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Abstract 

A knowledge-based, hierarchical, unsupervised classification scheme for 
high resolution multispectral satellite images is proposed. This scheme, 
which finds its conceptual bases in the work of Nagao and Matsuyama 
(1980) for structural analysis of aerial photographs, introduces a new 
filtering algorithm which is able to preserve fine linear structures of the 
image. 

The classification products are: 1) a raster image where detected 
output classes are characterized by some specific information content 
and/or by spectral separability (by cluster analysis); 2) property tables 
describing each elementary region in terms of descriptive and geomet­
ric attributes; 3) geometry of output elementary regions converted to 
vector format. 

An example of the application of this classification scheme to a 
Landsat TM multispectral image is presented. 

Key Words: satellite image classification, knowledge-based classi­
fication, image understanding. 

1 Introduction 

Starting from the work of Nagao and Matsuyama (1980) (hereafter 
referred as N-M), our aim was to develop a general system for unsuper­
vised classification of high resolution multispectral satellite (HRMS) 
images. This approach results in a knowledge-based, hierarchical, clas­
sification scheme. The scheme is characterized by simple user inter­
action and high processing speed and should be used whenever: 1) 
thematic mapping must be performed without reference data available; 
2) an extremely fine classification precision is not required. For these 
reasons this classification scheme could also be used to identify more 
specific training samples to be used in further supervised classification. 

2 Evaluating the feasibility of the project 

Some basic strategies can be chosen in order to obtain, from a classifi­
cation scheme, output product of cartographic quality. 

1. Any existing thematic map where land use/land cover is presented 
shows minimum map unit size around 2.5 mm by 2.5 mm (Lille­
sand and Kiefer, 1979). This is due to human expectation about 
thematic uniformity and also to readibility problems for the map 
reader (e.g. precision affected by graphicism error)( Swain and 
Davis, 1978). Because of these two elementary considerations, we 
want to reduce the small region thematic scattering of the orig­
inal picture on the output product. This goal can be pursued 
providing the pre-processing stage with an edge preserving and 
blurred edge sharpening spatial filter. 

2. It is well known from the literature (Swain and Davis, 1978) 
that pixel-by-pixel classifiers often produce an even more detailed 
classified image than is actually needed by the resource manage­
ment. Besides, these classifiers deal with tonal information only, 
ignoring spatial information. Thus, pixel-by-pixel classifiers are 
acceptable only when spectral rules can guarantee separability 
of target cover types. Homogeneous regions classifiers (sample 
classifiers) (Ketting and Landgrebe, 1976) are more suitable for 
resource management. Their first step is an image partition algo­
rithm that splits the scene into objects that are spectrally home­
geneous (segmentation process) and then classifies these elemen­
tary areas as whole units. Thus, the classification of each pixel in 
a sample is the result of the spectral properties of the sample as a 
whole, i.e. the contextual information is used. Furthermore, the 
explication of spatial attributes (e.g. position, shape, etc.) of ho­
mogeneous objects allows exploitation of spatial information (by 
means of spatial rules). It is also possible to consider a straight­
forward conversion of such classified data on a vector-based GIS. 

3. Finally, absence of training fields is among the requirements of 
our classification scheme. In supervised classification, the user is 
required to explicate his a priori knowledge about the scene un­
der investigation regarding which classes are present and where 
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training areas are localized. The training areas must individually 
refer to a single cover type and be scattered through the im­
age. As a consequence, it is often impracticable to locate "pure" 
(and sufficient in number) supervised training areas to charac­
terize ground covers over a large scene due to lack of ground 
truth information (Swain and Davis, 1978). On the other hand, 
unsupervised analysis, based entirely on unsupervised classifica­
tion, reveals statistical patterns that are inherent in the data. 
This method is expected to extract relatively few, large spectral 
classes that do not necessarily coincide with information classes. 
Therefore, unsupervised analysis can be applied successfully only 
when the information classes are easily discriminated in the fea­
ture space. To provide optimal analysis of large and heteroge­
neous images, hybrid procedures (unsupervised and supervised) 
have been adopted (Swain and Davis, 1978; Lillesand and Kiefer, 
1979). In a hybrid classification scheme, supervised training ar­
eas, each one containing a single cover type, are used altogether 
with unsupervised training areas. Each unsupervised training 
area must be selected to contain multiple cover types and is clus­
tered independently. This means that signatures (i.e. sets of sta­
tistical data) are derived from training samples stemming from 
a supervised training method and/or from clusters obtained in 
an unsupervised training procedure. Commercial tool boxes, like 
ERDAS (1990), provide a set of software tools to create signature 
files of statistical data from training samples as well as from clus­
ters. These signatures can be tested, deleted and merged with 
any other signature file. Thus, in order to improve unsupervised 
analysis we have to move toward the use of unsupervised training 
areas. Each one of these is a portion of the image where cluster 
analysis is independently run to extract a subset ofthe overall im­
age spectral classes. This idea can be applied to hierarchical clas­
sification: our scheme should first extract some knowledge subset 
of the original image and then perform cluster analysis in each 
subset separately. In this way, an increment in spectral discrimi­
nation of the cluster analysis is expected; besides, depending on 
the spatial/spectral pattern used to create his knowledge subset, 
the user benefits from matching information classes with output 
clusters. Our classification scheme was at first described as being 
unsupervised, meaning that it needs no supervised training pro­
cedure. However, it was also stated that this approach is based 
on domain-knowledge. In other words, the analyst exploits his a 
priori knowledge about the image regarding spectral and spatial 
patterns in order to obtain specific subsets of the original image. 
On the other hand, the operator is not required to know where 
these patterns are located on the image itself as in supervised 
analysis. This means that, in terms of domain-knowledge, this 
classification scheme cannot be considered as purely unsupervised 
nor supervised but rather as a hybrid classification procedure. 

