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This article describes a nonlinear spatio-temporal filter method for infrared images aimed to produce image data with 
low noise and high accurate, prominent edges. 
We present a novel, robust andfast one-dimensional phase correlation algorithm to determine the translation displace­
ment from frame to frame in image sequences. The image sequence is then compensated according to its displacements 
and filtered with a new edge preserving smoothing algorithm. As a consequence of this filter algorithm simple edge 
detectors such as Roberts gradient could then be used. 
Apart from that we present an application of the one-dimensional phase correlation algorithm to detect a rotation around 
arbitrary points combined with a translation between two frames in the image sequence. 
To all of these algorithms results are given. 
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1 INTRODUCTION 

The automatic analysis of infrared images with digital com­
puters makes great demands on the combined picture pre­
processing especially the image enhancement with regard 
to later feature extraction. Due to the sensors used infrared 
images are of minor quality compared to those derived with 
sensors for the visual channel (CCD-sensors). They suffer 
at most from low signal to noise ratio, low contrast at ob­
ject boundaries and image artifacts produced by the sensor. 
The usual steps in image preprocessing such as linear and 
nonlinear filtering performed on single images are not suf­
ficient enough to guarantee almost errorfree results of the 

following segmentation ~rocedures. Especially edge detec­
tion is a difficult task in IR-images. 

A substantial amount of quality enhancement one can 
get with filtering the image signal not only in space but 
also in time. One problem which arises is the movement 

of the object(s) during the acquisition time of the image 
sequence. Before one can perform appropriate filtering this 
movement has to be calculated and compensated. There 
exists a wealth of algorithms to detect translational move­

ments, most of them with high computational amount. In 
particular the outstanding performance of the 2D phase 
correlation method should be mentioned [3]. 

If the relevant objects have special features in the IR 
signal, such as hot spots, it is possible to use a one dimen­
sional phase correlation function (lD-PCF) to determine 
its movements. This leads to very low computational costs 
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combined with the accurate results as in the 2D-PCF[3]. 
The presented algorithm requires an appropriate correla­
tion window in the image sequence which includes one hot 
spot (Candidate Target Detection Algorithm, [2]). The 
movement of the hot spot then represents the movement of 
the object, which is a ship in our case. 

After the image sequence has been compensated ac­
cording to the detected movements it can be filtered. For 
this purpose we present anovel nonlinear spatio-temporal 
filter. This 'edge preserving smoothing' algorithm (EPS) 
has the great advantage not to smooth out the edges as 

filters - such as the simple lowpass filt~r - do. Therefore it 
is particularly suitable for edge detection. 

Supposing the relevant object not only performs a trans­
lation but a rotation,the movement can also be calculated 
by the 1D-PCF applied to the absolute values of the 2D 
Fourier transform of the correlation window. 

2 IMAGE ALIGNMENT WITH THE 1D-PHASE CORRELA­

TION 

The basis of the phase correlation is the fact that two iden­
tical but shifted signals differ in the Fourier domain only by 

a linear phase. This corresponds with the observation that 
the phase in the Fourier domain contains most information 

about the signal [5]. 
Let xl(n) and x2(n) be two discrete signals oflength N 

with x2(n) a cyclically shifted copy of xl(n). Then their 
corresponding Fourier transforms X 1(k) and X2(k) are re-



lated as follows 

Xl(n) 

X2(n) = Xl((n - nO))N 

X2(k) 

f---t Xl(k) 

f---t X2(k) 
Xl(k)e-j~nok 

Xl (k)WNok 

(1) 

(2) 

(3) 

cyclically shifted Xl (n) . 

A correlation in the original domain corresponds to a con­
jugate complex product in the Fourier domain. If we divide 

this product by its absolute values and perform the inverse 
Fourier transformation , we get the phase correlation func­
tion (PCF) of the signals xl(n) and x2(n) which is a delta 
impuls in the ideal case. 

(4) 

To align two images in [3] it is suggested to perform a 2D­
PCF on the entire images. Since this is very time consum­
ing the first step in our computation scheme is to set an 
appropriate correlation wir..dow of a smaller spatial extent 
depending on the relevant objects. In order to achieve reli­
able results such correlation windows should include image 
areas with high contrast. 

