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ABSTRACT 

Procedures designed to work on parallel processing hardware 
have two interdependent aspects: An algorithmic aspect and a 
hardware aspect. This is presumably the reason why in pho­
togrammetry only little work is done in the field of parallel pro­
cessing. The point in favour of parallelization is the excellent 
cost-benefit relation which is achieved by "super computers", 
such as an SIMD computer of the MasPar Computer Corpora­
tion which is used in this investigation. 
In this paper principles of parallelization are introduced. We 
present a procedure for automatic relative orientation of digi­
tal stereo images. The single modules of this procedure - image 
pyramids, feature extraction, correspondence, orientation param­
eters are described and discussed with regard to their adapt­
ability for parallelization on SIMD computers. The implementa­
tion on such a computer is compared with the one on a standard 
computer. Finally some theoretical investigations due to the per­
formance of the parallelized procedure are reported. 

1 INTRODUCTION 

From the title of the paper two questions are provoked immedi­
ately: 

(1) Why use automatic relative orientation? 

(2) Why use parallel automatic relative orientation? 

A simple answer could be: Unless the extremely time consuming 
parts of the relative orientation of digital imagery are carried out 
very quickly, they might better be done by the human operator. 
This is state-of-the-art today, at least in photogrammetry. The 
measurement of some homologous points is done manually and 
the orientation parameters are computed by simple well-known 
algorithms. 

A progressive answer to achieve an acceptable computation time 
for the whole process of automated relative orientation is to de­
velop algorithms which work on parallel processing hardware. 
Parallelization in this field can be carried out on very different 
levels and hardware platforms, ranging from standard computers 
up to special purpose dedicated hardware systems. 

Parallel processing means that several parts of an algorithm are 
processed simultaneously and/or multiple data are involved. Un­
fortunately, it is not possible to use existing algorithms without 
examining them, to put them on parallel processing hardware and 
then to run them efficiently. E.g., with a recursive procedure it 
could happen that from a large number of processors only one 
is actually working. That means, before implementing an algo­
rithm one has to think about which parts of the algorithm can be 
processed in parallel. More difficult is the a priori investigation 
of the efficiency of the parallel working part, and the strongest 
challenge is to reformulate the algorithm to come to a solution 
which is well suited for parallel processing. From efficient parallel 
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algorithms it is expected that they run on the parallel processing 
hardware significantly faster than the corresponding sequential 
algorithms on an appropriate sequential computer. 

The aim of this investigation is to design a procedure for au­
tomatic relative orientation of digital stereo images, which runs 
on a massively parallel computer. All processes, including the 
lower level image processes the establishment of feature corre­
spondences and the reconstruction of the orientation are analysed 
to be adapted or reformulated for parallel processing. 

In photogrammetric literature the task of automatic relative ori­
entation has been addressed very sparsely. Some experiments 
were carried out by Li [Li88] in the environment of an analytical 
plotter. More sophisticated is the procedure described by Schenk 
et al. [Sche90]. They first establish correspondences of contours 
defined by zero-crossings, then extract corners from these con­
tours to find corresponding points. The points are put into a 
bundle adjustment program to obtain the orientation parame­
ters. These processes are embedded in a coarse-to-fine control 
strategy mainly to find approximate values automatically. In 

Computer Vision there exist a vast amount of algorithms revolv­
ing around the problem of relative orientation. Usually, the prob­
lem of stereo correspondence and the aspect of the reconstruc­
tion of the orientation and structure parameters are addressed 
separately. In this context a variety of different features, such 
as points, straight lines, orthogonal corners, conic arcs, etc. are 
considered. For a recent review on the reconstruction problems 
refer to Huang and Netravali [Hua90]. 

This paper is organized as follows: In section 2 we describe dif­
ferent models of computers and characterize them by their level 
of parallelism. Basic criteria to determine the efficiency of algo­
rithms are explained, which enables us to discuss the complexity 
of simple procedures. The next section gives a short descrip­
tion of an SIMD computer. The main part of this paper is the 
presentation of our procedure for automatic relative orientation 
and the investigations with respect to an efficient parallelization 
of the different modules. The orientation is usually considered 
to be a helpful step for other tasks, for example such as surface 
reconstruction. Because of this we especially pay attention to 
modules which are relevant for other problems also, like the im­
age pyramids or the finite element modelling. In the last section 
the implementation is discussed and theoretical investigations of 
the performance of the parallelized procedure are reported. 

