
THE PERFORMANCE OF THE DIPS IMAGE PROCESSING SYSTEM 

Othman Alhusain 

Research Fellow, Technical University of Budapest, Dept. of Photogrammetry, Hungary, ISPRS commission II. 

ABSTRACT: 

In this paper, the performance of a digital image processing system called DIPS is measured in relation to different 
operating systems and hosting hardwares. The measurements were carried out under VAX/VMS, Unix, and MS-DOS 
operating systems and their suitable environments. A performance comparison between the results obtained proved, 
however, that the efficiency of the system depends not only on the hardware capabilities but also on the software resources 
whether they were operating systems or program code implementation so further performance measurements were done 
on the software through the analysis of the program code during the execution phase, the analysis proved that although 
the bulk of time is spent in execution the main loop of each routine, a considerable time is also spent within the assisting 
loops. 

KEY WORDS: Evaluation, Performance, Systems, Measurements, Profiling. 

1. INTRODUCTION 

During the last decade computing hardware has witnessed 
rapid technological developments resulting in continual 
improvement in performance and reduction in cost of the 
microcomputer systems. The shift from mainframe and 
minicomputers to inexpensive powerful PC's for image 
processing in remote sensing was a natural consequence 
of the user's desire to have a dedicated, though power­
ful system for his personal use (Ferns, 1984; Myers and 
Bernstein 1985; Welch, 1989). 

Image processing in remote sensing is constrained, how­
ever, by a number of processing requirements, including 
that remotely sensed images are multispectral, consisting 
of multi-band images with sizes much larger than standard 
CCD images and they are inherently "fuzzy"; their inter­
pretation depends on a priori information, consequently 
image processing systems for remote sensing have to be 
efficient and capable of large data file handling (Ferns and 
Press, 1988; Muller, 1988; Ehlers, 1990). 

Analysis of a system utilized for remotely sensed data pro­
cessing is of great importance due to the nature of this 
image data, to the procedures applied to them during the 
manipulation process, and to the varying conditions dic­
tated by any newer working environment surrounding the 
system. In order to cope with the previous factors and 
their impact on the ideal use of the processing system, an 
integrated analysis of the DIPS system was carried out, 
the analysis procedures were made through two types of 
measurements, those are hardware and software oriented 
performance measurements. 

2. HARDWARE ORIENTED MEASUREMENTS 

The performance of digital image processing system may 
be influenced by the system's I/O throughput for I/O in­
tensive applications or by the efficiency of the code gen­
erated by the programming language for CPU-limited ap­
plications (Croswell and Clark, 1988; Freiman, 1988). 

To enable comparison, parts of the DIPS code are gen­
erated to be implemented under VAX/VMS, UNIX and 
MS-DOS operating system. 

2.1 Hardware Environement 

VAX-related measurements were carried out on a Mi­
croVax system with 4 Megabyte of memory and a floating 
point processor. Under VMS all image files were contigous 

311 

files. The VMS system was supported by its Fortran com­
piler and Whitesmiths compiler. 

PDP-ll measurements were carried out on a PDP-ll/44 
with 0.5 Megabyte memory and a floating point processor, 
the PDP was equipped with two disks type RL02, where 
the system's files reside on one of them while the user's 
files reside on the other. Under PDP-ll Unix the file sys­
tems were also interleaved as recommended for optimal 
use. The PDP-ll Unix system was standard V.7.0 using 
the Fortran compiler and the Ritchie C compiler. 

Measurements on microcomputers were carried out on a 
system with an Intel 80286/16 bit microprocessor with an 
80287 as a coprocessor. The operating system is MS-DOS 
and files are resident as binary values on the system hard 
disk. 
2.2 Measurelllents 

The procedure to measure the performance of the systems 
consists of the following two steps: 

1. The I/O performance of each operating system is 
measured by reading a file using the most efficient I/O 
available for each operating system and each type of 
I/O. 