In the case of processing IR-images containing objects 
with hot areas (hot spots) , as are ships in our case, such 
windows are easily determined using well known candi­
date target detection algorithms (CTDA) [2]. The hot 
spot should be placed in the middle of the window and 

two signals xl(n) and Yl(m) are then calculated project­
ing the pixel grey values in the window towards its bor­
ders. The signals xi(n) and Yi(m) of the following images 
i,2 :::; i :::; L are computed in exact the same way. If the 

objects move from frame to frame the signals xi(n) and 
Yi (m) are aperiodically shifted copies of the signals Xl (n ) 
and Yl(m) in contrast to (2) (Figure 1). The direct compu­
tation of the phase correlation functions PCF(xl(n), xi(n)) 
and PCF(Yl(m), Yi(m)) ieads in most cases to a wrong ro­
sition of the ma~imum:n the PCF. The Fourier transforms 
of real signals decrease approximatly with 1-1 towards high 
frequencies. The norIilalization p:-ocedure inside the PCF 
(4) process 'whitens' the spectruIr. of the signals and as a 
consequence the high frequency components gain more in­
fluence on the result. Thus the PCF is heavily dominated 
by discontinuities from the left to tile right border of the 
signals. The PCF of the two signals xI(n) and x2(n) in 
figure 1 would resultin 'a wrong peak at location no = 0 
although x2(n) is shifted 4 samples to the right. 

To avoid this it is absolutely necessary to use a weight­
ing function for the input signals xi(n) and Yi(m) to the 
PCF which forces them to zero at their borders. 

Apart from that the signals xi(n) and fh(m) with 

Xi(n) - mxi 

Yi(m) - myi 

mean of signals xi(n), Yi(m) 

(5) 

(6) 

should be used instead of xi(n) and Yi(m). Otherwise the 
PCF could be dominated by the shape of the weighting 
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Figure 1: Signals xl(n) (top) and x2(n) (bottom) of a real 

image sequence 

function if the constant part of the signals is large compared 
with the alternating parts and the maximum peak might 

be displaced towards no = o. 
The previous considerations can now be formulated in 

the following computation steps to calculate the displace­

ment vector from frame to frame: 

1. Choose a correlation window of size N x N (CTDA) 

2. Compute the projections of the pixel grey values 9i( n, m) 
towards the window borders in each image i of the se­

quence 

3. Modify the signals 

XWi(n) 

YWi(m) 
w(n) 

N-l 

2: 9i(n,m) 
m=O 

N-l 

2: 9i(n, m) 
n=O 

w(n) [xi(n) ..,-mgd 

w(m) [Yi(m) - mgd 

'weighting function 

mean of signals xi(n), Yi(m) 

4. Compute PCF (xwl(n), xWi(n)) 
and PCF (Ywl(m),Ywi(m)) 

5. Search in both PCFs the peak positions and store 

them as displacement (no, mO)i 



Hot-Spot Image 1 

Hot-Spot Image 2 

Figure 2: Correlation window of image 1 (top) and of image 
2 (bottom) of a real image sequence 

A Hanning window is selected as the weighting function 
w( n) in step 3 of the above algorithm which produces low 
distortions in the frequency domain. In step 4 the normal­
ized conjugate complex product inside the PCF (4) could 
be weighted as well with an appropriate function (7). 

Xl (k) . X;(k) . M(k) (7) 
IXI(k) . X;(k)1 

M(k) weighting function 

If high frequency noise is present in the signals, good results 
are achieved with a Hanning window which mutes high 
frequencies. 

Figure 2 - Figure 4 show the results of the PCF applied 
to real IR-signals. Clearly visible are the very sharp peaks 
at the registration points which are only about one reso­
lution element in width. The PCF can not be disturbed 
by convolutional degrations to the signals (8) and it can 
be shown that it is fairly insensitive to unshifted superim­
posed degrations such as faults in the detector elements of 
the sensor. 

i2(n) = x2(n) * g(n) 

g(n) 

Xl(k). X2*(k) 

IX1(k). X2 * (k)1 

f---t X2(k) 

f---t G(k) 

Xl(k) . X;(k) IG(k)12 8 
IXl(k) . X;(k)IIG(k)12 ( ) . 