With this paper we continue investigations on vectorization of 
modules for feature extraction reported by Hahn and Schneider 
[Ha91]. In a forthcoming paper [Mii92] experimental results con­
cerning the quality of the orientation will be discussed, and a 
detailed comparison of the parallel and the sequential algorithm 
of the automatic orientation procedure will be given with respect 
to the computational performance evaluated by comprehensive 
tests. 



2 GENERAL REMARKS ON 
PARALLEL PROCESSING 

2.1 Computer Models 

Nowadays increasing requirements made on computer systems 
demand continuous developments and improvements of these 
systems. One development is the change from one-processor­
systems to multiple-processor-systems. To distinguish the dif­
ferent computer systems according to their instruction and data 
streams we follow Flynn's classification [Fly66] (see figure 1). 

SISD SIMD 
(single instruction, (single instruction, 
single data) multiple data) 

one-processor-system array processor 

MISD MIMD 
(multiple instruction, (multiple instruction, 
single data) multiple data) 

multicomputer 

Figure 1: Flynn's scheme 

Most of the SISD computer systems work with the von­
Neumann-architecture. This means that they consist of only 
one processor decoding one instruction per cycle. In contrast to 
this the other three systems are provided with several processor 
elements (PEs). The processors of an MISD computer work si­
multaneously with different instructions on one data element. An 
SIMD system executes one sequential instruction stream which 
works in parallel on a large number of data elements. Because 
all processor elements are of the same speed (need the same time 
for an instruction) and are at the same stage of the instruction 
stream, no explicit synchronization is required. In this classifica­
tion the class of MIMD computers is the most universal and the 
most powerful class. N processors execute different instructions 
on different data at the same time. This involves problems of 
memory organization, memory access and synchronization of the 
PEs. In both multiple data classes systems with shared mem­
ory (SM) and with local memory can be distinguished. They are 
called SM MIMDjSIMD and IN MIMDjSIMD, respectively. The 
PEs of an IN (interconnection network) system are connected by 
a network which can be arranged in various topologies (e.g. torus, 
array, binary tree, hypercube, etc., cf. [Ak189]). 

According to the "granularity" ofthe processing unit it is possible 
to divide the different concepts of parallelism into four levels 
[Bra90] (see figure 1). 

level of processing example 
parallelism unit 

program job, task multitasking 
procedure process MIMD program 
expression instructions array computer (SIMD) 
bit inside instructions von-Neumann architecture 

Table 1: Levels of parallelism 

On the highest, most coarse-grained level several jobs or inde­
pendent programs are executed parallel. The parallelism on the 
procedural level is characterized by simultaneously execution of 
several independent processes of one program on different pro­
cessors. Expression parallelism means that the instructions are 
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executed sequentially, but parallel on a lot of processing units 
(data parallelism, massively parallel processing). 

To obtain considerable increase in performance by parallelizing 
a sequential algorithm careful considerations about the most ef­
fective level of parallelism and the used hardware are needed. In 
practice usually one uses an available computer system and tries 
to fit the algorithm to work efficiently on it. 

2.2 Complexity of Algorithms 

For the determination of the efficiency of a parallel algorithm 
it is fundamental to compare the complexities of the sequential 
algorithm and the corresponding parallel algorithm for a certain 
problem. The complexity of an algorithm can be derived from the 
requirements on memory, computation time or used machines. 

One criteria of efficiency is the time complexity T(n), depending 
on the number of data n. In general not the real run time of an 
algorithm is interesting, but the order O(n) of it. If the com­
plexity for any amount of data differs only by a fixed factor, this 
factor can be neglected. 
(E.g.: 0(2n + 1) = O(n), 0(5n4) = 0(n4)) 

I time complexity I run time I example (sequential) 

0(1) constant 
O(log n) logarithmic binary search 
O(n) linear summation 

O(n * log n) quick sort (divide-conquer) 
0(n2 ) square bubble sort 
O(nk) polynomial matrix multiplication (k=3) 
0{2n) exponential tree search (blind) 
O(n!) travelling salesman problem 

