
PARALLEL PROCESSING -
THE EXAMPLE OF AUTOMATIC RELATIVE ORIENTATION

Beate M tiller and Michael Hahn
Institute for Photogrammetry, Stuttgart University

KeplerstraJ3e 11, D-7000 Stuttgart 1
ISPRS Intercommission II / III

ABSTRACT

Procedures designed to work on parallel processing hardware
have two interdependent aspects: An algorithmic aspect and a
hardware aspect. This is presumably the reason why in pho­
togrammetry only little work is done in the field of parallel pro­
cessing. The point in favour of parallelization is the excellent
cost-benefit relation which is achieved by "super computers",
such as an SIMD computer of the MasPar Computer Corpora­
tion which is used in this investigation.
In this paper principles of parallelization are introduced. We
present a procedure for automatic relative orientation of digi­
tal stereo images. The single modules of this procedure - image
pyramids, feature extraction, correspondence, orientation param­
eters are described and discussed with regard to their adapt­
ability for parallelization on SIMD computers. The implementa­
tion on such a computer is compared with the one on a standard
computer. Finally some theoretical investigations due to the per­
formance of the parallelized procedure are reported.

1 INTRODUCTION

From the title of the paper two questions are provoked immedi­
ately:

(1) Why use automatic relative orientation?

(2) Why use parallel automatic relative orientation?

A simple answer could be: Unless the extremely time consuming
parts of the relative orientation of digital imagery are carried out
very quickly, they might better be done by the human operator.
This is state-of-the-art today, at least in photogrammetry. The
measurement of some homologous points is done manually and
the orientation parameters are computed by simple well-known
algorithms.

A progressive answer to achieve an acceptable computation time
for the whole process of automated relative orientation is to de­
velop algorithms which work on parallel processing hardware.
Parallelization in this field can be carried out on very different
levels and hardware platforms, ranging from standard computers
up to special purpose dedicated hardware systems.

Parallel processing means that several parts of an algorithm are
processed simultaneously and/or multiple data are involved. Un­
fortunately, it is not possible to use existing algorithms without
examining them, to put them on parallel processing hardware and
then to run them efficiently. E.g., with a recursive procedure it
could happen that from a large number of processors only one
is actually working. That means, before implementing an algo­
rithm one has to think about which parts of the algorithm can be
processed in parallel. More difficult is the a priori investigation
of the efficiency of the parallel working part, and the strongest
challenge is to reformulate the algorithm to come to a solution
which is well suited for parallel processing. From efficient parallel

623

algorithms it is expected that they run on the parallel processing
hardware significantly faster than the corresponding sequential
algorithms on an appropriate sequential computer.

The aim of this investigation is to design a procedure for au­
tomatic relative orientation of digital stereo images, which runs
on a massively parallel computer. All processes, including the
lower level image processes the establishment of feature corre­
spondences and the reconstruction of the orientation are analysed
to be adapted or reformulated for parallel processing.

In photogrammetric literature the task of automatic relative ori­
entation has been addressed very sparsely. Some experiments
were carried out by Li [Li88] in the environment of an analytical
plotter. More sophisticated is the procedure described by Schenk
et al. [Sche90]. They first establish correspondences of contours
defined by zero-crossings, then extract corners from these con­
tours to find corresponding points. The points are put into a
bundle adjustment program to obtain the orientation parame­
ters. These processes are embedded in a coarse-to-fine control
strategy mainly to find approximate values automatically. In

Computer Vision there exist a vast amount of algorithms revolv­
ing around the problem of relative orientation. Usually, the prob­
lem of stereo correspondence and the aspect of the reconstruc­
tion of the orientation and structure parameters are addressed
separately. In this context a variety of different features, such
as points, straight lines, orthogonal corners, conic arcs, etc. are
considered. For a recent review on the reconstruction problems
refer to Huang and Netravali [Hua90].