2. The performance for a typical operational loop in the 
DIPS system is measured for each form of the I/O 
supported by the system and for different buffer sizes. 
The aim of the loop operation is to read image pixels 
and to convert them to floating point format. The 
measurement procedures are as follows: 

MicroVax: In a maneuver to measure the optimum I/O 
of different programs written in different languages and 
working under VAX/VMS, an image of 512 X 512 pixels 
was read without processing which involves reading the 
command line by the system and executing the reading 
process. By using double buffered I/O the reading opera­
tion required from VMS 1 second. 2 seconds were required 
to execute the same operation executed by the following 
"read from file" function from the DIPS system: 

nbytes = (int) sakf«double) (npix*(*out)--> nbit)! 
(double)TCRC; 

for (dukik = j = 0; j < nlin; j ++) { 
for (i = 0; i < nbnd; i ++) { 

dukik + = fread«*out)--> data[i] [j], nbytes, 
1, fp); 

if «*out)--> nbit < sizeof (PIXEL)*(TCRC) LARUZM 



Cnpix, C*out)--> nbit, (*out)--> data[i] [j]; 

} 
} 

8 seconds were required to execute the same operation by 
Fortran 77 code using a direct-access file with a record 
size of 512 bytes and a block size of 8 Kbytes to improve 
effic~ency. These MeasureI?ent results show that the I/O 
~~cIen~y of t~e DIPS C Implementation is high indeed; 
It IS 4 tImes hlgher than the Fortran implementation, and 
half the optimal I/O efficiency of the VMS operating sys­
tem. 

To investigate both the buffer size and I/O type that ac­
complish the optimum use of the DIPS system under VMS 
operating system. Originally DIPS was written supporting 
block I/O only, for this reason the required code was gen­
erat~d to support both Unix I/O and virtual I/O. The op­
eratIOn was the same: reading an image or file of 512 x 512 
pixels but this time under different buffer sizes through the 
three Unix, block, and virtual types of I/O. The results are 
listed in table 1. 

It can be concluded from these measurements that the in­
crease in buffer size results in a decrease in the I/O time 
and consequently higher performance of all types of I/O, 
however, under VMS the block I/O shows a slight advan­
t~ge over Unix and virtual I/O. 8 and 16 Kbyte buffer 
SIzes seem to be optimal for VMS block I/O. 

Timing 
Buffer size 

Unix I/O Virtual I/O Block I/O 
(KByte) (sec) (sec) (sec) 

1 7.0 4.2 4.0 

2 5.0 4.0 2.0 

4 5.0 3.7 1.8 

8 3.0 3.5 1.6 

16 3.0 3.0 1.6 

32 3.0 2.8 1.5 

64 3.0 2.8 1.5 

Table 1, Buffer timing of the DIPS system 

PDP-l1: Unix implementation of DIPS supports block 
I/O and Unix I/O. During the measurement phase half of 
the RL02 disk was allocated to a block file system where 
4 Kbyte space was assigned to each block, while the other 
half of the disk was allocated to a Unix file system. To 
determine the optimal I/O throughput of the DIPS sys­
tem under Unix, a file consisting of 512 x 512 pixel bytes 
was read without processing by using the "read" system 
call and a buffer size of 8 Kbytes. The results of measure­
ment are included in table 2; in these measurements, the 
CPU time is considered to be equal to the system time 
since the user time is equal to zero due to the fact that no 
processing was performed. 

The next measurements were to verify the relationship be­
tween the buffer size and the Unix I/O of the DIPS system 
and so the optimum use of the DIPS system under the 
Unix operating system. The measurement operation goes 
through "reading" an image of 512 x 512 pixels without 

312 

any processing. The results are shown in table 3. From 
the previous measurement results it is easy to notice that 
the CPU time decreases slightly while the buffer size in­
creases, also the best clock time occurs when the buffer 
size is equal to the system block. 

I/O type System time Clock time 
(sec) (sec) 

U nix regular 3.0 9.0 

DIPS-block 0.6 3.0 

DIPS-Unix 0.6 3.0 

Table 2, DIPS optimal I/O timing under Unix 

Timing 
Buffer size 

User System CPU Clock 
(KByte) (sec) (sec) (sec) (sec) 

0.5 5.3 4.0 9.0 10.0 

1 5.0 3.3 8.3 11.0 

2 5.0 3.2 8.2 11.0 

4 5.0 3.2 8.2 10.4 

8 5.0 3.0 8.0 10.4 

16 5.0 3.0 8.0 10.0 

Table 3, DIPS timing with relationship to the buffer size 
CPU time = User time + System time 

Microcoll1puter: DIPS routines were originally developed 
taking into consideration that they will be run under Unix 
operating system. Due to two main reasons it was decided 
to implement many of the DIPS routines under the DOS 
operating system, the first reason is that DOS is still the 
most common operating system on the majority of micro­
computer machines, the second reason is particularly that 
the microcomputer based on the Intel 80286 (or 80386) in 
our laboratories are not capable of managing such a large 
operating system as Unix together with the large files of 
remote sensed images. 

