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ABSTRACT 

A highly automated image mensuration technique of 
Global Least Squares Matching (GLSM) and the subse­
quent estimation processes of digital photogrammetry 
are expanded by a unified theory of estimation, numer­
ical analysis and signal processing of nonlinear array 
algebra. The classical Newton-Gauss (NG) no.r~al 
equation matrix overlooks the linear component arising 
from the product of the 3-D array of second order par­
tials with the constant column of observables in the as­
sociated Newton-Raphson (NR) matrix. The array 
algebra expansion of polynomials can handle the 
higher order Taylor terms of nonlinear normals. A 
general set of nonlinear estimation techniques using 
minimized residuals is shown, including the nonlinear 
expansion of robust estimation and least squares as 
special cases. An analytic theory of direct linearized 
systems of nonlinear estimation is introduced. A ~ew 
constrained nonlinear solution integrates several Iter­
ations and initial values beyond NR and other known 
techniques. it often converges in one iteration, far be­
yond the NG convergence limit. The nonlinear GLSM 
application can reach a stereo mensuration speed of 
thousands of points per sec using today's low cost 
computers and softcopy systems automating the 
emerging digital image mapping process. 
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1. INTRODUCTION 

Computer technology advances allow application of the 
mapping procedures of analytical photogrammetry to 
digital stereo images. However, without the integration 
of similar array algebra advances in software of multi­
ray digital photogrammetry, the resulting "digital ana­
lytical plotter" remains labor intensive, costly and slow. 
An advanced softcopy mapping system requires an in­
tegration of the following three developments: 

1. Advances in array algebra for unified statistical es­
timation, numerical analysis and signal processing 

2. Exploitation of multi-ray models in image mapping 
3. Continuing refinements of softcopy workstations. 

Advances in computer technology reduce problems in 
developments 2 and 3. Efficient software and systems 
integration of array algebra will reduce them further or 
may in fact eliminate them altogether. This explains 
why array algebra is the focus of this paper, especially 
its application to the nonlinear Global Least Squares 
Matching (GLSM) technique, (R et.ai, 1992). References 
to "Rauhala" will be abbreviated by R herein. GLSM 
image mensuration and related triangulation tech­
niques of array algebra are integrated into automated 
digital image mapping and object reconstruction in (R 
1986, 1988, 1992). The resulting system of Global Dig­
ital Image Map (GDIMAP) expands multi-ray stereo 
intersections of a bundle adjustment from the few tra­
ditional tie points to very dense (1-4 pe spacing) Digital 
Elevation Model (OEM) and feature mensuration points 
of softcopy stereo models using array algebra. 
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Reviews of array algebra can be found in (R 1972, 1974, 
1976, 1980, 1986, 1990), (R et.a!., 1989). Array algebra 
was introduced in photogrammetry and geodesy as an 
expansion of adjustment calculus in surveying math­
ematics. Surveyors, map makers (cartographers, 
geodesists, photogrammetrists etc.). ~nd ~ther 
mensuration scientists integrated the main ingredients 
of mathematics into the adjustment calculus, such as: 

- Vector, matrix, tensor and array calculus 
- Applied mathematics of linear and nonlinear systems 
- Linear and nonlinear statistical estimation theory 
- Geometry and physics of mensuration 
- Numerical analysis 
- Signal processing and general fast transforms 
- Computer and information sciences 

Adjustment calculus relates most closely to least 
squares estimation and numerical analysis. These will 
be reviewed next, before their expansion by the general 
fast transforms of array algebra. The author belongs to 
the transitional generation that had to solve problems 
the hard way, before computers eased the workload. 
Often the hard way required some innovative analysis 
and p'roblem formulation to become practically feasible. 
The resulting innovative solution algorithms, even in 
today's powerful computers, are often the only feasible 
way of solving several computational least squares 
problems - brute-force approaches are often defeate.d 
by their own enormity. In this c?ntext, .some ba.slc 
concepts of linear estimation are first reviewed uSing 
loop inverse estimation and fast linear array algebra. 
Then these concepts are expanded into a general non­
linea~ statistical estimation, numerical analysis and 
signal processing procedures of array algebra. 