This paper is organized as follows: In section 2 we describe dif­
ferent models of computers and characterize them by their level
of parallelism. Basic criteria to determine the efficiency of algo­
rithms are explained, which enables us to discuss the complexity
of simple procedures. The next section gives a short descrip­
tion of an SIMD computer. The main part of this paper is the
presentation of our procedure for automatic relative orientation
and the investigations with respect to an efficient parallelization
of the different modules. The orientation is usually considered
to be a helpful step for other tasks, for example such as surface
reconstruction. Because of this we especially pay attention to
modules which are relevant for other problems also, like the im­
age pyramids or the finite element modelling. In the last section
the implementation is discussed and theoretical investigations of
the performance of the parallelized procedure are reported.

With this paper we continue investigations on vectorization of
modules for feature extraction reported by Hahn and Schneider
[Ha91]. In a forthcoming paper [Mii92] experimental results con­
cerning the quality of the orientation will be discussed, and a
detailed comparison of the parallel and the sequential algorithm
of the automatic orientation procedure will be given with respect
to the computational performance evaluated by comprehensive
tests.

2 GENERAL REMARKS ON
PARALLEL PROCESSING

2.1 Computer Models

Nowadays increasing requirements made on computer systems
demand continuous developments and improvements of these
systems. One development is the change from one-processor­
systems to multiple-processor-systems. To distinguish the dif­
ferent computer systems according to their instruction and data
streams we follow Flynn's classification [Fly66] (see figure 1).

SISD SIMD
(single instruction, (single instruction,
single data) multiple data)

one-processor-system array processor

MISD MIMD
(multiple instruction, (multiple instruction,
single data) multiple data)

multicomputer

Figure 1: Flynn's scheme

Most of the SISD computer systems work with the von­
Neumann-architecture. This means that they consist of only
one processor decoding one instruction per cycle. In contrast to
this the other three systems are provided with several processor
elements (PEs). The processors of an MISD computer work si­
multaneously with different instructions on one data element. An
SIMD system executes one sequential instruction stream which
works in parallel on a large number of data elements. Because
all processor elements are of the same speed (need the same time
for an instruction) and are at the same stage of the instruction
stream, no explicit synchronization is required. In this classifica­
tion the class of MIMD computers is the most universal and the
most powerful class. N processors execute different instructions
on different data at the same time. This involves problems of
memory organization, memory access and synchronization of the
PEs. In both multiple data classes systems with shared mem­
ory (SM) and with local memory can be distinguished. They are
called SM MIMDjSIMD and IN MIMDjSIMD, respectively. The
PEs of an IN (interconnection network) system are connected by
a network which can be arranged in various topologies (e.g. torus,
array, binary tree, hypercube, etc., cf. [Ak189]).

According to the "granularity" ofthe processing unit it is possible
to divide the different concepts of parallelism into four levels
[Bra90] (see figure 1).

level of processing example
parallelism unit

program job, task multitasking
procedure process MIMD program
expression instructions array computer (SIMD)
bit inside instructions von-Neumann architecture

Table 1: Levels of parallelism

On the highest, most coarse-grained level several jobs or inde­
pendent programs are executed parallel. The parallelism on the
procedural level is characterized by simultaneously execution of
several independent processes of one program on different pro­
cessors. Expression parallelism means that the instructions are

624

executed sequentially, but parallel on a lot of processing units
(data parallelism, massively parallel processing).

To obtain considerable increase in performance by parallelizing
a sequential algorithm careful considerations about the most ef­
fective level of parallelism and the used hardware are needed. In
practice usually one uses an available computer system and tries
to fit the algorithm to work efficiently on it.

2.2 Complexity of Algorithms

For the determination of the efficiency of a parallel algorithm
it is fundamental to compare the complexities of the sequential
algorithm and the corresponding parallel algorithm for a certain
problem. The complexity of an algorithm can be derived from the
requirements on memory, computation time or used machines.