2.1 The N-M classification procedure 

As reminded in the Introduction, a classical example of multispectral 
classification procedure, based on segmented scenes, was developed by 
Nagao and Matsuyama (1980) for aerial photographs. This classifica­
tion scheme is: 1) knowledge-based (some procedures are implemented 
by the analyst based on his a priori knowledge of the image domain); 2) 
highly structured (black boxes organization); 3) hierarchical (a study 
area is described at several levels of details). 

What follows is a conceptual description of the N-M procedure; the 
description stresses the philosophy underlying the operations performed 
by the different blocks. 

The classification system uses as input aerial multispectral images 
and is organized in three major modules: 

1. N-M image pre-processing. It consists of three steps: filtering, 
image segmentation and image description. 

2. Feature extraction. The idea is that any possible image data 
information level must be exploited in order to extract a sepa­
rate kind of characteristic regions (cue regions). Any cue region 



category represents a subset of reliable knowledge (kernel infor­
mation) (Ton et al., 1991). For reliable knowledge we mean any 
information that can be extracted from the image with a gen­
eral purpose, image independent, standard method. This stage is 
based on image domain knowledge that can be considered as: 
a) spectral dependent (presence of spectral domain rules); b) 
spatial knowledge dependent in terms of size/shape features; c) 
contextual/topological rule-free; d) general-purpose (i.e. task­
independent: any cue region may be used as input to decision 
rules of the classification box). This means that each cue type 
either refers to: i) a particular spatial pattern; ii) a particular 
spectral pattern. In the N-M scheme the different image informa­
tion levels, each of them characterizing a separate cue category, 
are: a) color (spectral signatures); b) brightness; c) shape; d) size; 
e) texture. The selected cue region categories are respectively: a) 
vegetation; b) shadow and shadow making; c) elongated; d) large; 
e) high contrast. 

3. Pattern recognition stage: each separate land cover category is de­
tected by a specific module, independent from the others, whose 
input are cue regions. This stage is: a) task-dependent: each 
module is specialized in recognizing a particular output category; 
b) spatial-rule dependent: exploiting contextual/topological rules. 

3 The N-M approach to HRMS imagery 

In order to evaluate the applicability of the N-M classification ap­
proach to HRMS imagery, the information content of HRMS images 
before and after N-M pre-processing must be compared. Visual inter­
pretation technique and N-M segmentation scheme do operate in the 
same manner. In fact, both processes divide the scene into elemen­
tary regions characterized by: 1) homogeneous (low variance) spectral 
response (color); 2) size and shape features enhanced by contrast in 
spectral response between adjacent objects. 

As a consequence, it is possible to evaluate the potential applicabil­
ity of N-M classification scheme to HRMS images by visual interpreta­
tion of N-M preprocessed images. 

Our assessment starts with some general considerations of pattern 
recognition. 

Each homogeneous object stemming from segmentation is charac­
terized by two items of information: 1) spatial/contextual (pictorial); 
2) spectral (numerical). Within-region tonal information is strongly 
spatial correlated. Thus, this spectral information can be summarized 
in a set of statistics that refers to the region as a whole. If different 
cover types are spectrally separable, no spatial investigation is neces­
sary. Whenever spectral separability between cover types is not guar­
anteed, some spatial patterns may be used as differentiating factors. In 
this case, however, discrimination between these cover types is possi-

ble only in those parts of the image where they do not belong to the 
same surrounding. In other words, spatial (size/shape) investigation is 
neither a necessary nor sufficient condition for identification of objects. 
On the contrary, spectral identity is necessary and sufficient condition 
for identification. In fact, any spatial (size, shape, contextual) investi­
gation criteria have the following characteristics: 

1. not always possible: context-dependent, i.e. relying on contrast 
in context; this means that spatial investigation is possible only 
where contrast does exist (maintaining the geometric identity of 
the object under investigation); 

2. not precise, whenever possible: if contrast does exist between the 
object and its surrounding its size/shape identity is decayed by 
edge effect problems that reduce the focusing of the boundaries 
(as happens with HRMS imagery). 