Table 2: Time complexities 

Figure 2 shows common time complexity classes [Wenz91]. Algo­
rithms with the time complexity T(n) = 0(1) solve a problem in 
constant time, independent of the number of data. Algorithms 
with logarithmic characteristics T(n) = O(logn) are also good­
natured. Because large n satisfies 

O(logn) < O(n) < O(n * logn) < O(nk) < 0(2n) < O(n!) 

the run time increases according to this order. The acceleration 
of a parallel algorithm compared to a sequential one is called 
speed-up and is defined as the ratio 

Sp(n) 

Tl ( n) is the required time to solve a problem with dimension n 
on a one-process or-computer system. TN(n) is the correspond­
ing time for an N -processor-computer system. The speed-up is 
always between 1 and N. 

1 ~ Sp ~ N 

Different criteria for efficiency can compete with each other. Re­
duction of time has often to be compensated by more memory. 

2.3 Description of the MasPar Computer 

We have used the SIMD computer MasPar-1216C of the Mas­
Par Computer Corporation to implement the algorithm for the 
automatic relative orientation. Figure 2 shows the global system 
architecture of the MasPar. 

This MasPar system has 16 384 (214) processor elements (PEs) 
arranged as a 128 x 128 PE-array. Peak performance is given 
as 30 000 MIPS (millions of instructions per second) and 1500 
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Figure 2: MasPar-1216C architecture 

MFLOPS (millions of floating point operations per second) 
[Bla90]. System access is controlled by a front-end system (in 
figure 2 shown as unix subsystem) which performs all I/O ser­
vices. Currently the front-end system is a DEC-station 5000, 
connected to the back-end by a VME-bus. The PE-array is 
controlled by the ACU (array control unit), which has a RISC­
CPU. The ACU decodes all instructions and broadcasts them to 
the PEs. 

Each PE consists of a 4-bit arithmetic logical unit, 32 32-bit 
registers and 16 kByte local memory. The PEs are connected 
by two different networks. First, a two-dimensional mesh struc­
ture connects each PE with its eight neighbour PEs. Second, a 
3-stage crossbar switch, called router, allows parallel communi­
cation of random connection patterns, i.e. PEs can communicate 
with non-neighbour PEs directly. Of course the router is consid­
erably slower than the eight-neighbour hood-connection. Most 
of the other components (frame buffer, high speed channel, disk 
arrays) are also typical for image processing systems. 

Programming languages available for the MasPar are MPL (Mas­
Par Application Language), a MasPar-specific extension of C, 
MPF (MasPar FORTRAN), a parallel FORTRAN dialect and 
a language called Parallaxis, based on Modula 2. Parallaxis 
is a development of the Institute for Parallel and Distributed 
High-Performance Computer Systems (IPVR) of the University 
of Stuttgart. For the investigations reported in this paper the 
programs have been written in MPL. 

3 AUTOMATIC RELATIVE 
ORIENTATION 

Let us first state more precisely what we mean by "automatic 
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relative orientation". It is not necessary to remark, that this is 
more than only solving some equations known from analytical 
photogrammetry. We assume the interior orientation of the digi­
tal or digitized images to be known. Further, in the case of aerial 
images, which are of most interest from a practical point of view, 
the photographs are assumed to be taken under typical geomet­
rical conditions in which one model is formed by two images. No 
assumptions are made regarding modelling the shape of the im­
aged 3D-surface, or concerning starting points for initialization of 
the correspondence process. Approximate values, wherever they 
are needed within the algorithms, have to be found automatically, 
e.g. by multiresolution techniques and a coarse-to-fine strategy. 
This standard technique is widely used in many image analy­
sis and reconstruction tasks [Ack91]. The aim of the automatic 
orientation procedure is to estimate the orientation parameters. 
Structure information (e.g. the depth of corresponding points or 
the coordinates of these points in the model coordinate system) 
can be reconstructed within the orientation step, but this is not 
considered to be an essential part of the orientation. As in the 
conventional case the location of the corresponding features and 
the orientation can be used to compute structure by simple spa­
tial resection in a further step. 