DIPS routines under DOS operating system support only 
block structured files, as mentioned above, due to some 
restrictions of DOS itself, the image file consisting of 
512 x 512 pixels was resident in the hard disk of the mi­
crocomputer as binary numbers, the buffer size was 32 
Kbyte, the image was read without processing within 2 
seconds which is optimum comparing to the DIPS Unix-
11 implementation. The relationship between the buffer 
size and the time required to "read" the image file is il­
lustrated by table 4. The measurement results in table 4 
show that the increase of the microcomputer buffer size is 
associated with a drastic decrease of the "reading" time 
which is a very important advantage indicating the pos­
sibility of attaining a powerful I/O in the microcomputer 
system through the optimal selection of its buffer size. 



Buffer Size CPU time Clock time 
(KByte) (sec) (sec) 

0.5 6.0 6.3 

1 5.0 5.2 

2 4.5 4.7 

4 4.0 4.2 

8 3.0 3.2 

16 2.0 2.1 

Table 4, The DIPS/MS-DOS timing with 

relationship to the buffer size 

3. SOFTWARE ORIENTED MEASUREMENTS 

The aim of analysis measurements done on the software 
is to determine where the system spends its time within 
the different sections of the program during the execution 
stage and trying to avoid such loops as much as possible 
when designing the algorithms. A direct and easy method 
that enables such analysis measurements on the software 
can be done by the "routine calling occurrence" technique, 
that is to have the compiler generate instructions to count 
how many times each routine of the program has been 
called. This technique is easy to implement since it does 
not need any special requirement from the operating sys­
tem, however it is not as accurate as possible since the 
number of times a routine is called is not necessarily indi­
cati.ng the period spent in executing that routine. 
An alternative and more accurate approach to monitor the 
program's execution time is achieved by means of "pro­
filing" . A profiling technique involves mapping the ad­
dresses of specific sections of the program and counting 
the time of passing through these address through the 
execution course. This can be done simply by inserting 
statements that print a "start" and "stop" at the be­
ginning and the end of a specific section and measuring 
the interval between the appearance of those "starts" and 
"stops". The profiling technique, in spite of its simplicity 
and effectiveness, is not provided under all environments 
and circumstances, however, the C programming language 
provides this feature through its conditional compilation 
utility which can be implemented under both Unix and 
DOS operating systems. 

In order to carry out a real indicative analysis process on 
the DIPS system, and since it is agreed in the field of image 
processing that there is no typical operation which could 
be measured and analyzed in detail as a representation 
of the analysis of the system as a whole, 5 sample rou­
tines were selected from among the DIPS system routines, 
those routines are among those responsible for performing 
some of the most frequent operations in the field of image 
processing. The analysis measurements were obtained by 
implementing the profiling technique on a Micro Vax sys­
tem under VMS and on a microcomputer system under 
DOS and the results were similar. 

The first of these routines is READIMG which represents 
the I/O operations carried out by the DIPS system, this 
routine reads an image from the storage of the system to 
the main memory. The execution of this routine proceeds 
through six steps; opening the image file, reading the im­
age size parameters, creating an image of appropriate size 

313 

and parameters, checking the parameters of the created 
file, reading the new file, and closing the image file .. An 
image of 3 band, 512 x 512 pixels was read from fil~ mto 
memory, the execution process was profil.ed as mentIOned 
above and gave the measurements listed m table 5. 

As could be noticed easily, the time required to open the 
image file, reading the image attributes, a~d closing ~he 
image file again when completing th~ readms; operat~on 
account for a very small fraction of tIme, whIle creatmg 
an image of appropriate size, checking the parameter~ of 
the created file and reading it account for the bulk of tIme 
(93%) required to execute the whole operation. 