One criteria of efficiency is the time complexity T(n), depending
on the number of data n. In general not the real run time of an
algorithm is interesting, but the order O(n) of it. If the com­
plexity for any amount of data differs only by a fixed factor, this
factor can be neglected.
(E.g.: 0(2n + 1) = O(n), 0(5n4) = 0(n4))

I time complexity I run time I example (sequential)

0(1) constant
O(log n) logarithmic binary search
O(n) linear summation

O(n * log n) quick sort (divide-conquer)
0(n2) square bubble sort
O(nk) polynomial matrix multiplication (k=3)
0{2n) exponential tree search (blind)
O(n!) travelling salesman problem

Table 2: Time complexities

Figure 2 shows common time complexity classes [Wenz91]. Algo­
rithms with the time complexity T(n) = 0(1) solve a problem in
constant time, independent of the number of data. Algorithms
with logarithmic characteristics T(n) = O(logn) are also good­
natured. Because large n satisfies

O(logn) < O(n) < O(n * logn) < O(nk) < 0(2n) < O(n!)

the run time increases according to this order. The acceleration
of a parallel algorithm compared to a sequential one is called
speed-up and is defined as the ratio

Sp(n)

Tl (n) is the required time to solve a problem with dimension n
on a one-process or-computer system. TN(n) is the correspond­
ing time for an N -processor-computer system. The speed-up is
always between 1 and N.

1 ~ Sp ~ N

Different criteria for efficiency can compete with each other. Re­
duction of time has often to be compensated by more memory.

2.3 Description of the MasPar Computer

We have used the SIMD computer MasPar-1216C of the Mas­
Par Computer Corporation to implement the algorithm for the
automatic relative orientation. Figure 2 shows the global system
architecture of the MasPar.

This MasPar system has 16 384 (214) processor elements (PEs)
arranged as a 128 x 128 PE-array. Peak performance is given
as 30 000 MIPS (millions of instructions per second) and 1500

[

I

I I
I
I I
I
I I
I
I I
I

3-stage crossbar switch

~

~ PE array
16.384 PEs

~V/
array control unit f=

VME bus
I

I/O RAM

I I
frame buffer

I I
high speed channel

I I
user defined I/O

I I
disk array system

U U

~
unix
subsystem

o color
display

HSC interface

axY;Jdi
CJ:X.J:J ar

sk
ray

Figure 2: MasPar-1216C architecture

MFLOPS (millions of floating point operations per second)
[Bla90]. System access is controlled by a front-end system (in
figure 2 shown as unix subsystem) which performs all I/O ser­
vices. Currently the front-end system is a DEC-station 5000,
connected to the back-end by a VME-bus. The PE-array is
controlled by the ACU (array control unit), which has a RISC­
CPU. The ACU decodes all instructions and broadcasts them to
the PEs.

Each PE consists of a 4-bit arithmetic logical unit, 32 32-bit
registers and 16 kByte local memory. The PEs are connected
by two different networks. First, a two-dimensional mesh struc­
ture connects each PE with its eight neighbour PEs. Second, a
3-stage crossbar switch, called router, allows parallel communi­
cation of random connection patterns, i.e. PEs can communicate
with non-neighbour PEs directly. Of course the router is consid­
erably slower than the eight-neighbour hood-connection. Most
of the other components (frame buffer, high speed channel, disk
arrays) are also typical for image processing systems.

Programming languages available for the MasPar are MPL (Mas­
Par Application Language), a MasPar-specific extension of C,
MPF (MasPar FORTRAN), a parallel FORTRAN dialect and
a language called Parallaxis, based on Modula 2. Parallaxis
is a development of the Institute for Parallel and Distributed
High-Performance Computer Systems (IPVR) of the University
of Stuttgart. For the investigations reported in this paper the
programs have been written in MPL.

3 AUTOMATIC RELATIVE
ORIENTATION

Let us first state more precisely what we mean by "automatic

625

relative orientation". It is not necessary to remark, that this is
more than only solving some equations known from analytical
photogrammetry. We assume the interior orientation of the digi­
tal or digitized images to be known. Further, in the case of aerial
images, which are of most interest from a practical point of view,
the photographs are assumed to be taken under typical geomet­
rical conditions in which one model is formed by two images. No
assumptions are made regarding modelling the shape of the im­
aged 3D-surface, or concerning starting points for initialization of
the correspondence process. Approximate values, wherever they
are needed within the algorithms, have to be found automatically,
e.g. by multiresolution techniques and a coarse-to-fine strategy.
This standard technique is widely used in many image analy­
sis and reconstruction tasks [Ack91]. The aim of the automatic
orientation procedure is to estimate the orientation parameters.
Structure information (e.g. the depth of corresponding points or
the coordinates of these points in the model coordinate system)
can be reconstructed within the orientation step, but this is not
considered to be an essential part of the orientation. As in the
conventional case the location of the corresponding features and
the orientation can be used to compute structure by simple spa­
tial resection in a further step.