In the following subsections the procedure is explained in detail. 
The structure of our approach is sketched in figure 3. 

image pyramid level i 

1 
feature extraction 

~ 
matching and orientation 

use prior information from 
the displacements of the pre-
vious level to establish feature 
correspondences 

iconic check: 
eliminate erroneous proposed 
feature correspondences by 
grey value correlation 

geometric check : 
estimate orientation parame-
ters and use coplanarity to 
eliminate miscorrespondences 

1 
derivation of displacement 

fields on a regular grid 

projection onto the next 
refinement level 

~ 
proceed with next level 

Figure 3: Structure of the automatic relative orientation proce­
dure 

3.1 Image Pyramids 

Image pyramids are a multiresolution representation of an image. 
The original image (10) is convolved with a Gaussian kernel (GO") 
to obtain a smoothed image (10) and then resampled by picking 
out each second pixel of a row and each second row to construct 



(h) [Ack91] [Ja91]. The Gaussian pyramid can be generated by 
applying the following recursive formula: 

For smoothing with the Gaussian kernel we use a Ij of 1 pixel 
radius. The second step is the resampling of Ii in accordance 
with the coarsening of the spatial resolution. 

3.2 Feature Extraction 

On each level of the Gaussian image pyramid features are ex­
tracted with the point operator proposed by Forstner [Fo91] 
[Fo87]. The multi resolution representation of the symbolic image 
description forms a feature pyramid. 

First, the point operator selects windows of significant (rough) 
texture. This selection is carried out by extracting local max­
ima of interest values in the corresponding images in combina­
tion with a threshold operation, which defines the number of 
significant windows (e.g. 1% of the total number of pixels). The 
point position of the feature (corner, circle, other isotropic tex­
ture) within this window is estimated and used in the following 
matching and orientation step. 

3.3 Matching and Orientation 

The matching and orientation process comprises the following 
three aspects : 

• Use prior information from the previous level to establish 
feature correspondences. 

• Eliminate erroneous feature correspondences by grey value 
correlation. 

• Estimate the orientation and use the coplanarity condition 
to eliminate miscorrespondences. 

3.3.1 Prior Information from the Previous Level (Ap­
proximate Values) 

The predicted regular displacement fields obtained from the pre­
vious level (see section 3.4) are giving the approximate positions 
of the selected points in the corresponding stereo image partner. 
The approximate displacement vectors of the positions of the se­
lected points are calculated by bilinear interpolation within the 
corresponding facets. The candidates of corresponding points are 
established by taking up all points found within a search window 
around the approximate position. The correspondence process 
which can result in multiple correspondences is sketched in fig­
ure 4. 

approximate position 
search window 

multiple correspondences 

Figure 4: Establishing candidates of corresponding points 

626 

3.3.2 Iconic Check (Correlation) 

All this candidates of corresponding points are verified by com­
puting normalized cross correlation with the corresponding win­
dows of these points. If the intensity information of the candi­
dates is contradictory, the candidates are suspect and therefore 
eliminated. 

3.3.3 Orientation Estimation and Geometric Check 
(Coplanarity Constraint) 

It is well known that the image coordinates (x, y) and (x', y') of 
a point correspondence satisfy the coplanarity constraint, which 
can be formulated according to 

[x' y' 1] E [ ~ ] o. (1) 

The so-called E-matrix [Hua89] can be composed by a skew­
symmetric matrix T and a rotation matrix R. 

E = T·R (2) 

[

Tn T12 T13] 
R = T21 T22 T23 

T31 T32 T33 

The elements tl, t2, t3 are the basis or the translation between 
the images, defined in the local model coordinate system. 
Equation (1) is linear and homogeneous in the ei terms, that 
means, the nine parameters ei can be estimated up to an un­
known scale parameter. Consequently, with at least eight point 
correspondences the elements of the E-matrix can be estimated 
by a linear least squares algorithm [Ste73] [Lon81]. We prefer 
this approximate but linear (direct) solution to the relative ori­
entation. Of course the iterative algorithms which work with five 
or more points also can be used. But because our intension is to 
compute the orientation with a really large number of point cor­
respondences P (P» 5 or 8), the differences between the linear 
and non linear solutions are small if a geometric configuration is 
given as it is in typical image flights with basis-to-height ratios 
in the range of 1 : 1 to 1 : 3. 