Stage Name Timing Profile 
(%) 

Open image file 6 

Read parameters 3 

Create image 44 

Check parameters 18 

Read new file 26 

Close image file 3 

Table 5, Timing profile of the READIMG routine 

The second of the routines analyzed is ADDIMG which 
is one sample of similar routines called algebraic routines 
because they are responsible for carrying out algebraic op­
erations such as adding, subtracting, and multiplying on 
images. This routine, although it is computationally sim-
ple represents an actual and frequent image processing 
op~ration. The ADDIMG routine consists. of thr~e parts; 
these are checking the input images, creatmg an lmage of 
appropriate size and adding the input images. The exe­
cution of the ADDIMG was measured through adding two 
images together each one is 3-bands and ~1~ x 512 pixels, 
the results are shown in table 6, where It IS shown that 
the "adding" part of the routine consumes the maximum 
portion of the whole routine exec~tion time (70o/c:) and 
this portion is subject to increase If the operatIOn IS of a 
multiplication type. On the other hand the "image ~re­
ation" part of the routine consumes a reasonable portIOn 
of time (21%), while the input image checking requires a 
minimum portion of time (8%). 

Stage Name 

Check input 

Create image 

Add images 

Timing Profile 

(%) 

8 

21 

70 

Table 6, Timing profile of the ADDIMG routine 

A fast Fourier transform operation was analyzed as an ex­
ample of transformations that usually considered ~s com­
plex algorithms but it is easy to implement them VIa soft­
ware. These transforms used to be done frequently on im­
ages during the processing course and play an importa~t 
role in the enhacement of image features. The analysIs 
was done on the FFT routine on the same image size, the 
execution of the FFT routine proceeds through 9 stages, 



those are check input image, creating an image of appro­
priate size, computing the nth roots of unity, allocating an 
array to hold one row/column of pixels, transformation of 
bands, converting from real to complex, transformation 
of rows, transformation of columns and finally, converting 
from complex to real. The execution profile of the FFT 
routine shows that the bulk of execution time is consumed 
during the transformation of bands, rows and columns 
with 19%, 26%, and 26% consequently converting from 
real to complex and from complex to real each one needs 
7% of the execution time, 5% time is spent in computing 
the nth roots of unity and in allocating arrays. 

Stage Name Timing Profile 
(%) 

Check input 2 

Create image 2 

Comput roots 5 

Allocate Array 5 

Transform bands 19 

Convert real to complex 7 

Transform rows 26 

Transform collumns 26 

Convert complex to real 7 

Table 7, Timing profile of the FFT routine 

The input image check and creating an image of appro­
priate size requires a minimum portion of time, about 2% 
for each. Table 7, summarizes these execution analysis 
results. It was noticed during carrying out the analysis 
process on the FFT routine that the "transform" parts of 
the routine consumes higher rates of time not only pro­
portionally in comparison with other parts of the routine 
itself, but also absolutely if the total time needed to exe­
cute this routine is compared to the total execution time of 
other routines. The reason for this fact is that transform 
routines are done on a neighborhood of pixels instead of 
one, and so that when carrying any computation process 
a number of pixels are included together. 

The next routine to be analyzed is the CONVL rou­
tine which is usually applied on images to improve their 
features via complex enhancement procedures especially 
by convolving them with filters. The convolution of an 
(M x N) pixsel image with a (I X J) element filter requires 
(M x N x I x J) multiplications. The example analyzed 
here was a convolution of a 1 band, 512 x 512 pixel image 
with a (3 x 3) element filter, this means that each out­
put pixel is the result of multiplication on 9 input pixels. 
The CONVL routine consists of 6 execution stages, those 
are check input, create image of appropriate size, allocate 
box for filter, compute convolution, fill margins, and out­
put result. The execution profile of the CONVL routine 
illustrated in table 8, shows that the maximum amount 
of time is spent in the "compute convolution" operation 
with 61%, fill margins requires 22%, allocate box for fil­
ter needs 8%, 4% of the time is needed for creating an 
image of appropriate size, check input and output result 
needed a minimum amount of time equal to 25% for each 
one. The analysis results including the proportional tim­
ing rates will be changed highly if the filter is changed e.q. 
applying a filter of (5 x 5) elements will result in a trend 

314 

towards assigning higher timing rates for the "compute 
convolution" operation; this is due to the fact that when 
applying a (5 x 5) element filter the multiplications needed 
are 25 in comparison of only 9 multiplications needed in 
case of applying a (3 x 3) element filter. 