2. BASIC THEORY OF LEAST SQUARES ESTIMATION 

Use of computers simplifies implementation of the lin­
ear least squares solution of an overdetermined system 
of m equations coupling m measured values L of ob­
servables and their random residual errors V with n 
unknown parameters X through a full-rank matrix A in 

A X = L + V. 
mn ttl "" 1111 

(1a) 

The traditional least squares solution that we are going 
to generalize in this paper minimizes the sum of the 
squares of the residuals resulting in 

x = A'L 
Q'rV = (L-A xt(L-A X) = min., 

(1b) 
(1c) 

where superscript T denotes the transpose of a matrix 
and the full-rank least squares or I-inverse of A is 

(1d) 

To simplify the notations and derivations, only the un­
weighted case is treated or the a priori weights are al-

T'''' '"'or, A • ready included in A = A P such that V PV= min. The 
linear least squares (I.s.) solution is used as an (overly 
crude) approximation to nonlinear estimation by trun­
cating the Taylor expansion of a nonlinear observable 
after the constant and linear term in f(Xo+ dX) = f(X-, 
+ f(Xo) dX. Matrix A makes use of the first partial de­
rivative f'(X~. This derivative is evaluated for each of a 
series of m observations using the latest estimates Xl) 
of parameters X. Typically, m exceeds the rank Qf ma­
trix A or the number of unkowns which constitute the 
elements of column matrix dX. The linearized system is 
solved for the small corrections dX, and the process is 



iterated until it converges. It may also diverge if the in­
itial values of X are beyond the pull-in range of A. This 
process is known as the Newton-Gauss (NG) solution 
technique of nonlinear I.s. estimation. 

The task of a problem analyst employing I.s. estimation 
is to define a linear parametric model between the true 
values of observables and parameters, or to derive the 
row elements f'(Xo) as the first partial derivatives of a 
nonlinear model. The I.s. solution often has to be cam-

p. 

pleted with reliability and ac~uracy estimates of X and 
adjusted observations A X using the variance -
covariance terms of f./·V, (ATAf'and AA~ The special I.s. 
estimate X of (1 b) coincides with the Best Linear Unbi­
ased Estimator (BLUE) of estimable X under the Gauss 
- Markov model E(L) = A X where E denotes the expec­
tation operator. Term "estimable" refers to linear func­
tions that can be unbiasedly estimated. 

All elements of X are estimable, E(X) = X, in this special 
case when matrices A and AT' A are nonsingular (have 
the full rank). The general rule for a linear function At; 
X (one element at a time) to be estimable as H Lunder 
the Gauss - Markov model is A,,= HA = AoG A. A gen­
eral matrix inverse G was generalized in the theory of 
loop inverses beyond the restriction of the g-inverse of 
A, defined by the condition A G A = A for any matrix 
A. The BLUE or 'Best' estimator H L among the 
estimable,.AoX (satisfying Ao= H A) minimizes its vari­
ance H H , (Rauhala, 1976, 1980, 1981). 

The general I.s. inverse G = A~ of a singular matrix A 
provides nonunique estimates ~ = A~ L such that their 
projections into the estimable domain by t = A X re­
main unique and are BLUE of L. It satisfies the condi­
tions (AG)," = AG and A G A = A that are equivalent to 

the single condition ATAG = A~ (Rauhala, 1976 p.93). 
There is typically an infinite number of math models 
and choices of modeling parameters X that can produce 
the unique BLUE elements of the estimable space but 
this does not affect the es1imability of parameters X 
themselves. It does not help to make the I.s. estimate X 
artificially BLUE of X by forcing matrix A to have a full 
rank, e.g., by a gradual reduction of such parameters 
among X that are highly correlated. A concrete example 
illustrates this philosophy. 

Point variant errors of interior orientation (due to 
unflatness of film, refraction, scanning etc) under the 
assumption of image invariance (ie., the same system­
atic error repeating itself from one image to the next at 
a given image cooordinate) would require an empirical 
finite element model with post-spacings of only a few 
mm (Brown, 1984). This implies over 1,000 parameters 
to cover a 9"x9" image area. Their effect on the meas­
ured image coordinates are not separable in the tradi­
tional bundle adjustment from that of exterior or other 
interior orientation elements and from that of the object 
space parameters. Without their explicit prior cor­
rection (by better sensor design or directly measuring 
and correcting the effect of e.g the 3-D micro topogra­
phy of the film) and leaving them out from the bundle 
adjustment does not make the remaining parameters 
of the I.s. solution BLUE of X although matrix A 
achieves full rank. The un modeled systematic errors 
are compensated by invisible deformations of the ob­
ject space coordinates among parameters X while their 
projections or the unique (BLUE) estimators of the ob­
servabl,es and their residuals remain the same. 