If the E-matrix is calculated, all the candidates of corresponding 
points can be checked according to equation (1). That means, the 
coplanarity constraint is used to eliminate erroneous candidates. 
Together with the iconic check two relatively independent checks 
are carried out. One is working on the intensities directly, the 
other is exploiting a geometric condition (coplanarity). 

3.4 Deriving Displacement Fields on a Regular 
Grid 

All the point correspondences Pi, which are confirmed within the 
matching process, are used to derive a displacement vector field. 
The individual displacements (Prr:,Py)Pi are simply the difference 
between the estimated point location of the corresponding points. 
Because for matching on the next refinement level it is more 
convenient to have the displacement information on a regular 
grid, all displacements are used to reconstruct a displacement 
vector model by finite element (FE) modelling. The grid spacing 
for the displacement lattice is a multiple of the pixel size (e.g. 
10-20 x pixel size). The displacements (Prr:,Py)ij are estimated 
at the nodes ij, assuming a bilinear interpolation model within 



a facet and smoothness of the displacement fields pa!(i,j) and 
py(i,j). Smoothness results from regularization of Pa! and py 
with a Laplacian kernel. 

The projection of the estimated regular displacement vector field 
onto the next level of the pyramid gives the predicted prior infor­
mation used to start the matching on the next refinement level 
again (section 3.3.1). 

Adjusting the regular displacement fields with the FE-model by 
least squares results in solving a normal equation system with a 
large but sparse normal equation matrix. Though algorithms to 
solve linear equations in parallel are known (e.g. cf. [Hos83]), they 
are not designed to exploit the sparseness of the matrix efficiently. 
Therefore we developed an algorithm based on the following idea: 
Apply the FE-approach not on all points simultaneously, but use 
it just like a local operator. This FE-operator with a window size 
of 3 x 3 or 5 x 5 nodes is utilized to estimate the displacements 
at the central node. Because local operators usually fit to data 
parallel approaches, the algorithm proposed is expected to be 
well-suited for this task. Global support of this local operation is 
reached by the prior information of the previous level (multilevel 
control) and the regularization. 

3.5 Combining the Parts of the Algorithm 

For both images of the stereo pair image pyramids are generated. 
Applying the Forstner operator points of interest are extracted 
at each level of the pyramids. 

The matching process is started at a coarse level of resolution. 
Correspondence of points is established using iconic and geomet­
ric checks to eliminate erroneous point correspondences. The 
remaining point pairs are used to determine the regular displace­
ment fields of the current pyramid level i. These estimated dis­
placements (Pa!'Py) are projected onto the next finer level (i -1). 
By applying bilinear interpolation, from these predicted displace­
ment fields the individual, approximate displacement vector of 
each interest point is derived. By establishing candidates of point 
correspondences this hierarchical matching process is continued 
until the finest level is reached. 

The estimated E-matrix can be decomposed uniquely into rota­
tion and translation as shown e.g. in [Tsa84]. In this way, the 
more familiar five parameters (instead of eight ei 's) of the relative 
orientation are obtained. 

3.6 Example 

The example we use to demonstrate the automatic orientation 
procedure is taken from [Ha88]. The digital image pair is a part 
of digitized aerial stereo imagery and each digital image has about 
1200 x 900 pixels. Figure 5 shows the upper two levels of the 
image pyramids together with selected points. Most of them are 
of "general isotropic texture" a few are classified to be "corners" 
or "circular features". The matching process yields 15 correspon­
dences on the lowest resolution level (selected are'" 30 points in 
each image). The regular displacement vector field reconstructed 
by the FE-approach is shown in figure 6. This vector field is used 
as prior information to guide the search for establishing candi­
dates of correspondences on the next refinement level and so on. 

4 ANALYSIS OF PARALLEL 
ALGORITHMS 

In this chapter we approach the parallelization of our procedure 
for relative orientation by discussing the complexity of the algo­
rithms theoretically. The most important aspects which have to 
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Figure 6: Displacement vectors and the derived regular displace­
men t vector field 

be taken into consideration at the implementation of the proce­
dure are shortly described. In general any filter algorithm which 
works on a lot of independent data is suitable for parallelization 
on SIMD systems. The parts of our orientation algorithm where 
these conditions are given are the generation of image pyramids 
and the feature extraction. The matching process and the FE­
procedure have to be considered separately. 