In the following subsections the procedure is explained in detail.
The structure of our approach is sketched in figure 3.

image pyramid level i

1
feature extraction

~
matching and orientation

use prior information from
the displacements of the pre-
vious level to establish feature
correspondences

iconic check:
eliminate erroneous proposed
feature correspondences by
grey value correlation

geometric check :
estimate orientation parame-
ters and use coplanarity to
eliminate miscorrespondences

1
derivation of displacement

fields on a regular grid

projection onto the next
refinement level

~
proceed with next level

Figure 3: Structure of the automatic relative orientation proce­
dure

3.1 Image Pyramids

Image pyramids are a multiresolution representation of an image.
The original image (10) is convolved with a Gaussian kernel (GO")
to obtain a smoothed image (10) and then resampled by picking
out each second pixel of a row and each second row to construct

(h) [Ack91] [Ja91]. The Gaussian pyramid can be generated by
applying the following recursive formula:

For smoothing with the Gaussian kernel we use a Ij of 1 pixel
radius. The second step is the resampling of Ii in accordance
with the coarsening of the spatial resolution.

3.2 Feature Extraction

On each level of the Gaussian image pyramid features are ex­
tracted with the point operator proposed by Forstner [Fo91]
[Fo87]. The multi resolution representation of the symbolic image
description forms a feature pyramid.

First, the point operator selects windows of significant (rough)
texture. This selection is carried out by extracting local max­
ima of interest values in the corresponding images in combina­
tion with a threshold operation, which defines the number of
significant windows (e.g. 1% of the total number of pixels). The
point position of the feature (corner, circle, other isotropic tex­
ture) within this window is estimated and used in the following
matching and orientation step.

3.3 Matching and Orientation

The matching and orientation process comprises the following
three aspects :

• Use prior information from the previous level to establish
feature correspondences.

• Eliminate erroneous feature correspondences by grey value
correlation.

• Estimate the orientation and use the coplanarity condition
to eliminate miscorrespondences.

3.3.1 Prior Information from the Previous Level (Ap­
proximate Values)

The predicted regular displacement fields obtained from the pre­
vious level (see section 3.4) are giving the approximate positions
of the selected points in the corresponding stereo image partner.
The approximate displacement vectors of the positions of the se­
lected points are calculated by bilinear interpolation within the
corresponding facets. The candidates of corresponding points are
established by taking up all points found within a search window
around the approximate position. The correspondence process
which can result in multiple correspondences is sketched in fig­
ure 4.

approximate position
search window

multiple correspondences

Figure 4: Establishing candidates of corresponding points

626

3.3.2 Iconic Check (Correlation)

All this candidates of corresponding points are verified by com­
puting normalized cross correlation with the corresponding win­
dows of these points. If the intensity information of the candi­
dates is contradictory, the candidates are suspect and therefore
eliminated.

3.3.3 Orientation Estimation and Geometric Check
(Coplanarity Constraint)

It is well known that the image coordinates (x, y) and (x', y') of
a point correspondence satisfy the coplanarity constraint, which
can be formulated according to

[x' y' 1] E [~] o. (1)

The so-called E-matrix [Hua89] can be composed by a skew­
symmetric matrix T and a rotation matrix R.

E = T·R (2)

[

Tn T12 T13]
R = T21 T22 T23

T31 T32 T33

The elements tl, t2, t3 are the basis or the translation between
the images, defined in the local model coordinate system.
Equation (1) is linear and homogeneous in the ei terms, that
means, the nine parameters ei can be estimated up to an un­
known scale parameter. Consequently, with at least eight point
correspondences the elements of the E-matrix can be estimated
by a linear least squares algorithm [Ste73] [Lon81]. We prefer
this approximate but linear (direct) solution to the relative ori­
entation. Of course the iterative algorithms which work with five
or more points also can be used. But because our intension is to
compute the orientation with a really large number of point cor­
respondences P (P» 5 or 8), the differences between the linear
and non linear solutions are small if a geometric configuration is
given as it is in typical image flights with basis-to-height ratios
in the range of 1 : 1 to 1 : 3.