This blurring edge problem affects: 1) 'Large' homogeneous ar­
eas: their spatial identity (size/shape) is maintained but is affected 
by unfocused-edge problems; their within-region variability is increased 
because of the "melting" contributions of small objects of different na­
ture; 2) 'Small' regions: they are merged into their dominant back­
ground, losing their spatial identity (,large' and 'small' terms are in­
tended in comparison with dimensions of ground resolution cell). 

The general effect is a widespread loss in spatial details even when a 
natural pattern is conserved through sensor investigation. Thus, tonal 
information is still predominant in HRMS imagery with respect to spa­
tialone. 
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As a consequence of the relatively low spatial resolution of HRMS 
images, also texture information level is lacking on such images (e.g. 
forests). 

Sometimes texture patterns are conceptually confused with land 
cover heterogeneity, rather due to noise-like phenomena stemming from 
edge effect problems (see above). In fact, texture information is noise­
less only when spatial edges between different land cover elements are 
respected, that is when within-region heterogeneity (texture) is actually 
produced by changes in reflectance due to a single cover type. 

These considerations must be kept in mind any time some spatial 
rules are exploited as discriminating factors. A brief description of the 
information content of raw HRMS and N-M preprocessed images, as it 
results from visual interpretation, is given. 

3.1 Spectral and spatial patterns 

HRMS images pre-processed by the N-M method can be visually as­
sessed in order to evaluate their informational utility in digital process­
ing. The N-M filter is first applied to the image of Fig. I. In order to 

emphasize its effects, the N-M filter was iterated until convergence (i.e. 
until no pixel changed its value)and the result is shown in Fig.2. 

As already said, due to functional analogies between analog and 
digital segmentation, it is possible to switch between these two seg­
mentation processes. In particular, visual assessment may regard: 1) 
Typical spectral patterns as they are ouput on the N-M filtered image 
(see Fig.2); 2) Typical spatial patterns as they are emphasized by the 
automatic segmentation process applied on the N-M filtered image. 

An overall assessment of Fig.2 shows that the filtered image has 
maintained main spectral information from the original image (only 
eliminating scene heterogeneity) as well as high spatial frequencies 
(edges) • However, HRMS filtered image leads to 
segmentation results radically different from those derived from raw 
data. 

For example, what looked originally like a vegetation crop field, that 
is a large thematically homogeneous area, appears on the filtered image 
as a set of smaller fields each one characterized by its own quite uniform 
radiance value. These elementary fields are detected by the automatic 
segmentation algorithm. Thus, the single elements of the overall field 
have lost on the filtered image what was the crop field specific spatial 
pattern (straight borders) on the original image. 

A further example regards urban areas, that is fine textured areas 
on the original image. Their texture pattern becomes much coarser 
on filtered image. The final effect on segmented filtered image cannot 
be forecast. Sometimes urban areas generate high contrast areas, that 
is areas where many small elementary regions are gathered. At other 
times smoothed urban areas generate a unique oversized region (Baraldi 
and Parmiggiani, 1989). 

These different results in segmentation are due to some inherent 
properties of the filtered image with respect to the original one, that is 
to some specific behaviors of the N-M spatial filter. 

These behaviors are: 1) Blurred edge sharpening; 2) Small details 
removal. 

The first feature causes spectral differentiability between subregions 
originally belonging to a thematically homogeneous area. This effect 
increases with the number of iterations of the filter. It tends to sep­
arate large areas of the original image into smaller regions each one 
characterized by a quite uniform color information. 

The second feature is an implicit rule in the behavior of any spatial 
domain filter. This rule says that the local area affected by the spatial 
filter investigation has to be smaller than the smallest detail to be 
conserved OIl the original image. 

Our filter implementations involve local masks whose area goes from 
5 to 7 pixels. This means that elementary regions smaller than 5 pixels 
are absent on filtered image in Fig.3. Thus, any textured area (i.e. 
any clustering of small elementary regions) on the filtered image is 
composed of textons (Julesz, 1981) as large as 5 pixels or larger, i.e., 

only coarse texture areas can be conserved. 
Generally speaking, spatial information (in terms of texture and in 

terms of size/shape properties) in the filtered image with respect to 
the original one, is either spoiled (in terms of discriminating ability) 
or lost. More precisely it can be stated: 1) There is no correlation 
between thematic content and spatial patterns in filtered image. In 
fact, in the partitioned image several regions belonging to the same 
class of geographic entities may appear very different in terms of shape 
and size. Generally speaking, this is true for any thematic class. From 
this observation it is derived that any time a size/shape knowledge 
subset on any specialized classification module is introduced, it is likely 



that some thematically homogeneous elementary regions are directed to 
different output classes. This means that the number of output classes 
produced by the classifier will be bigger than the number of different 
cover categories actually present on the image. Generally speaking, 
output classes present an "n to I" relationship with land cover types. 