The investigations described in this chapter are based on an ideal 
theoretical computer model which is provided with any number 
of PEs and any size of memory. The executed instructions are 
assumed to be of the same speed. 

Let Tl (n) be the time complexity of an algorithm for a one­
processor computer and n be the number of data. TN(n) is 
the corresponding time complexity of an algorithm for an N­
processor computer. Sp describes the speed-up as introduced in 
section 2.2. 

4.1 Theoretical Investigations 

The algorithm of generating image pyramids consists of filtering. 
Intuitively parallel filtering and resampling for each level of the 
pyramid is expected to be more efficient than sequential filtering 
and resampling. The time complexities for the sequential algo­
rithms increase linearly with the number of pixels whereas the 
parallel resampling and filter algorithms are independent of the 
number of the data: 

Ttck(n) 

Tf<7(n) 

TJjck(n) 

T~<7(n) 

O(n) 

(O(n)+O(::)+O(~)+"')'fs 
4 16 

O(p·fs·n)=O(n) 

0(1) 

(0(1) + 0(1) + 0(1) + ... ). fs 

O(p· f s . 1) = 0(1) 

where n is the number of pixels at level 0, p the number of pyra­
mid levels and f s the time used for one filter operation. In both 
cases T(n) depends on the filter size and the pyramid size. As 
long as the number of data n involved is very large compared 
with p and f s, the effect of these parameters can be neglected. 

The algorithm for feature extraction consists of pixel oriented 
local operations like the determination of gradients and their 
squares, the calculation of normal equation matrices (which is 
a convolution), and the derivation of a measure of the isotropy of 
the texture. Non-maxima-suppression, thresholding operations 
and the estimation of the location of the optimal point position 
are also operations in which each pixel of the image is addressed 



Figure 5: Two levels of the image pyramids. The selected points are marked in the images by black dots. 

with the same sequence of instruction. Obviously, a data parallel 
approach is well-suited for this task. The time complexities are 
easily found to be : 

T!eature (n) 

Tkeature (n) 
O(n) 

0(1) . 

That means, a parallel algorithm for generating image pyramids 
and feature extraction which is independent on the image size 
can be developed. In contrast to that, the computation time of 
the corresponding sequential algorithm increases linear with the 
number of pixels. For both algorithms together the speed-up is 
given by 

Sp 
Tl{n) Trck{n) + Tfu(n) + T!eature(n) 

TN(n) = rtck(n) + T7ru(n) + Tkeature(n) 

Ol(n) = O( ) 
ON(1) n 

The algorithms above work pixel parallel. In contrast to that the 
matching part works parallel with the number of corresponding 
points m. 

To investigate the time complexities of the matching algorithm 
described in section 3.3 let us first consider the three parts: 

(1) Grey value correlation and thresholding operations. 

(2) Estimation of the E-matrix, which is identical with a solu­
tion of a linear equation system. 

(3) Finite element modelling. 

It is easy to recognize, that the first part has the same charac­
teristica as the pixel oriented operations mentioned above. The 
correlation and threshold operations depend on the number of 
point correspondences m and on the time f s needed for the par­
ticular operations. Assuming m to be the largest factor we obtain 

Tp)(m) 

TjJ)(m) 

T((fsc + fSnm)' m) = O(m) 

T((fsc + fSnm) ·1) = 0(1) 

Part two is the solution of a linear adjustment problem. The 
number of unknowns his 8, and the number of equations depends 
on the amount of point correspondences m. The observation 
equations of the problem are 

A(mxh) . X(hXl) -l(mxl) V(mxl) . 
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The single steps to come to the solution are the calculation of 
A and 1, AT A, (AT A)-I, ATZ, v and thresholding. The time 
complexity of the sequential computation is influenced by the 
matrix multiplication, whereas in the parallel algorithm most 
time is needed to calculate the design matrix A. Thus we find 

Ti 2
) (m) 

T;;)(m) 

T(h2 
• m) = O(m) 

T(h· m) = O(m) . 

This suggests that no time will be saved by parallelizing this part. 