If the E-matrix is calculated, all the candidates of corresponding
points can be checked according to equation (1). That means, the
coplanarity constraint is used to eliminate erroneous candidates.
Together with the iconic check two relatively independent checks
are carried out. One is working on the intensities directly, the
other is exploiting a geometric condition (coplanarity).

3.4 Deriving Displacement Fields on a Regular
Grid

All the point correspondences Pi, which are confirmed within the
matching process, are used to derive a displacement vector field.
The individual displacements (Prr:,Py)Pi are simply the difference
between the estimated point location of the corresponding points.
Because for matching on the next refinement level it is more
convenient to have the displacement information on a regular
grid, all displacements are used to reconstruct a displacement
vector model by finite element (FE) modelling. The grid spacing
for the displacement lattice is a multiple of the pixel size (e.g.
10-20 x pixel size). The displacements (Prr:,Py)ij are estimated
at the nodes ij, assuming a bilinear interpolation model within

a facet and smoothness of the displacement fields pa!(i,j) and
py(i,j). Smoothness results from regularization of Pa! and py
with a Laplacian kernel.

The projection of the estimated regular displacement vector field
onto the next level of the pyramid gives the predicted prior infor­
mation used to start the matching on the next refinement level
again (section 3.3.1).

Adjusting the regular displacement fields with the FE-model by
least squares results in solving a normal equation system with a
large but sparse normal equation matrix. Though algorithms to
solve linear equations in parallel are known (e.g. cf. [Hos83]), they
are not designed to exploit the sparseness of the matrix efficiently.
Therefore we developed an algorithm based on the following idea:
Apply the FE-approach not on all points simultaneously, but use
it just like a local operator. This FE-operator with a window size
of 3 x 3 or 5 x 5 nodes is utilized to estimate the displacements
at the central node. Because local operators usually fit to data
parallel approaches, the algorithm proposed is expected to be
well-suited for this task. Global support of this local operation is
reached by the prior information of the previous level (multilevel
control) and the regularization.

3.5 Combining the Parts of the Algorithm

For both images of the stereo pair image pyramids are generated.
Applying the Forstner operator points of interest are extracted
at each level of the pyramids.

The matching process is started at a coarse level of resolution.
Correspondence of points is established using iconic and geomet­
ric checks to eliminate erroneous point correspondences. The
remaining point pairs are used to determine the regular displace­
ment fields of the current pyramid level i. These estimated dis­
placements (Pa!'Py) are projected onto the next finer level (i -1).
By applying bilinear interpolation, from these predicted displace­
ment fields the individual, approximate displacement vector of
each interest point is derived. By establishing candidates of point
correspondences this hierarchical matching process is continued
until the finest level is reached.

The estimated E-matrix can be decomposed uniquely into rota­
tion and translation as shown e.g. in [Tsa84]. In this way, the
more familiar five parameters (instead of eight ei 's) of the relative
orientation are obtained.

3.6 Example

The example we use to demonstrate the automatic orientation
procedure is taken from [Ha88]. The digital image pair is a part
of digitized aerial stereo imagery and each digital image has about
1200 x 900 pixels. Figure 5 shows the upper two levels of the
image pyramids together with selected points. Most of them are
of "general isotropic texture" a few are classified to be "corners"
or "circular features". The matching process yields 15 correspon­
dences on the lowest resolution level (selected are'" 30 points in
each image). The regular displacement vector field reconstructed
by the FE-approach is shown in figure 6. This vector field is used
as prior information to guide the search for establishing candi­
dates of correspondences on the next refinement level and so on.