2) Final discrimination leading to selection of an output class (start­
ing from cue region categories) must always rely on spectral informa­
tion: for example, if no spectral signature has been used in selecting a 
specific cue category the classification scheme must perform a cluster­
oriented segmentation in order to produce the related output class. 

3.2 Spatial relationships 

Generally speaking geometric, contextual and topological relationships 
that forecast the organization of a scene can be modeled for those areas 
where there is strong human knowledge of the objects' spatial organi­
zation. This means that many spatial rules involve geographic entities 
related to human activities in the outside world. 

Unfortunately, objects of the real world in which the human con­
tribution to regularity, in terms of shape (e.g. houses, streets), texture 
pattern (e.g. tree plantations), etc., comes to be relevant are those 
whose size are comparable or smaller than ground resolution pixel in 
HRMS images. 

Contextual and topological models for some of these real world 
objects can be conceived for aerial (Nagao and Matsuyama,1980) or 
HRMS imagery (Ton et al., 1991). However, since these objects are 
hardly restored by the HRMS sensors (typical map scaling from HRMS 
images is: 1:100,000), general (i.e. image independent) spatial rules are 
hardly detectable on the image. 

As for original image, general spatial rules (contextual and topologi­
cal) cannot be detected on N-M pre-processed images (this also depends 
on the filter's fidelity in restoring linear elements). 

4 System implementation 

In order to write the software for the designed operations, some practi­
cal objectives must be kept in mind: 1) perform efficient data processing 
in terms of computation time with respect to output data quality; 2) re­
duce the number of parameters needed by the algorithm, supporting the 
operator with experimentally set default values and with interactively 
data-driven information; 3) exploit operator's ability in evaluating pic­
torial data quality (spatial pattern) creating output images whenever 
necessary. 

4.1 Input data 

Landsat 5 TM images from the satellite pass of 27th July 1990 (Path / 
1l0w = 192/29) were used as input data. Image windows 512x 512 in 
bane 2,3 and 4, centered onto the town of Modena, were selected (see 
Fig.1 for band 4). 

The choice was based on the consideration that Vis Red and NearIR 
channels are extremely important for vegetation regions extraction. 
Any additional band is not necessary for operating the system. Re­
garding this, any feature selection criterion may be adopted asking for 
minor adaptation in the presented modules (e.g. brightness equation). 

4.2 Hardware and software platforms 

A SUN SPARCstation 4/330, with 16 MB RAM memory and 1.8 GB 
disk capacity, was used for this study. The software package SUNvi­
sion, v .1.1, was utilized for basic image processing operations (display, 
enhance, zoom, color, etc.) 

4.3 Smoothing stage 

It was verified that the original version of the N-M spatial filter (Na­
gao and Matsuyama, 1979), involving 9 and 7 pixels per investigating 
mask (taken from the SPIDER Subroutine Library, 1983), destroys thin 
regions of the image (e.g. roads, canals; see Fig.2). 

Two modified and optimized versions of the N-M filter have been 
tested for linear element conservation: 5-pixel-Iong linear masks have 
been added to some 5 and 6 pixel polygonal masks (obtained by spec­
ular division of masks implemented in the original N-M filter version). 

The optimization aspect is pursued through: 1) reduction of partial 
sums during media value calculation using already calculated pixels' 
sum values; 2) investigation of polygonal masks first (monodimensiollal 
elementary regions are less likely to occur on the image with respect 
to bidimensional elements); 3) zero variance condition detection after 
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each mask investigation. 
The two new filter versions present respectively a centric and an 

eccentric disposition oflinear masks with respect to pixel being filtered. 

The total number of masks is 80 (60 linear and 20 polygonal) in the 
first case, 140 (120 plus 20) in the second case. 

The results of filtering operations are presented by reporting the 
percentage of modified pixels for each filter iteration. 

Experimental observations suggest that one iteration of the filter is 
able to reduce heterogeneity of the scene while saving small dimensions 
pictorial details and reducing computation time: the result of the ec­
centric filter applied with only one iteration to the image of Fig.1 is 
shown in Fig.3. 

4.4 Segmentation 

4.4.1 Region-growing 

This operation follows the N-M pre-processing and was already imple­
mented for HRMS images in (see Baraldi and Parmiggiani, 1989). The 
size of the subwindow under differential investigation is initialized to 
64x64. The H parameter used by the valley detection algorithm (VDA) 
in differential histograms is set to 1. 

An output segmented image is first produced with these two param­
eters set to their default value. After image evaluation the operator may 
decide to repeat the processing step by changing the H parameter or 
interactively setting the threshold parameters. 

When the segmented output image is satisfactory the program com­
putes a basic property table of the regions. The computed attributes 
are: l)perimeter extraction (8-connected, stored in a raster image); 2) 
area value; 3) mean radiances; 4) MER (minimum enclosing rectangle) 
coordinates. 