For the third part which is the finite element approach it is most 
difficult to analyse the time complexities. The time needed for 
the calculation of the displacement vectors arises linearily with 
m in the sequential solution and can be solved in parallel in a 
constant time. 

Ti 3
.
1

) (m) 

T};·l\m) 

O(m) 

0(1) 

The sequential estimation of the displacement vector field on the 
regular grid is of complexity 0(g2 . m), where 9 marks the num­
ber of the grid points. In the parallel solution we work with a 
local operator described in section 3.4. From this follows, that 
the time complexity depends only on the time used for the lo­
cal operator. In detail there is a dependency from the number 
of correspondences and grid points within the operator window, 
which we address O(Lop). 

Ti3
.
2)(m) 

T};·2) (Lop) 

0(g2. m) 

O(Lop) 

For the projection of the estimated regular displacement fields 
the number of the grid points 9 is essential for the sequential 
solution; in parallel we have a constant time. 

Ti3
.
3

) (g) 

T};·3) (g) 

O(g) 

0(1) 

The time dependency of the bilinear interpolation step applied to 
calculate the approximate displacements for all selected interest 
points (total number is i) is: 

Ti 3.4) (i) O(i) 

T};.4) (i) 0(1) 



The last step is searching candidates for correspondence in the 
search window. If the search window is of size n s , the time com­
plexity is 

T~3.5) (i) 

T~·5)(i) 

T(n s • i) = O(i) 

T(ns ·1) = 0(1) 

Finally the total speed-up of the algorithm comprising matching 
and FE-modelling is obtained: 

Sp = 
3· O(m) + 0(g2. m) + O(g) + 2· O(i) 

O(m) + O(Lop) + 5·0(1) 

O(m) + 0(g2. m) + O(i) 

O(m) + O(Lop) 

With this theoretical considerations the time complexities of the 
automatic relative orientation are examined. Of course, it should 
be recalled, that working with a theoretical machine model (char­
acterized at the beginning of this section) simplifications and 
approximations are necessary. Nevertheless, just this simplifi­
cations help to analyse the parallel algorithm before doing the 
implementation. 

4.2 Implementation 

For the implementation of the algorithms the following general 
aspects have to be taken into account: 

• Make allowance for exploiting the given topology of the pro­
cessor elements (see 2.3) if possible. 

4& Maximize load of the PEs. 

• Organize the program to ensure minimal communication 
between the PEs, because communication instructions are 
slow. 

The image pyramid and feature extraction algorithms are pro­
grammed relating the PEs to the pixels of the images. Because 
of simultaneously execution of an instruction the capacity of all 
PEs is fully used. The implementation of the matching proce­
dure just under development. Details about the implementation, 
about real measured running times and a comparison between 
the run times of implemented sequential and parallel algorithms 
will be published later [Mu92]. There also a quality assessment 
of the orientation will be given. 

5 CONCLUDING REMARKS 

A method for automatic relative orientation of a digital stereo 
image pair has been presented. Some parts of the procedure 
such as the generation of image pyramids or the extraction of 
significant points can also be used for other tasks (e.g. surface 
reconstruction). The other two important parts of the proce­
dure are the matching to find the displacement vectors and the 
finite element process to estimate the displacement fields on a 
predefined regular grid. 

To discuss this procedure with respect to parallelization an in­
troduction into some fundamental principles of parallelization is 
given. By a theoretical analysis of the individual processes the 
expected speed-up of the parallel procedure with respect to a 
sequential algorithm is worked out. The experimental prove con­
cerning the performance of the whole procedure as well as to the 
quality is just in work and will be reported in [Mu92]. 

Finally we want to note, that by a simple modification of the pro­
cedure an approach for surface reconstruction can be obtained. If 
the orientation on each level is found, the corresponding points 
can directly be used to estimate structure (depth in the local 
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model coordinate system). The finite element process applied to 
the structure gives a surface model. By backprojection to the 
image plane the prior information for starting the matching pro­
cess on the next refinement level is obtained. At this point we 
are in the loop of the described orientation procedure again. 

