overgrowing of 
the image. For our experimentation, the 
original SAR image of 512 by 512 pixels was 
first edge enhanced, and smoothed with a 
lowpass filter. These two steps took place fu 
tue first step discussed in Appendix E. The 
smoothed image was divided into 64 blocks of 
sub images with each block consisting of 64 
by 64 pixels. The threshold determination 
method discussed in (Nagao and Matsuyame, 
1980) was applied to each block, and the 
minimum threshold value found for the sub
images was selected as the threshold value 
for performing region growing for the 
entire image. The threshold determination 
method discussed in (Nagao and Matsuyama, 
1980) is provided in Appendix E. The 
optimum threshold value was 12 for both sets 
of SAR images taken over the areas of Eliza
beth City and Ashboro, North Carolina. With 
this threshold value the majority of images 
tested were region grown to yield four cate
gories of area terrain features as described. 

RESULTS AND DISCUSSION 

The software for the three automated water 
finders was successfully tested using a 
group of 18 images selected from two sets of 
SAR imagery. These two sets of SAR imagery 
were discussed previously in the section 
System Description. Test results for the 
water finders are summarized in Table 1. The 
name of the specific finder (or finders) used 
in each image is also indicated in Table 1. 
For illustration purposes, only the results 
obtained from three images will be presented. 
It is seen from Table 1 that for most test 
images a good to fair result was obtained. 
Only two images are found to be marginally 
acceptable. The following observations can 
be made from the results: 

Table 1. Test Results for Water Finders 
Using Two Sets of SAR Images 

Image Figure Finders Results 
Names Number Used 

Unf007 NS Water Good 
Unf014 NS Water Good 
Unf026 la Water Good 
Unf033 2a Waterl Fair 
Unf034 NS Waterl Fair 
Unf05l NS Waterl Fair 
Unf052 NS Waterl Marginal 
Unf053 NS Water/Water2 Fair 
Unf056 NS Water2 Good 



Unflll 3a Water2 Good 
Unfl18 NS Water/Water2 Good 
Unf143 NS Waterl Marginal 
Unfl63 NS Water2 Good 
Unfl65 NS Water2 Fair 
Unfl67 NS Waterl Fair 
Unfl82 NS Waterl Fair 
Erim13 NS Water2 Fair 
Erim27d NS Water2 Good 

NS = Not Shown 

1. Very small or narrow water regions, such 
as the narrow stream on the lower left 
corner of the first original image, 
Figure la, disappeared after the edge 
operation and region growing processes. 
This is illustrated in the resultant 
Figure lb. The first finder, named 
Water, was used for this test. 

Figure la. The Original SAR Image, Unf026. 

Figure lb. The Result of Applying the Water 
Finder to the SAR Image, Unf026. 
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2. To extract shallow water regions which 
have relatively high pixel gray values, 
a second water finder, named Waterl, with 
a higher threshold value of 14 was used. 
The second original image, Figure 2a, and 
the corresponding result, Figure 2b, 
show this point. The narrow and long 
triangle appearing on the right side 
of Figure 2a was due to a misalignment 
of the film while in digitization. The 
triangle clearly shows an edge of the 
film. This mistake caused an error in 
water finding which appears as two 
near vertical and two horizontal black 
lines on the right side of Figure 2b. 
Several small water regions resulting 
on the left side of Figure 2b are 
errors due to an imperfect region 
growing. 

Figure 2a. The Original SAR Image, Unf033. 

Figure 2b. The Result of Applying the Waterl 
Finder to the SAR Image, Unf033. 



3. Discrimination of non-water dark regions 
whose pixels have similar gray values to 
those in water regions appears to be 
very effective. The airfield runways 
that appeared on the third original 
image, Figure 3a, are the example of 
this discrimination. They are completeJy 
removed as shown in the resultant Figure 
3b. A third finder, Water2, was used to 
accomplish this diserimination. 

Figure 3a. The Original SAR Image. Unflll. 

Figure 3b. The Result of Applying the Water2 
Finder to the SAR Image, Unflll. 

CONCLUSIONS 

1. Automated finding of water regions from 
SAR imagery can be effectively accom
plished by properly applying a set of 
image processing and computer vision 
algorithms sequentially. 

2. Automated water finders can be simply 
implemented by using the concept of 
the automated terrain segmenter, which 
was previously developed, as a pre
processor. 
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3. Shallow water regions, which appear con
siderably brighter than ordinary water 
regions on an SAR image, can be extrac
ted by using aseparate water finder 
with a higher threshold value for the 
region growing process. 

4. Discrimination of non-water features 
which have approximately the same gray 
values as that of water regions can be 
accomplished by adding two more algorithms 
(connected components and region pro
perty computation) on the first water 
finder as described. The typical non
water terrain features of this nature 
include airfield runways and shadows. 
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APPENDIX ASOBEL EDGE OPERATOR 

The Sobel operator is a 3 by 3 pixel non
linear edge enhaneement mask which is multi
plied sequentially with all pixel values in 
an image to produee a pattern of more pro
nounced edges. 