From this point on, any search on the image will be conducted 
in terms of region elements, reading the property table first and then 
moving to the image area of interest. 

4.4.2 Region merging 

Because of imperfect overlapping of homogeneous regions through mul­
tispectral image many small regions appear along large region borders. 
These small regions have intermediate radiance values between their 
large neighbors average reflectance due to sensor averaging on the edges. 
In this regard these small regions are thematically uncertain. 

Merging of small regions with adjacent large regions presenting most 
similar multispectral mean values can reduce the total number of re­
gions by some 10% up to 50%. Besides, pixel dimension is about 1 mm; 
thus, a 1-3 pixel area will result smaller than the graphicislll error of 
human eye (2.5 mm). 

The default area threshold (MinArea) below whose merging is per­
formed is set to 1. 

4.5 Classification 

4.5.1 Feature extraction 

At this stage, kernel information from general-purpose image analysis is 
extracted: each kernel information produces an ouput labelled picture. 

The following general purpose cue regions are generated: a) low 
brightness regions; b) water regions; c) vegetation regions; d) large 
homogeneous regions; e) thin and elongated regions; f) very-thin and 
elongated regions. 

In order to define the meaning of every cue region, the specialized 
actions of each module are now described. 
a) b) Extraction of low brightness and water regions 

Low brightness regions will be further investigated by means of an 
unsupervised approach, that is, their spectral separability is going to 
be evaluated. Water regions may be further divided by some geometric 
features in rivers, ponds, lakes or sea. 

Brightness value for region j is first computed, by the expression: 

B(j) = 0.2*(Ave.GreenVIS(j)+2*Ave.RedVIS(j)+2*Ave.NearIR(j)) 

This expression stresses the difference in radiometric values for those 
bands in which atmospheric (Rayleigh) scattering is less relevant (i.e. 
for longer wavelengths). 

An adaptive threshold in brightness is evaluated through these steps: 
1) Histogram computation of brightness values for the region popula­
tion; 2) Average brightness value (AB) calculation for the region pop­
ulation; 3) Transformation of the histogram into a probability diagram 
in the [zero, AB] domain; the obtained plot is bimodal: the two modes 



should be quite clearly separated and the peak at the left side is due to 
low brightness regions; 4) Brightness threshold (BT) computation that 
makes the between-class variance maximum (Otsu, 1979). 

Any region j for which: 

B(j):::; BT 

is tested for water presence (in this manner the selection of fresh 
snow regions that are bright in visible wavelength but characterized by a 
ratio (Ave.NearIR(j)) / (Ave.RedVIS(j)) < 1 is avoided). In particular 
if: 

where: 

V(j) < 1 .and. V2(j) < 1 

V(j) = (Ave.NearIR(j»/(Ave.RedV IS(j» 

V2(j) = (Ave.NearIR(j»/(Ave.GreenVIS(j» 

then region j is considered as water region, otherwise it is associated 
with the low brightness cue category. A similar water pixel selection 
criterion is used in Ton et al.(1991). 

A correspondent rule could be applied to high brightness regions to 
detect fresh snow areas. A partial image is output, presenting both low 
brightness and water regions. 

c) Extraction of vegetation regions 
These regions can lead to further discrimination between vegetation 

agricult ural land (vegetation crop fields) and grassland or forest. 
Many vegetation indices have been compared in literature (Perry 

and Lautenschlager, 1984). The measure of the likelihood of vegetation 
that is adopted is the ratio: 

V(j) = (Ave.NearIR(j»/(Ave.RedV IS(j» 

This ratio is independent from multiplicative noise phenomena; in 
particular, it can reduce the effect due to changes in illumination con­
ditions. Thus, it appears to be quite independent from the image under 
analysis but related to the kind of sensor. 

For SPOT HRV images, the Vegetation Index Threshold (VIT) was 
empirically set to 2.2 (Baraldi and Parmiggiani, 1989), while for Land­
sat 5 images (band 4 and 3) default VIT is set to 2.5. A similar veg­
etation pixel selection criterion is used in Ton et al., (1991). In this 
scheme, any region j for which: 

V(j) >= VIT 

is considered as vegetation region. 
After the first extraction of vegetation regions by means of the de­

fault VIT, the program produces statistics of region-overlapping be­
tween low brightness and vegetation regions. The partial result image 
is also created. The operator can evaluate the results and eventually 
decide to repeat the step by setting a user-defined VIT value. 

d) Extraction of large homogeneous regions 
These regions can be a cue for recognizing urban-areas, large bare 

soil areas, lakes and sea. 
A statistical (adaptive) criterion for extracting image-driven infor­

mation is adopted. Its steps are: 1) Creation of a histogram of the area 
values for the region population; 2) Applicaton of the VDA. In this 
case the H parameter default value has been set equal to 20: in fact, 
a single mode histogram is expected, having a long "cue" on the right 
side (low population for large area values). Thus, also this parameter 
is quite image-independent (i.e., changes in H parameter do not affect 
valley detection): in this way, an adaptive area threshold value (AT) is 
obtained. Any region j is considered a large one if: 