The invisibility of the bias of X in the observable (always 
estimable) space prompted the name of "fool's para-
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dise" by Brown (1984). The differences or shear error 
of such model deformations of a block become visible 
at the overlap of the traditional 2-ray stereo models af­
ter the bundle adjustment, especially at the DEM and 
feature points between the few discrete tie points of tri­
angulation. Their removal by some ad hoc techniques 
from the extracted map data base may actually enlarge 
the bias. The biases can be reduced in a rigorous 
bundle adjustment of a multi-ray model (where all DEM 
and feature points are measured and used in the tie 
point mode) with a pre-calibration of the point variant 
and self-calibration of the image invariant errors, 
(Brown, 1984). Integration of GPS and inertial systems 
to such a bundle adjustment is today providing a viable 
control hierarchy for the subsequent softcopy mapping 
procedures. Loop inverse estimation can include some 
image variant errors into self-calibration, (R 1972, 
1974), ultimately at the 1-4 pe node spacing of GLSM tie 
points of the GDIMAP system concept, (R 1986, 1988, 
1992). 

Numerical analysis addresses the computational as­
pects of !.s. estimation. The general brute-force I.s. sol­
ution of n parameters takes the magnitude of n**3 
operations (additions and multiplications) and n**2 high 
speed memory words. Consequently, n must be re­
stricted to the order of only few thousand parameters, 
even in super computers. Many problems can split, di­
rectly or by some careful analysis of the problem and 
its math' model, matrix A, into sparse (banded, nUll, di­
agonai etc) and non-sparse partitions. The resulting 1.5. 
solution can be programmed to avoid unnecessary op­
erations on zero elements with significant savings in 
RAM and computing time. The traditional "fast trans­
forms" of signal processing are seldom applicable to 
general problems of numerical analysis. Before an in-

troduction of the generalized fast transforms of linear 
array algebra, loop inverse estimation will provide the 
foundations of choosing the modeling parameters from 
the estimable space, such as image vs. object space in 
photogrammetry. The general fast transforms of array 
algebra get applicable in this domain by a careful anal­
ysis and systems design, indirectly solving or simplify­
ing also the estimation process of the biased 
parameters X. 

3. GENERAL LINEAR ESTIMATION OF lOOP INVERSES 

Theory of loop inverses changes the physically 
explainable "Copernicus-Gauss" modeling parameters 
X of the Gauss-Markov model E(L) = A X into an 
estimable set of independent linear functions of X, such 
as any base combination spanning the domain of the 
observables L = A X. An illustrative example is the 
estimation problem of image matching. 

Image-to-image shifts of conjugate points of a visible 
object surface and their illumination change are 
unbiasedly estimable in the image space. This holds 
true even when the interior and exterior orientation 
parameters are unknown or are not estimable. The 
measured image coordinates (a regular grid of integer 
line and sample locations of the reference image + the 
matched shifts to get their conjugate image coordinates 
in the slave images) are nonlinear functions of an infi­
nite number of physically and empirically explainable 
parameters X to connect them to their object space co­
ordinates. These parameters interconnecting the image 
and object space coordinates are seldom, if ever, fully 
estimable depending on how well the sensor is de­
signed, built and operated in the metric sense. 



The bias caused by local effects of atmospheric and 
other geometric disturbances is the limiting factor in 
estimating the image-fo-object and its inverse trans­
form parameters. The opposite is true for image-to­
Image transform parameters. The differences of image 
coordinates and point illumination (at visible surface 
points) are typically estimable from the observed gray 
values. Points of small correlation or matching signa­
ture, not estimable in the single point mode, get 
estimable under the globally constrained finite element 
Gauss - Markov model of GLSM or by a similar global 
stereo fusion process of an operator pointing to the 
conjugate image details. This example is analogous to 
so called station adjustment in surveyil'g and closely 
related to the idea of loop inverses. 

A series of theodolite or levelling readings are often 
measured and reduced in a local field or "station ad­
justment" to provide more reliable (blunder free) and 
iocally calibrated los. estimates of fictitious observa­
tions. The reduction may also model and remove some 
systematic errors that cannot be included into parame­
ters X without making matrix A ill-conditioned or with­
out destroying the special structure of the matrix that 
allows an efficient solution. Estimation of all parame­
ters X of the complete net is not feasible at this se­
quential stage of the mensuration process. Even after 
the completion of all blunder free and locally calibrated 
estimates of the fictitious observations or linear func­
tions L = A X, actually used in the 1.5. adjustment 
process in place of the raw field measurements, all pa­
rameters in X may not be estimable. 

Loop inverses expand the technique of fictitious I.s. 
adjustment into the problem of a general matrix inverse 
such that the redundancy is removed by the I.s. = 
8LUE solution of an independent set of observable pa­
rameters spanning the always estimable space of ob­
servables. In analogy to the technique of I.s. condition 
adjustment of surveying, the chosen set of adjusted 
observables is then transformed (by consistent vs. re­
dundant equations) into estimates of biased or unbi­
ased parameters X. Instead of using some intuitive 
rules of condition adjustment, the loop inverse tech­
nique formalized the process by generalizing the theo­
ries of matrix inverses and linear estimation. This 
invention process has continued from the late 1960's to 
the present findings of the more general nonlinear es­
timation theory of array algebra. 