4 ANALYSIS OF PARALLEL
ALGORITHMS

In this chapter we approach the parallelization of our procedure
for relative orientation by discussing the complexity of the algo­
rithms theoretically. The most important aspects which have to

627

Figure 6: Displacement vectors and the derived regular displace­
men t vector field

be taken into consideration at the implementation of the proce­
dure are shortly described. In general any filter algorithm which
works on a lot of independent data is suitable for parallelization
on SIMD systems. The parts of our orientation algorithm where
these conditions are given are the generation of image pyramids
and the feature extraction. The matching process and the FE­
procedure have to be considered separately.

The investigations described in this chapter are based on an ideal
theoretical computer model which is provided with any number
of PEs and any size of memory. The executed instructions are
assumed to be of the same speed.

Let Tl (n) be the time complexity of an algorithm for a one­
processor computer and n be the number of data. TN(n) is
the corresponding time complexity of an algorithm for an N­
processor computer. Sp describes the speed-up as introduced in
section 2.2.

4.1 Theoretical Investigations

The algorithm of generating image pyramids consists of filtering.
Intuitively parallel filtering and resampling for each level of the
pyramid is expected to be more efficient than sequential filtering
and resampling. The time complexities for the sequential algo­
rithms increase linearly with the number of pixels whereas the
parallel resampling and filter algorithms are independent of the
number of the data:

Ttck(n)

Tf<7(n)

TJjck(n)

T~<7(n)

O(n)

(O(n)+O(::)+O(~)+"')'fs
4 16

O(p·fs·n)=O(n)

0(1)

(0(1) + 0(1) + 0(1) + ...). fs

O(p· f s . 1) = 0(1)

where n is the number of pixels at level 0, p the number of pyra­
mid levels and f s the time used for one filter operation. In both
cases T(n) depends on the filter size and the pyramid size. As
long as the number of data n involved is very large compared
with p and f s, the effect of these parameters can be neglected.

The algorithm for feature extraction consists of pixel oriented
local operations like the determination of gradients and their
squares, the calculation of normal equation matrices (which is
a convolution), and the derivation of a measure of the isotropy of
the texture. Non-maxima-suppression, thresholding operations
and the estimation of the location of the optimal point position
are also operations in which each pixel of the image is addressed

Figure 5: Two levels of the image pyramids. The selected points are marked in the images by black dots.

with the same sequence of instruction. Obviously, a data parallel
approach is well-suited for this task. The time complexities are
easily found to be :

T!eature (n)

Tkeature (n)
O(n)

0(1) .

That means, a parallel algorithm for generating image pyramids
and feature extraction which is independent on the image size
can be developed. In contrast to that, the computation time of
the corresponding sequential algorithm increases linear with the
number of pixels. For both algorithms together the speed-up is
given by

Sp
Tl{n) Trck{n) + Tfu(n) + T!eature(n)

TN(n) = rtck(n) + T7ru(n) + Tkeature(n)

Ol(n) = O()
ON(1) n

The algorithms above work pixel parallel. In contrast to that the
matching part works parallel with the number of corresponding
points m.

To investigate the time complexities of the matching algorithm
described in section 3.3 let us first consider the three parts:

(1) Grey value correlation and thresholding operations.

(2) Estimation of the E-matrix, which is identical with a solu­
tion of a linear equation system.

(3) Finite element modelling.

It is easy to recognize, that the first part has the same charac­
teristica as the pixel oriented operations mentioned above. The
correlation and threshold operations depend on the number of
point correspondences m and on the time f s needed for the par­
ticular operations. Assuming m to be the largest factor we obtain

Tp)(m)

TjJ)(m)

T((fsc + fSnm)' m) = O(m)

T((fsc + fSnm) ·1) = 0(1)

Part two is the solution of a linear adjustment problem. The
number of unknowns his 8, and the number of equations depends
on the amount of point correspondences m. The observation
equations of the problem are

A(mxh) . X(hXl) -l(mxl) V(mxl) .

628

The single steps to come to the solution are the calculation of
A and 1, AT A, (AT A)-I, ATZ, v and thresholding. The time
complexity of the sequential computation is influenced by the
matrix multiplication, whereas in the parallel algorithm most
time is needed to calculate the design matrix A. Thus we find

Ti 2
) (m)

T;;)(m)

T(h2
• m) = O(m)

T(h· m) = O(m) .

