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ABSTRACT: 

The resolution of digital images is one important factor that determines the quality of any processing on the 
images. High resolution scanners are still too expensive to be an alternative for many users. This paper 
discusses a method to obtain one single high resolution image by multiple scanning, here called oversampling. 
Each of the scanned images has a lower resolution than the resulting high resolution (HR) image. Between 
each scan a subpixel movement along the scanning axises is made. Observational equations are formed under 
the assumption that the gray value of each scanned pixel is an average of the intensities in the corresponding 
area of the scanned photograph. The gray values of the HR image are computed simultaneously by solving an 
underdetermined equation system. The system is solved by the pseudo inverse, which minimizes the sum of the 
squared unknowns. The results are not very promising and the aim is to convince the reader that this 
approach either needs more investigations or that it is useless. 

1. INTRODUCTION 

The quality of the input is essential for the quality of 
the result. This is true for any process and digital 
image processing is certainly no exception. 
Resolution is one important factor for the quality of 
digital images. As an example, let us study the 
effect of different resolutions in the case of multigrid 
matching. Here the resolution is deliberately 
decreased to make the matching faster. Then the 
resolution is increased step wise back to the original 
resolution. The accuracy of the matching improves 
as the pixel size gets smaller. In figure 1.1 we see 
that the root mean square (RMS) of five different test 
cases depends almost exponentially on pixel size in 
multi grid matching (Li, 1989). Though the 
accuracy increases with smaller pixel sizes, we will 
gain less the smaller the pixel size is. Also, 
computations will be more time consuming and the 
images will take more disk space. However, in 
special high precision applications of 
photogrammetry, the small gain in accuray can 
make the difference between success and failure. 

High resolution scanners are quite expensive, while 
low resolution scanners, except for insufficient 
resolution, also are poorly calibrated. In the 
beginning of this project the hope was that, using a 
cheap table scanner with a resolution of 40 ~m or 
more, one could by oversampling produce images of 
perhaps 10 to 20 ~m pixel size. However, our model 
has not proved to be very encouraging. The main 
problems are the instability and size of the equation 
system. 

2. THE METHOD OF OVERSAMPLING 

This paper presents an attempt to produce single 
high resolution images by multiple scanning with a 
device of lower resolution capacity. The positional 
relations between the images must be well known, 
thus this method can not be applied for scanning a 
photograph randomly. The hope was that by 
matching images, oversampling could be used for 
randomly scanned images, e g from multiple 
scanning in a table scanner. In the test we have 
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1.1 Relation between root mean square (RMS) and 
pixel size in five test cases of multigrid 
matching. (Li,1989) 

used a CCD camera mounted inside an analytical 
plotter. The image stages can be moved with an 
accuracy of 1-2 ~m (Almroth, 1990). 

The hypothesis is that each intensity value in the 
scanned images is an average intensity of the 
corresponding area of the image. If there is an 
object, or a part of it, smaller than the pixel size, 
that object is smoothed when the area is scanned. In 
a way, our problem is to take the inverse of 
averaging. By scanning one and the same area 
several times with successive subpixel movements 
of the image stage between the 'exposures' we get 
our observations. For example, if we want an image 
with twice the original resolution along both axis we 
scan the area four times with a movement of half a 
pixel size along the scanning axises. Figure 2.1 
shows the scanning procedure in such a case. The 
shaded area is the position of the resulting high 
resolution (HR) image related to the scanned 
images. 
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2.1 The scanning procedure. Four images, here 3 
by 3 pixels in each, are scanned. Between the 
"exposures" the image stage is moved half a pixel 
size according to the figure. The shaded area shows 
the extent and location of the resulting high 
resolution image related to the scanned images. 

If Xij are unknown gray values and 11 is one 
observed gray value, then 

(1.1) 

The observation equations are written 

(1.2) 
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lcdef 
M,N 
m,n 
p,q 

x11 
x12 11111 
x13 11211 
x14 11112 

x1N 11212 

x21 1121n 
x22 

12111 
x23 12211 
x24 

L = p*q* 12112 (1.4) 

x2N 12212 

1221n 

xM1 121m1 xM2 122m1 xM3 
xM4 lpqmn 

unknown intensity value at position a,b 
intensity value at position e,f in image c,d 
size of the resulting image 
size of each observed image 
degree of oversampling (here p = q = 2) 

dim(A) = m*p*n*q,(m*p+p-1)*(n*q+q-1) 
dim(a) = dim(O) = m*p,m*p+p-1 

The unknowns are the gray values of all pixels in 
the HR image. Each matrix a has as many columns 
as there are unknown pixels in one row of the HR 
image. There are as many matrices a or 0 in each 
row of matrix A as there are pixels in one column of 
the HR image. 

