
INTEGRATIONS OF STRUCTURED QUERY LANGUAGE WITH GEOGRAPHIC INFORMATION SYSTEM 
PROCESSING: GeoServer™ 

Matthew Heric, Geoscientist 
and 

Kevin D. Potter, Product Manager 

Autometric, Incorporated 
5301 Shawnee Road 

Alexandria, Virginia 22312-2333 USA 

ABSTRACT 

Geographic Information System (GIS) technology has progressed rapidly during the last ten years; as computer 
hardware and software capabilities have improved, GIS has been brought to the forefront of the high-technology arena. 
Indeed, the relative success of any developing or developed GIS is its ability to manage a variety of functional data. 

To continue the expanding evolution of GIS technology, Autometric, Incorporated has researched and developed the 
GeoServerTM. The GeoServer™ uses a revolutionary query processing capability which combines the strengths of 
Structured Query Language (SQL) database accessing techniques with geographic data processing techniques. As a 
result, information can be screened or selected using well-focused spatial and subject criteria. Furthermore, these 
advances allow the GeoServer™ to handle time-sensitive applications such as real-time data fusions, correlations, 
tracking, historical archiving, and event prediction. 

This paper discusses how GIS techniques form the foundation of the GeoServer™ and details how it represents a 
substantial advance in GIS technologies. Additional information is provided on system architecture and functionality. 

KEYWORDS 

Structured Query Language, GeoServer™, and Geographic Information System 

GEOSERVERTM BACKGROUND AND 
INTRODUCTION 

The GeoServer™ provides the ability for an 
applications programmer (client) to invoke 
Geographic Information System (GIS) functionality 
across a network or on the same processor utilizing 
client/ server technology. With this architecture, the 
GeoServer™ allows the programmer to work within 
a resident environment and invoke the individual 
GIS functions when needed. 

The geographic information system, known as the 
Server, is running at all times, awaiting requests from 
the client which are written to the network. The 
Server receives the request and invokes the 
appropriate routines. Once the processing is 
completed, the Server writes any output parameters 
and the error status to the network and awaits the 
next request from the client. The client receives the 
Server's output and decides on the appropriate action 
to take. 

The query process is independent of particular spatial 
relationships and object definitions and is based upon 
the use of function, recursion, and spatial constraint 
propagation. In general, the principal data structure 
used by the search procedures responsible for 
assembling together the locations of a multi­
component object is a semantic network (Nilsson, 
1980). Such a structure represents objects and 
relationships between objects as a labeled graph. 

178 

A query processor that can support both object- and 
location-based organizations of spatial data requires 
the ability to overlay multiple thematic layers 
dynamically and the ability to process spatial relation­
ships between multiple objects dynamically during 
query processing. A flexible GIS cannot rely on the 
explicit representation and storage of every spatial 
relation that may be of potential significance to a user. 
A spatial query processing mechanism for a GIS must 
therefore be capable of handling implicit spatial 
information in a flexible and automated manner 
(Menon and Smith, 1989). 

The GeoServer™ database consists of layers of stored 
information. Basic vector layer types are polygons 
(soils, parcels), lines (streams, roads), and points 
(manhole covers, telephone poles). Raster layer types 
are imagery (SPOT, Landsat, ARC Digital Raster 
Imagery) and maps ARC Digital Raster Graphics 
(ADRG). All layers of information in the database 
support common and user-definable feature 
attributes. 

These information layers can be extracted from the 
database using the structured query language, called 
GeoSQL, processes. Specifically, using GeoSQL, data 
can be routed to a display or hardcopy output device. 
Layers of information can be accessed using a 
combination of spatial and attribute constraints as 
shown in Figure 1. Any application (Figure 2) can 
retrieve, update, delete, or insert data using the client 
libraries provided with the GeoServer™. 



Figure 1. The GeoServer™ database consists of layers of stored information. Basic vector layer types 
are polygons (soils, parcels), lines (streams, roads), and points (manhole covers, telephone 
poles). Raster layer types are imagery (SPOT, Landsat, ARC Digital Raster Imagery) and 
maps (ARC Digital Raster Graphics). These layers of information can be accessed using a 
combination of spatial and attribute constraints. 