The final routine of the DIPS system which was ana­
lyzed is the STATSIMG which computes the statistic data 
of an image such as the mean standard deviation, mini­
mum, maximum, and range of gray level, and the values of 
the histogram. The STATSIMG routine implementation 
within the DIPS system consists of 4 parts, these are check 
input, compute band statistics, compute histograms, and 
output histograms. The execution profile of the STAT­
SIMG, table 9, shows that "check input image" consumes 
a minimum portion of execution time of 4%, while the 
rest of execution time is divided almost equally among 
the remaining three parts of the routine with 36% spent 
within "compute band statistics" 31 % within the "com­
pute histograms" part, while the execution of the "output 
histograms" needs 27.5% of the whole execution time. 

Stage Name Timing Profile 

(%) 

Check input 2 

Create image 4 

Allocate box 8 

Compute convolution 61 

Fill margins 22 

Output results 2 

Table 8, Timing profile of the CONVL routine 

Stage Name 

Check input 

Compute band statistics 

Comput histogram 

Output histogram 

Timing Profile 

(%) 

4 

36 

32 

28 

Table 9, Timing profile of the STATSIMG routine 

The analysis of the previous five examples shows by num­
bers that the amount of time required to execute each 
operation is divided among the different cycles and loops 
comprising the routine responsible for execution of that 
operation. However, although the bulk of the time is ded­
icated to execute the main loop of the routine, a consider­
able amount of time is also needed to execute the assisting 
secondary loops, so any effort towards attaining an effi­
cient routine structure and consequently an efficient pro­
gram should concentrate not only on improving the main 
loop but also on the supporting loops of that specific rou­
tine. 



4. CONCLUSIONS 

Digital image processing applications are described by 
large amount of data and intensive I/O operations, the 
whole performance of such systems may be determined 
by the I/O throughput or efficiency of the program code. 
Theoretically, it is supposed that the overall speed of a sys­
tem increases proportionally with the number of its pro­
cessors, however, measurement results presented in this 
paper showed that there is not a one-to-one gain in effi­
ciency because the conflicting distribution of tasks among 
the multi processor of the mainframe. On the other hand 
performance attained by a one-processor microcomputer 
system proved to be encouraging and this fact will be more 
feasible if the fulfillment of the operating system in the 
microcomputer is utilizing the optimal abilities of its mi­
croprocessor. Profiling and analysis of different routines 
of the DIPS system show that the goal of attaining an ef­
ficient program could be realized only when the improving 
efforts are cocentrated on the main and assisting loops of 
routines. 

REFERENCES 

Croswell, P. L., and Clark, S. R., 1988. Trends in auto­
mated mapping and geographic information system hard­
ware. Photogrammetric Engineering and Remote Sensing, 
54(11): 1571-1576. 
Ehlers, M., 1990. Low cost image processing on per­
sonal computers: the Macintosh-II based DIRIGO system. 
Iil:lnt. Arch. Photogrmm. Remote Sensing., Dresden­
GDR, Vo1.28 Part, 2 pp. 55-62. 
Ferns, D. C., 1984. Microcomputer systems for satellite 
image processing. Earth-orient. Applic. Space Technol., 
4(4): 247-254. 

Ferns, D. C., and Press, N. P., 1988. Microcomputer and 
mass storage devices for image processing. In: Muller, 
J-P., (Ed.) Digital Image Processing in Remote Sensing, 
Taylor and Francis, "London and Philadelphia, pp. 105-
122. 
Freieman, S., 1988. A new dawn for workstations. Mini­
Micro Systems, May, pp. 59-72. 
Muller, J-P., 1988. Computing isues in digital image pro­
cessing in remote sensing. In: Muller, J-P., (Ed.), Digital 
Image Processing in Remote Sensing, Taylor and Francis, 
London and Philadelphia, pp. 1-20. 
Myers, H. J., and Bernstein, R., 1985. Image processing 
on the IBM personal computer. In: Proceedings of the 
IEEE, VoL 73, No.6, pp. 1064-1070. 
Welch, R., 1989. Desktop mapping with personal comput­
ers. Photogrammetric Engineering and Remote Sensing, 
55(11 ):1651-1662. 

315 