References 

[Ack91] 

[Ak189] 

[Bla90] 

[Bra90] 

[Fly66] 

[Fo87] 

[Fo91] 

[Ha88] 

[Ha91] 

[Hos83] 

[Hua89] 

[Hua90] 

[Ja91] 

[Li88] 

[Lon81] 

Ackermann, F" Hahn, M.: Image Pyramids for Dig­
ital Photogrammetry. 
In: Ebner,H. et al.: Digital Photogrammetric Sys­
tems, Wichman Verlag, Karlsruhe, 1991 

Akl, S.: The Design and Analysis of Parallel Algo­
rithms. 
Prentice Hall, New York, 1989 

Blank, T.: The MasPar MP-l Architecture. 
Proceedings of the IEEE Compcon Spring 1990, 
February 1990 

Braunl, T.: Massiv parallele Programmierung mit 
dem Parallaxis - Modell. 
Informatik Fachberichte 246, Springer Verlag, 1990 

Flynn, M.J.: Very high-speed computing systems. 
Proceedings of the IEEE, vol. 54, p. 1901-1910, 1966 

Forstner, W., GUlch, E.: A fast Operator for De­
tection and Location of Distinct Points, Corners and 
Centers of Circular Features, 
In: Proc. ISPRS Intercommision Workshop on "Fast 
Processing of Photogrammetric Data", Interlaken, 
June, 1987 

Forstner, W.: Statistische Verfahren fUr die automa­
tische Bildanalyse und ihre Bewertung bei der Ob­
jekterkennung und - vermessung. 
Habilitationsschrift, DGK, Reihe C, no. 370, 
Munchen, 1991 

Hahn, M., Forstner, W.: The Applicability of a Fea­
ture Based and a Least Squares Matching Algorithm 
for DEM - Acquisition. Int. Arch. Ph. RS. (27), B9, 
III pp. 150, 1988 

Hahn, M., Schneider, F.: Feature Based Surface Re­
construction - A Hierarchical Approach Developed 
for MOMS-02 Imagery. 
IGARRS, 1991 

Hossfeld, F.: Parallele Algorithmen. 
Informatik Fachberichte 64, Springer Verlag, Berlin, 
Heidelberg, 1983 

Huang, T.S., Faugeras, O.D.: Some Properties of the 
E Matrix in Two - View Motion Estimation. 
IEEE Trans. on PAMI, vol. 11, no. 12, p. 1310-1312, 
December, 1989 

Huang, T.S, Netravali, A.N.: Motion and Structure 
from Feature Correspondences: A Review. 
In: Huang: Tutorial on Computer Vision and Dy­
namic Scene Analysis, ISPRS Comm. V Symposium, 
Zurich 1990 

Jahne, B.: Digitale Bildverarbeitung. 
2. Aufiage, Springer Verlag, Berlin, Heidelberg, 1991 

Li, M.: High Precision Relative Orientation Using the 
Feature Based Matching Techniques. 
ISPRS 27 B3, p. 456-465, 1988 

Longuet - Higgins, H. C.: A Computer Algorithm for 
Reconstructing a Scene from Two Projections. 
Nature 293, 1981 



[Mii92] Miiller, B., Hahn, M.: Quality and Performance 
Analysis of Automatic Parallel Relative Orientation. 
In preparation, Stuttgart, 1992 

[Sche90J Schenk, T., Toth, Ch., Li, J.-Ch.: Zur automatischen 
Orientierung von digitalen Bildpaaren. 
ZPF, 58. Jahrgang, 6/90, p. 182-189, November, 1990 

[Ste73] Stephanovic, P.: Relative Orientation - A New Ap­
proach. 
The ITC Journal 3, 1973 

[Tsa84] Tsai, R. Y., Huang, T. S.: Uniqueness and Estima­
tion of Three - Dimensional Motion Parameters of 
Rigid Objects with Curved Surfaces. 
IEEE Trans. on PAMI, vol. 6, no. 1, p. 13-27, Jan­
uary, 1989 

[Wen89] Weng, J., Huang, T. S., Ahuja, N.: Motion and Struc­
ture from Two Perspective Views: Algorithms, Error 
Analysis, and Error Estimation. 
IEEE Trans. on PAMI, vol. 11, no. 5, p. 451-475, 
May, 1989 

[Wenz91] Wenzel, L.: Parallele Programmierkonzepte. 
Franzis Verlag, Miinchen, 1991 

630 