GeoServer™ Database 

Network 

Application 
Utilizing 

GeoServer™ 

IBM PC UNIX WS ~ 
Z L-____________________________________________________________________________ ~.I 

Figure 2. Applications can retrieve, update, delete, or insert data using the client libraries provided with the 
GeoServerTM. Specifically, the GeoServer™ is shown here as a functional element in a complete 
analytical computational environment. 

179 



GeoSOL Command Components 

With GeoSQL, four command components may be 
included as part of the query command. When 
considered individually each is optional; however, a 
subset request must contain at least a Source Dataset 
specification, or a 'WHERE' expression. The following 
describes the four command components: 

Destination 
Dataset 

Source 
Dataset 

Stored 
Subset 

Expression 

identifies the attributes that will 
be retrieved for features which 
pass the extraction criteria. The 
da taset maybe conceptualized as 
a table with rows and columns; a 
column for each item listed in 
the Destination Dataset, and a 
row for each feature passing the 
extraction criteria contained in 
the 'WHERE' expression. Multi­
ple attributes may be specified but 
must be separated by a comma. 

(optional if 'WHERE' expression 
is specified) identifies the dataset 
against which the selection is 
made. If included, the Source 
Dataset must follow the control 
word 'FROM' and precede the 
'WHERE' expression. 

(optional) assigns a unique name 
to the subset of data that is 
extracted. If used, the Stored 
Subset must follow the control 
word 'INTO' and precede the 
'WHERE' expression. 

(optional if Source Dataset is 
specified) this component is used 
to specify the feature selection 
criteria. If included, it must 
follow the control word 'WHERE' 
and contain at least one operand. 

Valid Command Words 

Words which are used in the command to specify a 
component are defined within the system in the 
following tables: 

Common Data Dictionary; 
Source Dataset Tables; 
User Tables (Stored Subsets); and 
Template Tables. 

The Common Data Dictionary (CDD) contains key 
words that are standard components of a query 
command (e.g., control words, operators), and words 
that are representative of a specific areas of interest. 
When each word in the query command is tested, it is 
first compared to words in the CDD. 

Source Dataset Tables contain attribute information 
for features in a dataset. If a word is used to identify 

180 

explicitly the source dataset, it must match a valid 
data set name (e.g., roads, vegetation, weather, water). 

The results of a subset selection may be stored in a 
User Table. This is a table of information kept in 
computer memory which is made up of rows and 
columns; there is one row for every feature retrieved, 
and each column corresponds to an attribute that has 
been retrieved. The table name is assigned by 
specifying the Stored Subset component of a query 
command. 

The Template Table contains definitions of user­
definable spatial objects (circle, rectangle, point, line, 
polygon, ellipse); each has been assigned a unique 
template name. A template may be used as an 
operand in the query by using any valid template 
name. 

Valid Command Expressions 

The Expression can vary in terms of the complexity of 
the Expression itself and in terms of the complexity of 
the operands. 

Expression 
Complexity 

A 'simple' expression contains 
only one operand; a 'complex' 
expression contains an operand­
operator-operand sequence. 

e.g., simple-WHERE operand 
complex-WHERE operand operator operand 

Operand 
Complexity 

A 'single' operand contains only 
one component whereas a 
'multiple' operand contains more 
than one component, each 
separated by a semicolon. A 
single operand may be a feature 
specification, template, or the 
name of a previously derived 
Stored Subset. A multiple 
operand must be made up of 
ONLY feature specifications; a 
template name or Stored Subset 
name may not be used as a 
component of a multiple 
operand. 

e.g., simple-WHERE operand 
multiple-WHERE operand; operand; operand 

The semicolon in this context acts as a logical 'OR', 
where each operand member will be retrieved 
independent of the others. 