This suggests that no time will be saved by parallelizing this part.

For the third part which is the finite element approach it is most
difficult to analyse the time complexities. The time needed for
the calculation of the displacement vectors arises linearily with
m in the sequential solution and can be solved in parallel in a
constant time.

Ti 3
.
1

) (m)

T};·l\m)

O(m)

0(1)

The sequential estimation of the displacement vector field on the
regular grid is of complexity 0(g2 . m), where 9 marks the num­
ber of the grid points. In the parallel solution we work with a
local operator described in section 3.4. From this follows, that
the time complexity depends only on the time used for the lo­
cal operator. In detail there is a dependency from the number
of correspondences and grid points within the operator window,
which we address O(Lop).

Ti3
.
2)(m)

T};·2) (Lop)

0(g2. m)

O(Lop)

For the projection of the estimated regular displacement fields
the number of the grid points 9 is essential for the sequential
solution; in parallel we have a constant time.

Ti3
.
3

) (g)

T};·3) (g)

O(g)

0(1)

The time dependency of the bilinear interpolation step applied to
calculate the approximate displacements for all selected interest
points (total number is i) is:

Ti 3.4) (i) O(i)

T};.4) (i) 0(1)

The last step is searching candidates for correspondence in the
search window. If the search window is of size n s , the time com­
plexity is

T~3.5) (i)

T~·5)(i)

T(n s • i) = O(i)

T(ns ·1) = 0(1)

Finally the total speed-up of the algorithm comprising matching
and FE-modelling is obtained:

Sp =
3· O(m) + 0(g2. m) + O(g) + 2· O(i)

O(m) + O(Lop) + 5·0(1)

O(m) + 0(g2. m) + O(i)

O(m) + O(Lop)

With this theoretical considerations the time complexities of the
automatic relative orientation are examined. Of course, it should
be recalled, that working with a theoretical machine model (char­
acterized at the beginning of this section) simplifications and
approximations are necessary. Nevertheless, just this simplifi­
cations help to analyse the parallel algorithm before doing the
implementation.

4.2 Implementation

For the implementation of the algorithms the following general
aspects have to be taken into account:

• Make allowance for exploiting the given topology of the pro­
cessor elements (see 2.3) if possible.

4& Maximize load of the PEs.

• Organize the program to ensure minimal communication
between the PEs, because communication instructions are
slow.

The image pyramid and feature extraction algorithms are pro­
grammed relating the PEs to the pixels of the images. Because
of simultaneously execution of an instruction the capacity of all
PEs is fully used. The implementation of the matching proce­
dure just under development. Details about the implementation,
about real measured running times and a comparison between
the run times of implemented sequential and parallel algorithms
will be published later [Mu92]. There also a quality assessment
of the orientation will be given.

5 CONCLUDING REMARKS

A method for automatic relative orientation of a digital stereo
image pair has been presented. Some parts of the procedure
such as the generation of image pyramids or the extraction of
significant points can also be used for other tasks (e.g. surface
reconstruction). The other two important parts of the proce­
dure are the matching to find the displacement vectors and the
finite element process to estimate the displacement fields on a
predefined regular grid.

To discuss this procedure with respect to parallelization an in­
troduction into some fundamental principles of parallelization is
given. By a theoretical analysis of the individual processes the
expected speed-up of the parallel procedure with respect to a
sequential algorithm is worked out. The experimental prove con­
cerning the performance of the whole procedure as well as to the
quality is just in work and will be reported in [Mu92].

Finally we want to note, that by a simple modification of the pro­
cedure an approach for surface reconstruction can be obtained. If
the orientation on each level is found, the corresponding points
can directly be used to estimate structure (depth in the local

629

model coordinate system). The finite element process applied to
the structure gives a surface model. By backprojection to the
image plane the prior information for starting the matching pro­
cess on the next refinement level is obtained. At this point we
are in the loop of the described orientation procedure again.