Area(j) ?: AT 

As well as any other stage, this step may be repeated by setting 
user-defined H parameter, until the desired pictorial result is reached. 

e) f) Extraction of: i) thin and elongated regions; and ii) 
very-thin and elongated regions 

These regions can represent a cue for roads, railroads and rivers 
detection. This module is, by far, the most influenced by the operator 
choke in adopting one of the possible N-M filter implementations for the 
input image. In fact, the change in linear element fidelity for different 
N-M implementations is evident in input images (see Fig.2 and Fig.3) 
leading to a loss in thin-elongated details. 
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A thin region can be defined as a region with a high percentage of 
boundary points with respect to total area. An elongated region can 
be intuitively defined as one whose "long side" is much bigger than its 
"short side". 

Incidentally, thin regions may also be elongated as well as not elon­
gated (when they are small and rounded). On the other hand, elongated 
regions mayor may not be thin. 

The geometric characteristic of roads and railways in HRMS images 
can be described as being very thin and elongated (see below), while 
rivers are long but not necessarily very thin. 

The elongatedness factor evaluation algorithm is based on the fol­
lowing steps: 1) Fill in the holes of connected regions in order to ob­
tain simply connected regions; 2) Application of a thinning algorithm 
(Hildtch, 1969); 3) Evaluation of the longest path on thinned regions; 
4) Evaluation of average region width across the longest path direc­
tion; 5) Evaluation of the elongatedness factor as the ratio between the 
length of the longest path and the average width value. 

For more details refer to Nagao and Matsuyama (1980). In order 
to reduce the set of regions to be investigated by the elongatedness 
evaluation su broutine some simple geometric controls based on general­
purpose (image independent) parameters must be considered. 

Up to 4 parameters are used through this module. However, only 
two of them (ETI, ET2) are sometime changed by the user from their 
default value. Two parameters are oriented to the selection of elongated 
regions (e.g. rivers), while the other two are oriented to the selection 
of thin regions. 

Parameters relating to thin and elongated region selection are called: 

ETI (Elong.Thres.1) and ITl (Inner Point Thres.I) 

Parameters relating to very-thin and elongated region selection are 
called: 

ET2 (Elong.Thres.2) and IT2 (Inner Point Thres.2) 

ET parameters type refers to the expression: 

(Length of the longest path in region j)/ 
(Ave.width along the longest path for region j) 

In other words, for any region, ET refers to the ratio: 

(long side)/(short side) 

while IT parameters relate to the expression (for any region j): 

100 * [(area j) - (perimeter length j)]/(area j) 

where perimeter is 8-connected. 
This relationship represents the percentage of internal (i.e. not 

boundary) points for region j with respect to size of region j. Default 
parameter values are: 

ET1 = 6,IT1 = 25 

ET2 = 5,IT2 = 5 

These values are determined by evaluating surface feature dimen­
sions and HRMS spatial resolution (20-;.-30 meters). 

Typical thin-elongated surface elements of interest are roads and 
railroads; elongated but not thin elements are rivers. One would expect 
that thinner objects result partitioned into shorter regions, due to filter 
unproper smoothing effect over small details. 

Roads are less than 10 to up to 45 meters wide (Ton et al., 1989). 
This means that their major radiant contribution may involve 1 to 3 
pixels width for SPOT HRV, 1 to 2 pixels width for Landsat 5 TM. 
Refering to a Landsat image, a thin-elongated region such as a road 
will present internal points percentage close to 0% (IT2=5) and ET2 
?: 5. Thus, its area cannot be any smaller than ET2. 

In general, some disequalities must be verified among the program's 
parameters: 

MinArea < ET2; ET2:::; ETl; IT2:::; ITI 

From these considerations the general implementation of the module 
is as follows: 1) If Area(j} < ET2, exit; 2) If Inner Point (j) > ITI, 
(region j is not thin) exit; 3) Elong (j) evaluation occurs; 



4) IfInner Point (j) ::; IT2 then (region j is very thin): 
if Elong (j) :::: ET2 then 

region j is very-thin and elongated 
end if 

else (region j is not very-thin but it is thin) 

if ELONG (j):::: ET1 then 
region j is thin and elongated 

end if 
end if 
Some implicit logical equations can be found among cue region cat­

egories. In particular: a .and. b = 0; b .and. c = 0; e .and. f = 
O. 

4.5.2 Pattern recognition 

A consistent hierarchical knowledge organization was developed whose 
roots are the N-M pre-processed image, intermediate levels are the cue 
region categories (knowledge subsets) and whose leaves are all possible 
output classes. 