An operand may also be qualified with attribute 
criteria. Only a feature operand may receive 
attribution, a template or Stored Subset may not. The 
attribute specification is enclosed in brackets and 
immediately follows the operand. It contains an 
attribute name l arithmetic operator, and numeric 
value or character string (depending on the attribute 
data type). The attribute specification may include 
more than one test, as long as the tests are joined by 



standard boolean operators (e.g., AND, OR, NOT). 
Numeric values are assumed to be in units which are 
compatible with the stored values in the database, 
unless the unit measurement is explicitly indicated. 
Character strings must be enclosed in single quotes. 

e.g., WHERE operand [attributel = value] 
WHERE operand [attribute2 = 'string'] 
WHERE operand [attribute1 = value and 
attribute2 = 'string'] 

Control Words 

The 'SELECT' control word is mandatory and is 
automatically included in the command prompt. If 
'FROM' is used to signal the specification of the 
Source Dataset component, it must immediately 
precede this component. 

The Source Dataset 'clause' must follow either the 
word 'SELECT' or the Destination Dataset component 
if specified. If 'INTO' is used to signal the specification 
of a Stored Subset component, it must immediately 
precede this component. The Stored Subset 'clause' 
must follow the Source Dataset 'clause' if specified, 
the Destination Dataset 'clause' if specified, or the 
word 'SELECT'. A WHERE expression begins with the 
specification of the control word 'WHERE'. The 
expression must follow all other control words and 
clauses that may be specified in the query command. 

The spatial operators 'INSIDE' and 'OUTSIDE' are 
used to initiate a spatial test. The test is conducted 
between a feature operand and a template or between 
a User Table containing feature IDs and a template. 
The template is referenced by name and must be the 
second operand. The criteria for passing the inside 
and outside tests are as follows: 

INSIDE-feature totally or partially inside template; 
and OUTSIDE-feature totally outside template. 

The Template referenced must be two-dimensional in 
nature when the 'INSIDE' and 'OUTSIDE' operators 
are used. 

The spatial operators 'WITHIN' and 'BEYOND' are 
used to initiate a proximity test. This test may be 
between two feature operands, between a feature 
operand and a template, or between a User Table and 
a template. If a template is used, it must be the second 
operand and it must be a point, area, or line construct. 
The distance value to be used in the proximity test 
must follow the spatial operator in the 'SELECT' 
command. 

EX: SELECT where roads within 100 mt swamp; and 
SELECT where roads beyond 500 mt swamp 

GEOSERVERTM FUNCTIONALITY 

Understanding the operative foundation of GeoSQL, 
the GeoServerTWs routines have been categorized 
into three function groups: 

181 

GeoServerCore ™ 

GeoServer ModelerTM 

GeoServer DisplayTM 

routines to initialize 
and disconnect from the 
Server, create spatial 
Templates, manage vir­
tual memory, and access 
the database. 

routines to access cell 
map data and to create/ 
manipulate Geosearch 
Templates. 

routines that utilize the 
Server's display win­
dow to display, erase, 
modify, or interface 
with a user. 

THE GEOSERVERTM DATABASE 

The GeoServer™ database consists of an embedded 
relational DataBase Management System (DBMS) for 
managing most location and attribute data, system 
housekeeping tables, and optimized database models 
for managing vector, cell, and raster information. 
(More information concerning DBMS is provided by 
Abel and Smith (1986) and Guting (1988).) 

Vector data contain features stored in "vector classes." 
Each feature is defined by its component point(s), 
line(s), or area(s). Examples of vector data include the 
location of all fire hydrants within a city (point data), 
a road network (line data), and a map of land use 
(area data). Vector features contain both spatial 
information (Le., the location of the coordinates that 
define the feature) and attribute information (Le., 
descriptors that define the feature). 

Cell and raster data do not contain individual 
features. Instead, these data represent a grid of 
thematic information such as elevations, solid type 
categories, or a display color code. In the case of cell 
maps, each cell represents an area of a specified height 
and width. Each cell is given a value when it is 
created or manipulated. This value can be the 
minimum, maximum, or average value for a specific 
variable (e.g., elevation) within the cell or it can 
represent nominal data (e.g., land use). In either case, 
the entire cell is represented by that value. There are 
two types of cell maps in the GeoServer™: discrete, 
which can contain a limited number of values, and 
continuous, which can contain an infinite set of 
values. 

Raster data consist of the raster maps and imagery 
displayed with GeoServerDisplayTM routines. These 
data are intended as background graphics to vector 
data and cannot be analyzed or manipulated. 