Tabel 1 compares the computational amount of the ID­
PCF with the modified 2D-PCF according to [3] with weight­
ing functions in original and frequency domain. 
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Figure 3: Projections of the correlation windows 1 (top) 
and 2 (bottom) in y-direction. See figure 1 for x-projections 

3 EDGE PRESERVING SMOOTHING 

After the image sequence has been compensated so that 
the relevant object is at the same position in all images, a 
nonlinear spatio-temporal filter is applied to the image se­
quence. In order to avoid blurring of edges, averaging must 
not be applied to areas containing edges. Thus a simple 
lowpass filter, which averages over an isotrope mask vol­
ume through the image sequence, is fairly unsuitable. It 
is rather necessary to find the most homogeneous mask 
volume around the point to be smoothed. The variance 
of a mask volume can serve as a measure of inhomogen­
ity [4]. We use the eight volumina shown in Figure 5 
(MI'" Ms) and the isotrope volume M9 , which includes 
the 8-neighbourhood of Pe(n, m) and its pixels in the fol­
lowing images. 

N ow we can summarize the edge preserving smoothing 
algorithm as follows: 

.. For each point Pe(n, m) of the first of L images do: 

1. Compute the 9 mask volume variances 
Var(Ml) .. ' Var(M9) 

2. Find the minimum variance mask volume 
M*: Var(M*) ~ Var(Mi); 1 ~ i ~ 9 

3. Set po(n, m) ~ J. LM* p(n, m) in the output 
image (N*: Number of pixels of mask volume 
M*) 

Table 2 shows the result of the EPS-filter compared with 
a conventionallowpass filter for a test sequence corrupted 
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Figure 4: Results of the 2D-PCF (top) and 1D-PCF for 
x-direction (mid) and y-direction(bottom) 

Pe 

Figure 5: The mask volumina Ml ... Ms are constructed by 
Ma and Mb , each rotated 3 times by ~. Each mask volume 
extends over L images. 
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Operation 2D-PCF 1D-PCF 
(both directions) 

real 
multiplication N 2 (3 + 8Iog2 (N2

)) 2N(3 + 81og2 (N) 
real additions 8N2 Iog2 (N 2

) 2N(N -1)+ 
16Nlog2 (N) 

N=64 
real 
multiplications 405.504 6.528 

Table 1: Computational amount of the 1D-PCF and 2D­
PCF including weighting in original and frequency domain 
and computation of the correlation window projections for 
the 1D-PCF 

original result of result of result of 
sequence lowpass- lowpass- EPS 

filter filter filter 
1x1xL 5x5xL 

a of 
image 24.3 27.4 22.8 24.7 

a of 
noise 40.0 13.5 10.9 8.5 

Table 2: Image variances after various filters applied to the 
test sequence corrupted with gaussian noise a = 40.0, (L: 
number of images in sequence) 
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Figure 6: Cross section of the results of the EPS-filter 
applied to the test sequence corrupted with gaussian noise 
a = 40.0 



with gaussian noise. Figure 6 points out the remarkable 
capability of the EPS-filter to preserve edges. As the EPS­
filter achieves the best noise-reduction combined with the 
outstanding characteristic to preserve edges in position and 
slope it is well suited for edge detection. 

4 ROTATION DETECTION 

Let us assume g( x, y) are the grey values of an image and 
F( u, v) is its Fourier transform (FT). With the Fourier the­
orem 

(9) 

it follows 

g(x cos rp + y sinrp, -x sinrp + y cos rp) ~ 

F(wx cos rp + Wy sin rp, -Wx sin rp + Wy cos rp) (10) 

That is, the FT rotates by the same angle as the image 
ifself. An additional translation of the image affects its FT 
only by a bilinear phase. In other words, the magnitude of 
the FT is shift-invariant. 

g( x - Xo, Y - Yo) f---7 

F(wx,wy)exp(-jwxxo)exp(-jwyyo) (11) 

Let IF1(r,0)1 and IF2(r,0)1 denote the magnitude of the 
FTs in polar coordinates of two images gl (x, y) and g2 (x, y) 
of an image sequence. Then we can define two radial pro­
jections of the magnitude functions 

00 

ih(O) = J IF1(r,0)1 ror (12) 
0 
00 

a2(0) = J IF2(r, 0)1 ror (13) 
0 

which are periodic with respect to O. If image g2(X,y) is 
a rotated (and perhaps translated(!)) copy of the image 
gl(X,y), then a2(0) = al((O + ~O)h1l" is a cyclically shifted 
version of al(O). 