In case of another degree of oversampling the 
number of l's on each line in matrix a and the 
number of a matrices on each line in matrix A will 
change. It is possible to have different degrees of 
oversampling along the two axises. For example, 
the CCD camera used has a pixel size of 12 by 16 
!lm. Instead of resampling the image to square 
pixel sizes the degree of oversampling can be 3 
along one axis and 4 along the other. Then the 
output image would have a pixel size of 4 by 4 !lm. 

2.1 Pseudo Inverse 

There are more unknowns than observations, so the 
system is underdetermined. This means that there 
is an infinite number of solutions to the problem. 
While we in the case of a redundant system usually 
minimize the sum of the squared residuals, one 
approach for undertetermined systems is to choose 
the solution that minimizes the sum of the squared 
unknowns: 

(2.1) 

The inverse of the design matrix A that performs 
this minimisation is called the pseudo inverse, A +. 



I t is defined by 

AA+A 
A+AA+ 
(A+A)t 
(AA+)t 

(2.2a) 
(2.2b) 
(2.2c) 
(2.2d) 

where t is the transpose of a matrix (Bouillion/Odell 
1971). Using the pseudo inverse the solution to a 
linear system 

(2.3) 

is 

(2.4) 

For a given matrix A the pseudo inverse A + is 
unique. In 1960 Greville presented an iterative 
method for computing the pseudo inverse 
(Boullion/Odell, 1971). The algorithm does not need 
any inversions of matrices and is easily 
implemented in a computer. 

2.1.1 Example of the use of the pseudo inverse 

Suppose that the average of two variables is 50. Then 
we know that the sum of them is 100. We write the 
equation 

(2.5a) 

or written in matrix representation 

[1 1] [ =~ ] = [ 100 ] (2.5b) 

A X L 

The system has an infinite number of solutions. The 
pseudo inverse of matrix A is 

(2.6) 

The solution that minimizes xtx is 

The observation is equally distributed to the 
unknowns. However, if we know that the average of 
x2 and a third variable, x3' also is 50 then we have 

[ 1 1 OJ [ Xl] [ 100 ] 
o 11 =: = 100 

(2.8) 

The pseudo inverse solution will not be 

xtx= 7 500 (2.9) 

as one intuitively might expect, but 

xtx= 6 667 (2.10) 
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This indicates that we can expect a periodic 
distortion in the results when using the pseudo 
inverse. The equation systems used, see (1.4) have 
the same structure as in (2.8) and consequently 
corresponding periodic distortion was found in 
tests. 

2.2 Computational shortcuts 

One major problem is the size of the pseudo inverse. 
For instance, if the original images are 200 by 200 
pixels and the degree of oversampling is three by 
three, the pseudo inverse will have 600*600 rows 
and 602*602 columns which equals 130* 10 9 

elements. If each element is represented by one byte 
this means that the pseudo inverse needs 130 Gbyte! 
Of course this is not realistic. Instead we use the 
fact that for square images and with equal degree of 
oversampling the matrix A and the submatrix a 
will have the same structure (see 1.4). We can 
calculate the coefficients in matrix A + from the 
pseudo inverse of matrix a, called a +. The 
dimension of a+ is 600 by 602 or 361 kbytes. 

3. RESULTS 
3.1 Test imag-es 

Test images have been created to examine the 
method under controlled forms. Three simple 
figures were created (3.1). Figure 3.1a, c and e show 
a point, a line and a step table of gray values. The 
images are 21 by 21 pixels. The average of a 3 by 3 
neighbourhood is taken over the image. These are 
considered to be our observed intensity values, 
which could be thought of as coming from nine 
images, where each image is 7 by 7 pixels. After 
computing the pseudo inverse and multiply it with 
our observation vector we get the unknowns. The 
results, which were hoped to be identical to the 
original images, are shown in figure 3.1b, d and f 
respectively. Obviously we have introduced periodic 
patterns on the images. Though the shapes of the 
patterns differ they all have a periodicity of three, 
which is equal to the degree of oversampling. In 
none of the examples the observation equations 
seem are satisfied since we have introduced gray 
tones in completely white and in completely black 
areas. This is an effect of that we can not limit the 
solution to be in the interval 0 to 255 and 
consequently the unknowns with negative values 
have to be set to 0 afterwards. In the same way 
unknowns with values greater than 255 have to be 
set to 255. For example the first 3 by 3 pixels in the 
original and resulting image look like 