References

[Ack91]

[Ak189]

[Bla90]

[Bra90]

[Fly66]

[Fo87]

[Fo91]

[Ha88]

[Ha91]

[Hos83]

[Hua89]

[Hua90]

[Ja91]

[Li88]

[Lon81]

Ackermann, F" Hahn, M.: Image Pyramids for Dig­
ital Photogrammetry.
In: Ebner,H. et al.: Digital Photogrammetric Sys­
tems, Wichman Verlag, Karlsruhe, 1991

Akl, S.: The Design and Analysis of Parallel Algo­
rithms.
Prentice Hall, New York, 1989

Blank, T.: The MasPar MP-l Architecture.
Proceedings of the IEEE Compcon Spring 1990,
February 1990

Braunl, T.: Massiv parallele Programmierung mit
dem Parallaxis - Modell.
Informatik Fachberichte 246, Springer Verlag, 1990

Flynn, M.J.: Very high-speed computing systems.
Proceedings of the IEEE, vol. 54, p. 1901-1910, 1966

Forstner, W., GUlch, E.: A fast Operator for De­
tection and Location of Distinct Points, Corners and
Centers of Circular Features,
In: Proc. ISPRS Intercommision Workshop on "Fast
Processing of Photogrammetric Data", Interlaken,
June, 1987

Forstner, W.: Statistische Verfahren fUr die automa­
tische Bildanalyse und ihre Bewertung bei der Ob­
jekterkennung und - vermessung.
Habilitationsschrift, DGK, Reihe C, no. 370,
Munchen, 1991

Hahn, M., Forstner, W.: The Applicability of a Fea­
ture Based and a Least Squares Matching Algorithm
for DEM - Acquisition. Int. Arch. Ph. RS. (27), B9,
III pp. 150, 1988

Hahn, M., Schneider, F.: Feature Based Surface Re­
construction - A Hierarchical Approach Developed
for MOMS-02 Imagery.
IGARRS, 1991

Hossfeld, F.: Parallele Algorithmen.
Informatik Fachberichte 64, Springer Verlag, Berlin,
Heidelberg, 1983

Huang, T.S., Faugeras, O.D.: Some Properties of the
E Matrix in Two - View Motion Estimation.
IEEE Trans. on PAMI, vol. 11, no. 12, p. 1310-1312,
December, 1989

Huang, T.S, Netravali, A.N.: Motion and Structure
from Feature Correspondences: A Review.
In: Huang: Tutorial on Computer Vision and Dy­
namic Scene Analysis, ISPRS Comm. V Symposium,
Zurich 1990

Jahne, B.: Digitale Bildverarbeitung.
2. Aufiage, Springer Verlag, Berlin, Heidelberg, 1991

Li, M.: High Precision Relative Orientation Using the
Feature Based Matching Techniques.
ISPRS 27 B3, p. 456-465, 1988

Longuet - Higgins, H. C.: A Computer Algorithm for
Reconstructing a Scene from Two Projections.
Nature 293, 1981

[Mii92] Miiller, B., Hahn, M.: Quality and Performance
Analysis of Automatic Parallel Relative Orientation.
In preparation, Stuttgart, 1992

[Sche90J Schenk, T., Toth, Ch., Li, J.-Ch.: Zur automatischen
Orientierung von digitalen Bildpaaren.
ZPF, 58. Jahrgang, 6/90, p. 182-189, November, 1990

[Ste73] Stephanovic, P.: Relative Orientation - A New Ap­
proach.
The ITC Journal 3, 1973

[Tsa84] Tsai, R. Y., Huang, T. S.: Uniqueness and Estima­
tion of Three - Dimensional Motion Parameters of
Rigid Objects with Curved Surfaces.
IEEE Trans. on PAMI, vol. 6, no. 1, p. 13-27, Jan­
uary, 1989

[Wen89] Weng, J., Huang, T. S., Ahuja, N.: Motion and Struc­
ture from Two Perspective Views: Algorithms, Error
Analysis, and Error Estimation.
IEEE Trans. on PAMI, vol. 11, no. 5, p. 451-475,
May, 1989

[Wenz91] Wenzel, L.: Parallele Programmierkonzepte.
Franzis Verlag, Miinchen, 1991

630