As already said, ouput classes cannot be 1 to 1 related to geographic 
features categories whenever size/shape selection criteria are adopted. 
Thus, for all output classes some spectral discrimination has to be 
scheduled. This means that whenever a spectral rule is absent or not 
sufficient in characterizing the informational content of the output class, 
a cluster analysis is highly recommended. In this way the elementary 
regions within each output class are subdivided depending on their 
inherent spectral/textural properties. 

Any output class should be conceived in order to refer (ideally) to 
a single land cover type. 

For HRMS imagery processed by a N-M filter-segmentation ap­
proach (NMHRMS) our informational hierarchy is described in Tab.I, 
where (a) to (f) are cue regions, (1) to (8) are output classes (each 
one presented in a separate labelled image). All output classes support 
clustering subclassification. 

Some relationships between output classes and geographic elements 
that are likely to occur are: 1) Depending on the number of clusters and 
on the choice of sensors, vegetation class can be spectrally segmented 
in these major categories: 

vegetation ----- ~ forest grassy areas 

~~ 
deciduous coniferous 

2)Rivers, canals, roads; 3}Built-up areas; 4) Rivers, canals; 5) Lakes, 
seas, ponds, rivers (whenever their elementary regions are not elon­
gated); 6) Roads, railroads; 7) Large bare soil areas (agricultural or 
not agricultural), urban areas; 8) Urban areas, small bare soil areas. 

These output classes should be used by the photo-interpreter as 
follows: 

Output 01 .. "" multi,p""ol (and ,p.tiol) p.tt,,", I 
HRS image raw data: spatial (and spectral) patterns 

land cover assessment ~ 

4.5.3 Unsupervised analysis 

Unsupervised analysis is applied to a single output class at a time. 
The analysis follows these steps: 1) Definition and initialization 

of the measurement space; 2) Cluster analysis by means of the ISO­
DATA (Duda and Hart, 1973) procedure; first cluster results, statisti­
cal separability and sum-of-squared-errors (SSE) value are printed; an 
output image is created; 3) Clusters statistics are input to a maximum­
likelihood decision rule; second cluster results, statistical separability 
and SSE values are printed; an output image is created; 4) Each region 
whose squared Mahalanobis distance from the closest cluster's mean is 
bigger than the 5% point ofaX2 distribution is associated with class 
"unknown"; third cluster results, statistical separability and SSE values 
are printed; an output image is created; 5) A synoptic table ofresults is 
printed. The operator accepts either ISO DATA or maximum-likelihood 
decision rule results. 

Some of these steps are explained in detail. 
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1. Measurement space 

Standard feature domain for the clustering procedure is repre­
sented by the multispectral mean radiance values. In this case 
computation is very efficient and output products look satisfac­
tory. 

Texture information, related to each segmented region, may also 
be evaluated (either in the original HRMS image or in the NMHRMS 
image bands). 

Up to seven textural parameters are extracted from gray-level 
co-occurence matrix (GLCM)(Haralick et al.,1976). Three pa­
rameters seem to be more effective: energy, entropy and vari­
ance (Baraldi and Parmiggiani, 1989). In particular, each region 
is investigated by a displacement vector that generates the co­
occurence matrix correspondent to that region. In this way the 
main problem in GLCM computation, i.e. window size setting, is 
overcome. 

In texture analysis, window size selection is a compromise be­
tween contrasting needs: reducing window size causes greater sen­
sitivity to scene noise and heavy computation time; on the other 
hand, window size should be smaller than the smallest object to 
be detected. In our case window size is as big as each region of 

interest. This region should be homogeneous in terms of surface 
feature category, that is in terms of spectral/textural informa­
tion content. Noise contribution to GLCM evaluation should be 
reduced on NMHRMS image. Texture patterns should be more 
relevant on HRMS raw data. 

A mixed spectral-textural feature space, based on normalized pat­
tern vectors, was also tested. 

Computation time for textural investigation is high in compar­
ison with all previous computation activities while classification 
improvement does not seem to be relevant. 

2. Unsupervised training 

Unsupervised training is based on natural grouping of feature 
vectors in the feature space. The result of training is a set of sig­
natures, which are statistical parameters describing each training 
sample (supervised training) or cluster (unsupervised training). 
These signatures can be deleted or merged with other signatures. 
Thus, all feature vectors are sorted into classes, based on their 
signatures, by means of a classification decision rule. Depending 
on the training method, one or several decision rules can be used 
(EDAS, 1990). 

In order to discover statistical patterns that are inherent in the 
data, an ISODATA algorithm was adopted. This algorithm is 
appropriate when the clusters form essentially compact clouds 
that are quite well separated from one another and when there 
are not great differences in the number of samples in different 
natural groups (Duda and Hart, 1973). Main characteristics of 
the ISODATA procedure are: 1) It is applied in parallel: it waits 
until all samples are clustered before updating cluster values; 2) 
it is applied iteratively; 3) it optimizes the SSE. 