The weights for the Sobel mask are shown 
below: 

-1 o 1 1 2 1 

-2 o 2 o o o 

-1 o 1 -1 -2 -1 

x-direction y-direction 

Assume a block of 3 by 3 pixels to be multi
plied with the Sobel mask centered at the 
point (i,j) and having a gray-value dis
tribution as given below: 

F(i,j) 



Then, the resultant pixel value G(i,j) 
which will replace F(i,j), will be 

IG(i,j)l= Ix 2 + y2, 

where X (A2 + 2A3 + A4) - (AO + 2A7 + A6 ) , 

and Y (Ao + 2A I + A2 ) - (A6 + 2As + A4) . 

APPENDIX B LOWPASS FILTERS 

The most commonly used lowpass filter con
sists of a mask of 3 by 3 pixels. It is 
multipled sequentially with all pixel values 
on a given image to produce a smoothed 
pattern. 

The weights for the lowpass mask are shown 
below: 

I I I 

I I I 

I I I 

Assurne a block of 3 by 3 pixels to be 
multiplied with the lowpass mask centered 
at the point (i,j) and having a gray-value 
distribution as given below: 

F(i,j) 

Then, the magnitude of the resultant G(i,j) 
which will replace F(l,j), will be 

G(i,j) 
1 

-9-
7 

L A
k 

+ F(i,j) ) 
k=O 

For more sophisticated lowpass filters, the 
size of the mask can be increased to 5 by 5 
or 7 by 7 pixels, and have values consist
ing of all l's. However, the processing 
time of using these filters will be increased 
accordingly. 

APPENDIX C SIMPLE REGION GROWING 

The simple region growing method, based on 
pixel gray value, consists of the following 
steps: 

Step 1: If all pixels in a given image are 
labeled, then end. Else take an 
unlabeled pixel and assign a new 
unused region number. 

Step 2: If the absolute difference of gray 
value between the new labeled pixel 
and its neighboring pixels are less 
than the threshold value, merge the 
neighboring pixels and assign them 
the same region number. 

Step 3: Iterate Step 2 until no pixels 
adjacent to the new labeled region 
can be merged. 
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Step 4: Go to Step 1. 

APPENDIX D CONNECTED COMPONENTS 

The purpose of the connected components 
routine is to provide a unique label for each 
component of 1 pixel in the binary image 
that represents water regions. Each label 
is a number that is assigned to every pixel 
in a given connected component. This label
ing operation can be performed by scanning 
the entire binary image with a 3-pixel by 
3-pixel array and considering the following 
pattern: 

C B E 

D A 

If we scan along the image from left to 
right and from top to bottom, and if pixel 
A is the pixel presently being considered 
and it has a value of 1, then a label must 
be assigned to A. The pixel at D, C, Band 
E have already been labeled and can be used 
to label A. If the pixels at D, C, Band 
E are all 0, then A is given a new label. If 
pixels C, Band E are all ° and D = 1, then 
A is given the label of D. Each possible 
construction of O's and l's for the pixels 
D, C, Band E must be considered when pro
viding a label für A. If two or more pixels 
in the set D, C, Band E are equal to 1 and 
they all have the same label, then A is also 
given the same label. The rea,l difficulty 
comes when two or more of the pixels D, C, 
Band E have different labels. This can 
occur when two or more separate components, 
which were originally assigned different 
labels are found to be connected at or near 
pixel A. For these cases the pixel A is 
given the label of any one of the pixels D, 
C, B or E, which has a value equal to 1. An 
equivalence list consisting of pairs of 
equivalent labels is formed. After the binary 
image has been completely scanned, the 
equivalance list is restructured in such a 
way as to contain a number of lists. Each 
of these lists contains all of the equiva
lent labels associated with a particular 
connected component. A new label is then 
given to each of the new lists and is 
assigned to each of the appropriate pixels. 

APPENDIX E THRESHOLD DETERMINATION METHOD 

The following is the adaptive threshold 
determination algorithm used for our 
experimentation. 

Step 1: Differentiate the smoothed image 
using the operator 

d(i,j) = max I G(i,j) - G(i+k,j+m) I ' 
-HkSl 
-l~m~l 

where G(i,J) and d(i,j) denote the 
gray value and the differential value 
at a point (i,j). 



Step 2: Divide the differentiated image 
into M blocks of 64 by 64 pixel 
subimages and make a histogram 
hn(d) of the differential values 
d(i,j) in the n-th block of sub
image (n = 1, 2 , .•. , M). 

Step 3: The Valley-Detection Algorithm. 
For each histogram hn(d) , find 
the minimum value, d n which 
satisfies the following inequali
ties: 

where d~ denotes the differential 
value for which histogram hn(d) 
has the maximum population. N is 
set initially to 9. The value of N 
will be reduced from 9 to 8, and 
from 8 to 7 sequentially until 
a satisfactory result is obtained. 

Seep 4: Find the minimum value among the 
d n for all blocks of subimages , 
and make it the threshold value 
T for all areas of the image. 
That is 

T min d 

l~.nSM 
n 
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