UTILIZING THE GEOSERVERTM 

To begin, the applications programmer must 
initialize the Server. This is accomplished by 
invoking the "c_Init" routine. The routine belongs to 



the GeoServerCore™ function group and has two 
arguments: 

1) the Server's node name; and 
2) the Server_Display_Flag. 

The node name identifies the machine where the 
Server resides on the network, and the 
Server_Display_Flag determines whether the 
Server's graphics windows are to be utilized. The user 
must have the GeoServerDisplayTM installed for the 
Server _Displa y _Flag to be functional. If the 
Server_Display_Flag is set to "ON" (value =1), then 
the Server's graphics windows are initialized and 
displayed. The programmer can then invoke the 
GeoServerDisplayTM routines or utilize the Server's 
menuing system. If, however, the 
Server_Display_Flag is set to "OFF" (value =0), the 
Server's display windows are not initialized, and the 
programmer can neither invoke GeoServerDisplayTM 
routines nor use the Server's menuing system. 

The second routine that must be invoked is 
"c_SelectArea" which selects the database area. This 
function has one argument: the name of the database 
area. If the Server_Display_Flag is "ON" and the 
GeoServerDisplayTM is installed, the minimum 
bounding rectangle of the database area will be 
displayed. In addition, if the programmer inputs a 
null string as the database area name, a menu of all 
database areas will appear within the Primary 
Graphics Window, and the programmer will be able 
to choose an area from the menu. 

GEOSERVERCORETM ROUTINES 

The GeoServerCore™ routines provide the 
functionality to initialize the Server, create spatial 
Templates, manage virtual memory, access the 
database, and disconnect from the Server. 

Spatial Figures (Templates) 

The routines that create spatial figures, also known as 
Templates, allow the programmer to create geometric 
shapes of given size and shape. These Templates can 
be used as spatial filters. The programmer can query 
the database to determine the items that are "inside," 
"outside," "within" a given distance, or "beyond" a 
given distance of a Template. 

The Template database will be updated if the 
programmer exits the system with the routine 
"c_NormExit." If the programmer exits with the 
routine "c_AbnormalExit," the Template creations 
and deletions that were done during the session with 
the Server will not be updated in the database. 

Virtual Memory 

The GeoServerCore™ routines allow the 
programmer to store relational data in memory in a 
matrix format know as a virtual table. As with an 
RDBMS table, in a virtual table the columns represent 
field names, and the rows present individual records 

182 

of data. A virtual table can have the identical fields as 
a table in the relational database or can be created to 
satisfy other programmer requirements. 

The first step when using a virtual·table is to allocate 
the specified table and obtain a reference table 
identification or ID. After obtaining the ID, the virtual 
table must be initialized by determining the number 
of columns, column names, column types (e.g., 
double precision, long integer, etc.), and column 
lengths (e.g., 2 or 4 bytes). Once the virtual table has 
been initialized, data can be added or modified; 
although the operator must proceed in row-order, 
and all columns must be populated within the given 
row before proceeding to the next row. Data can be 
retrieved from a virtual table as well. 

Relational Database Access 

The GeoServerCore™ routines allow the analyst to 
add/update, retrieve, and delete data from the 
relational database. The adding and updating of the 
relational database must be done with a virtual table. 
Wi th a routine, the programmer specifies a row in 
the virtual table to be inserted to a database table. For 
this to occur successfully, each field name and its 
respective type and length in the virtual table must 
match identically to a field in the specified relational 
database table. All fields in the relational database 
table are given a zero or null value for the newly 
inserted row. 

Updating the relational database is similar to adding. 
Again, the programmer specifies a row in the virtual 
table to be used for the update to a database table. As 
with adding, for updating to occur successfully, each 
field name and its respective type and length in the 
virtual table must match identically to a field in the 
specified relational database table. In addition, the 
virtual table must have an "ID" field. The value in 
this field for the specified row will determine which 
record will be updated (Le., the one that has the same 
ID) in the database table. All fields in the relational 
database table that do not have a corresponding field 
in the virtual table are left with their original values. 