The SSE criterion function uses Euclidean distance as the point­
to-point distance measure that is required by the clustering pro­
cedure. Clusters defined by Euclidean distance are not invari­
ant to linear transformations. Thus, ISODATA requires a data 
normalization before clustering. Besides, iterative optimization 
guarantees local but not global optimization: this means that 
different starting cluster centers can lead to different solutions. 
Thus, an important aspect of the procedure is the choice of the 
starting centers. 

The method selected for the starting points was already described 
(Cossu, 1988; Baraldi and Parmiggiani, 1989) while a stepwise­
optimal hierarchical clustering (Duda and Hart, 1973) can also 
be applied. 

Once clustering is completed, an output classification image is 
created, the SSE and the statistical separability between all pairs 
of clusters is evaluated. 

The adopted intercluster distance measure is the Jeffries-Matusita 
(J-M) distance. The minimum J-M distance value and the aver­
age pairwise separability of all pairs of clusters are then given 
as output. These numbers can be compared to other separabil­
ity listings in order to determine the best classification sorting 
(Swain and Davis, 1978). 



To compute the J-M distances, the classes are assumed normally 
distributed which results in a J-M relationship involving means 
and covariances but no integrals. If the clusters do not present a 
hyper ellipsoidal shape, these statistics can give a very misleading 
description of the data and the J-M values become meaningless. 
This means that the operator must rely basically on the output 
image, rather than on the statistical separability measures, in or­
der to select the best classification result. Besides, ISO DATA 
clustering is not as parametric as other clustering algorithms, 
meaning that it does not heavily rely on a normal distribution of 
input data. Then, it is more likely to produce better results with 
data that are not normally distributed. However, although the 
ISODATA algorithm is the most similar to the minimum (Eu­
clidean) distance decision rule, the signatures obtained by this 
method can produce good results with any type of classification 
decision rule. Therefore, no particular decision rule has to be 
recommended over others when ISODATA clustering is applied. 

These observations lead to the following classification strategy: 
1) A preliminary non-parametric classification is generated by 
the ISODATA procedure. This result is equivalent to using a 
minimum distance decision rule on the same signatures that are 
created by ISO DATA. This cluster analysis is expected to produce 
good results for data that are not normally distributed; 2) A 
second parametric classification procedure is then applied, which 
is more likely to produce good results for normally distributed 
data. Because of ISODATA compatibility to any classification 
rule, signatures derived from ISO DATA clustering are exploited 
in the parametric classifier. In particular, a maximum-likelihood 
decision rule is adopted. 

3. Classification decision rule 

The maximum-likelihood classifier is very parametric. It tends 
to over classify signatures with relatively large values in the co­
variance matrix. This occurs whenever a cluster (or a training 
sample) presents a large dispersion in the feature space. 

During classification all feature vectors whose Mahalanobis dis­
tance from closest cluster's mean is above the 5% point of the X 2 

distribution are marked as "unclassified". 

An output image is created and statistical separability measure­
ments are printed when unclassified feature vectors are both con-

sidered and ignored. 

The output result of cluster analysis is shown in Fig.4. 

5 Conclusions 

An unsupervised classification system for HRMS imagery, working on 
infol mation hierarchy, was developed. 

A homogeneous region segmentation process was applied. The region­
based classification procedure can be easily interfaced to traditional 
map systems (in terms of information details and vector data format). 

Spectral rules and geometric properties were used to characterize 
spectrally homogeneous elementary regions. 

Cluster-oriented investigation, in combination with the hierarchical 
organization, was utilized. Through this classification scheme the op­
erator has more information than spectral separability alone to define 
informational utility of the classification output classes. 

Some of the unsupervised algorithm's objectives are: 1) reduction in 
computation time; 2) machine-aided interactive setting ofa few general­
purpose parameters; 3) highly structured design, that allows software 
blocks to be independently created, updated, and removed. 

Related to this general approach to HRMS image classification some 
general aspects of future developments can be pointed out: 

1. In the feature extraction stage, any reliable information subset 
(kernel data) is extracted. Some effective cue category extraction 
techniques (in terms of computation time or information detail 
level) are pixel-oriented and/or are applicable to HRMS raw data 
imagery. In the paper by Ton et al. (1991) this is done for water 
pixels, vegetation pixels and road objects (identified and labelled 
as major, minor and local road instances). Pixels or regions de­
tected in this way may be excluded from any further investigation 
starting on N-M preprocessed images. This approach could be 
particularly interesting for road detection, because the conserva­
tion oflinear elements in the N-M filtered image demands a large 
increase in pre-processing computation time. 

2. Any spectral rule of interest may be introduced in the feature 
extraction stage. Each rule should be quite image-independent 
and mainly refer to VisRed and NearIr bands. In particular, a 
snow and cloud detection algorithm is under testing. 

3. A straight boundary detection and a small region gathering de­
tection procedure should also be implemented. 
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