(
255 255 255 J 255 255 255 
255 255 255 

original image 

(

279 279 279 J 
242 242 242 
242 242 242 

resulting image 

In both cases the average is 255, which is exactly 
what the observation equation reads, but as 255 is 
maximum, what will be presented is 

(
255 255 255 J 
242 242 242 
242 242 242 



• 
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3.1 Test images. a, c and e show a point, a line and 
a step tabl~ of gray values. The size of each image is 
21 by 21 plxels. A 3 by 3 averaging filter was applied 
to t,!e zmages. The output of the filters are 
~onszdered to be our observations. The pseudo 
Lnverse premultiplied with the observational vector 
gives the solution shown in b, d and f 

Residuals were computed by subtracting the 
resulting image from the original. Table 1 shows 
the RMS of the residuals and XtX for the original 
and computed image. 

LXtX LXtX 
RMS original result 

(106) (106) 
point, 5.14 28.61 28.52 
3a-3b 

line, 17.45 27.31 27.04 
3c-3d 
step table, 9.80 8.68 8.64 
3e-3f 

Table 1. Root mean square of the residuals between 
original and computed image and xtx for original 
and computed image. 
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3.2 Real data 

A program was written for a Kern DSR-11 
analytical plotter. The program uses to a large 
extent the package of program procedures included 
with the plotter. The operator decides the window 
size in pixels and the degree of oversampling. After 
the operator manually has moved the plates to the 
area of interest, the program is run and images are 
scanned and stored according to the procedure in 
figure 2.1. The image files are transferred to work 
stations, where computations are done. 

Each test has been made with a degree of 
oversampling of three. Each of the nine images has 
a size 100 by 100 pixels. The resulting image has a 
size of 302 by 302 pixels. In figure 3.2 we see one of 
the tests; a part of a fiducial mark. Figure 3.2a is 
one of the nine original scanned images. The image 
in figure 3.2b contains all the observed intensity 
values from all nine images. The pixels are sorted 
in the same way as in our observation vector. This 
image has three times the resolution of the scanned 
images and each pixel derives from either different 
pixels in the same scanned image or from different 
images. If the intensity that the sensor registers 
corresponds most to the intensity at the centre of the 
pixel area this would be a useful result. However, 
the pixel size is still that of the scanner, though we 
only 'use' 1/9 of the pixel area. Figure 3.2c, finally, 
shows the image as computed with the pseudo 
inverse. Because of the size of the equation system, 
more than 90 000 unknowns, a theoretically 
incorrect partitioning of matrices was done. In this 
way the computations could be done iteratively, 
which was considerably faster. Though this is not 
exactly what would be the result of a direct solution 
it is probably not far from it. The image is severely 
distorted. The pattern and the periodicity are 
similar to those of the test images, discussed in 3.1. 

4. DISCUSSION 

Obviously, the pseudo inverse implemented right 
away does not give a satisfying result. One 
possibility is to add additional constraints. This 
would increase the stability of the equation system. 
To add additional constraints we must have a priori 
knowledge of the images, like for instance that 
neighbouring pixels have approximately the same 
gray value. To find suitable constraints is not an 
easy task. No matter what constraints we introduce 
it is most likely that, even though we can produce 
less distorted images, we have still reduced the 
quality so that not much is won compared to using 
the original resolution. 

Since the periodicity of the distortion is known, 
perhaps it can be removed by a cut off filter. This 
has not been tested yet. 

The computational cost for matrix operations of this 
dimension is quite high. Local calculations should 
be preferred from this point of view. One example is 
a method called data cumulation (AlbertzlZelianeos 
1988). Different satellite scenes covering the same 
area were used. Polynominals are made, using the 
gray values in local areas. From the polynominal 
the resolution can be increased by resampling. Also 
this method requires that the relations between the 
observed images is very well known. 
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3.2 Real data. A fiducial mark was scanned nine 
times with successive subpixel movements of the 
image stages between the 'exposures'. a shows one 
of the scanned images with a resolution of 100 by 100 
pixels. b shows the pixels from all nine images 
sorted in order of geometric appearance. The 
resolution is 300 by 300 pixels. c is the result of 
oversampling with the pseudo inverse solution. A 
periodic distortion is introduced. 
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