Therefore the angle ~O could be easyly determined us­
ing techniques such as the ID-PCF. But as a consequence 
of the digital geometry al (0) and a2( 0) are difficult to cal­
culate. 

Since the signals in (12), (13) are periodic functions of 
o it is possible to calculate the coefficients Alk and A2k of 
their Fourier series representation. It's noteworthy for the 
implementation that the discrete Fourier series (DFS) of a 
periodic signal equals the DFT of the aperiodic signal. 
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-00 -00 

l
ar ar 

exp (-jk arccos (z)) ~ ~ 
&u a; 

with z =~; r = Ju2 + v2 

r 

0= arccos (~) 
u2 + v2 

For the discrete implementation follows 

q.-I q.-I 

louov 
(14) 

L: L: !Fl(n, m)1 exp (-jke arccos (y)) 
n=-q. m=-q. 

(15) 

'h n 
WIt y = J 2 

n2 +m 

With the two FTs Al(ke) and A2(ke) a normal cross-correlation 
(CCF) or phase correlation (PCF) can be computed. 

PCFrot(l) f---7 

CC Frot(l) .~ 

Al(ke) . A~(ke) 
IAl(ke) . A2(ke)1 
Al(ke) . A;(ke) 

(16) 

(17) 

The position of the peak in PC Frot(l) or CC Frot(l) reveals 
the angle b.0 of the rotation. 

The direct computation of (15) is very time consum­
ing. But it can be computed very effectively by a recursive 
procedure using Chebyshev polynomials [1]. 

Practical tests of the algorithm have shown that only a 
few samples of the FT in (15), that is only few Fourier coef­
ficients have to be determined (Figure 7). The appropriate 
interpolation to achieve a sufficient accuracy for the result 
can be attained by an enlarged length of the inverse FT in 
(16) and (17). Thereby less time is needed to evaluate (15) 
whereas a greater length of the inverse FT is not of great 
importance if the FFT algorithm is used. 

To detect an additional translation it is suggested in [1] 
to perform a backrotation of F2(Wx,Wy) and then to cal­
culate the displacement via a 2D-P CF of Fl (wx, wy) and 
the backrotated F2(wx,Wy). Because the 2D-PCF is fairly 
sensitive to phase errors, it is very difficult to find an ap­
propriate interpolation algorithm for the backrotation of 
F2(Wx,Wy). Much better and less timeconsuming results 
are achieved if we perform the backrotation on g2(X, y) and 
align the images via the ID-PCF method. 

Figure 7 shows the results of the rotational correlation 
in the case of rotated checkerboard (256 x 256) and ro­
tated real images using various number of Fourier samples. 
The practical tests with real images have shown that the 
algorithm is robust against image degrations. It's notewor­
thy that for a checkerboard pattern 4 possible symmetries 
exist, as detected in Figure 7. The two major peaks in Fig­
ure 8 are explainable if we recall that the magnitude of the 
2D-FT is used in order to be independent of image trans­
lations. Therefore rotations in the intervalls 0 :::; ~O :::; 1r 
and 1r :::; b.0 :::; 21r are indistinguishable. 
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Figure 7: Rotatio,P-al normal correlation (CCF) applied to 
checkerboard images 
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Figure 8: Rotational normal correlation (CCF) a1 plied 
to real IR-images (top) and rotational phase correlation 
(PCF) applied to real IR-images with various number of 
Fourier coefficients (mid, bottom) 
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5 CONCL USION 

In this paper we decribe a new spatio-temporal filter scheme 
for image sequences with moving objects. Before the fil­
ter algorithm can take place, the images are aligned via a 
fast and accurate 1D-phase correlation method especially 
well suited for IR-images. Thereafter a nonlinear spatio­
temporal filter, which has the capability to preserve edges, 
is applied to the motion-compensated sequence. If there 
is the need to detect not only translations but also image 
rotations we propose an algorithm based on the 1D-phase 
correlation applied to projections of the magnitude of the 
2D Fourier transform. 
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