There are three routines that retrieve data from the 
relational database: 

c_DbSelect; 
c_Query; and 
c_ GeoQuery. 

These three routines retrieve data based on an input 
query. 

The routine "c_DbSelect" retrieves data for the 
relational database that satisfy a standard SQL 
command which begins with the word "SELECT." 
The data are placed in an initialized virtual table. The 
files in this table will be those requested in the 
command. For example, the command: 



SELECT LATITUDE, LONGITUDE FROM DATA_ 
BASE_TABLE 

will produce a virtual table with three columns: ID, 
LATITUDE, and LONGITUDE (the "ID" field is always 
added to a virtual table). The number of rows in the 
table equals the number of records in the relational 
database table, DATA_BASE_TABLE. The command: 

SELECT * FROM DATA_BASE_TABLE 

will produce a virtual table with the same files as the 
table, DATA_BASE_TABLE. The number of rows in 
the table equals the number of records in 
DATA_BASE_TABLE. 

The routine "c_Query" allows the programmer to 
utilize the Server's GeoSQL language. 

The routine "c_GeoQuery" works similarly to 
"c_Query" and uses the GeoSQL to retrieved data 
from the relational database. The output, however, is 
a file rather than a virtual table. In this manner, query 
results can be stored for subsequent processing by an 
application program. 

GEOSERVERMODELERTM ROUTINES 

The GeoServerModeler™ routines provide the 
functionality to access cell map data including cell 
map values for a given geographic location and the 
creation/manipulation of Geosearch Templates. 

Obtaining a Cell Map Value 

The GeoServerModeler™ allows the programmer to 
obtain a value from a cell map given an input 
latitude and longitude. The steps required consist of 
opening the cell map, describing the cell map, 
obtaining the cell value, and closing the cell map. 

Geosearch Templates 

A Geosearch Template is a specific type of cell map 
where cell values range from zero to one. The value 
of a cell is a relative probability that a target or other 
point of interest will be at that location. 

Two routines operate on Geosearch Templates. One 
routine extracts the polygons from a Geosearch 
Template in a cell-to-vector transformation. These 
polygons, or areas of interest, become intelligence 
features which are referenced by their minimum 

183 

bounding ellipse. The second routine creates a new 
continuous Geosearch Template based on the content 
of an old template. 

GEOSERVERDISPLA yTM ROUTINES 

The GeoServerDisplayTM routines provide the 
functionality to change the Graphics Window. The 
purposes of these routines are to display to, erase 
from, or modify the Graphics Window. In addition, 
these routines manage the display of Templates and 
retrieve information from the window. 

CONCLUSION 

This paper describes the Autometric GeoServer™. 
Specifically, by implementing advanced query 
processing capabilities which utilize the significant 
strengths of GeoSQL database accessing and 
geographic data processing techniques, the 
GeoServer™ represents a significant development in 
the GIS arena. Accordingly, a variety of functional 
data can be screened or selected using well-focused 
subject and spatial criteria; therefore, the GeoServer™ 
supports a dynamic management of specific spatial 
and subject relationships. Finally, as a data 
management system, the GeoServer™ consists of 
three components: the GeoServerCore™, the 
GeoServerModeler™, and the GeoServerDisplayTM. 
Each of these are discussed in detail with reference to 
GeoSQL. 

REFERENCES 

Abel, D.J., and J.L. Smith, 1983. A Data Structure and 
Algorithm Based on a Linear Key for Rectangle 
Retrieval, Computer Vision, Graphics, and Image 
Processing, Vol. 24: No.1, pp. 1-13. 

Guting, R.H., 1988. Geo-Relational Algebra: A Model 
and Query Language for Geometric Database 
Systems, Proceedings International Conference on 
Extending Database Technology, Venice, Italy, 
Springer-Verlag, pp. 506-527. 

Menon, S., and T.R. Smith, 1989. A Declarative 
Spatial Query Processor for Geographic Informa­
tion Systems. Photogrammetric Engineering and 
Remote Sensing, Vol. 55: No. 11, pp. 1593-1600. 

Nilsson, N., 1980. Principles of Artificial Intelligence, 
Tioga Press, Palo Alto, California. 