A starting point (1m-inverse) of loop inverse estimation 
reverses the consistent linear transform LCI = AoX by 
selecting Lc to be a set of p independent observables, 
often among L = A X themselves such that Ao is a hor­
izontal partition of A. The full-rank minimum norm m­
inverse An; = A:(A.,A:t exists because the rows of At} 
are independent. The parameter transform X = A': Lo 
substituted into (1a) makes the classical linear I.s. esti­
mation applicable for L" by replacing the full-rank 1-
inverse of matrix A with that of A A': in (1 d). The (SLUE) 
I.s. solution t, is transformed or back substituted to 
estimates (often bias~d) ot,J;larameters X through the 
consistent transform X = A.t; Le. The complete chain of 
linear matrix op"erato~ from the original observables L 
to estimates of X = ~ L is found through the 1m-inverse 
~= /f;(A ~)~ 

The startinp 1m-operator of loop inverses (similar 
"loops" of parameter transformations can be applied to 
more general inverses than the full-rank 1- and m­
inverses) expanded the basic theories of estimability 
and general inverses, (R 1974, 1976, 1980, 1981, 1982). 
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If P equals to the rank of matrix A, the 1m-inverse and 
estimates of X become invariant on the chosen L" and 
Ai> yielding the unique pseudo-inverse A+ of singular A 
as a special case. The constraints p = rank(A) = n yield 
the I-inverse of (1 d) as a special case of A""'and A~ 

4. LINEAR ARRAY ALGEBRA 

Array algebra generalizes special fast transforms to 
become applicable to the computational solution of lin­
ear and nonlinear estimation. This work started in 
search of practical systems and algorithmic solutions to 
multi-ray analytical and digital photogrammetry. New 
techniques and algorithms found in this search could 
not be readily expressed in terms of traditional vector, 
matrix and tensor concepts. This prompted the intro­
duction of array calculus in (R, 1972) which coupled to 
the general estimation and matrix operators of loop in­
verses resulted in linear array algebra (R, 1974, 1976). 

The basic idea of array algebra makes fast transforms 
and matrix calculus applicable in general estimation 
problems of linear systems. An example is the expan­
sion of matrix equation AXS"t = L + V to 3-D arrays of 
X,L,V and a third matrix C'fin a regression analysis of 
three variables. The starting 2-D system of matrix no­
tations prompted this idea in 1970-71 experiments of 
fitting separable empirical functions of the estimable 
loop inverse domain to gridded reseau observations of 
the Hasselblad moon camera used in Apollo missions. 

The operations count of forward array multiplications is 
reduced from MN of the equivalent long hand matrix 
multiplication to the order of 10g(N) N where N is the 
total number of parameters in array X or N = n,nJ.n3" and 
M = m,m.l.m,3" is the number of elements in L. Unlike the 
very restricted fast transforms of signal processing, ar­
ray algebra can handle general rectangular and singu­
lar sub matrices A,8,C .. and their general inverses. 
The operations count of inverse array multiplications in 
estimating N array parameters X from M observed val­
ues of array L is reduced from N**3 of the long hand 
solution (1 b) to the order of 10g(N) N operations. 

The fast array algebra I.s. solution can be mapped into 
terms of (1a) by rearranging the array elements X into 
a long column vector in the same fashion as a computer 
treats an array. The resulting large M,N matrix be­
comes a Kronecker or tensor product of the small sub 
matrices A,8,C ... The operations count to get the (­
inverses (1 d) of the small sub matrices A,8,C, .. is often 
negligible in comparison to their a7ay (general matrix) 
multiplications with L such as in A L g'T of the 2-D I.s. 
matrix solution of array X. Similar savings take place 
in the high speed (RAM) computer storage require­
ments, especially when A,8,C .. become sparse matrices 
in loop inverse estimation, making many problem for­
mulations involving millions of parameters practically 
feasible for the very first time, (R 1976 p.73). 

Array algebra often allows the use of inexpensive com­
puters to attack problems of the otherwise overwhelm­
ing dimensions. Tailored hardware to implement these 
fast algorithms (such as finite element and the related 
inverse cosine transforms) results in Array Algebra 
Computers (AAC) where solution speed is measured in 
MHz rates. A single such AAC chip can therefore have 
the equivalent computing power of tera FLOPS, (R 1977, 
1986, 1992). The array algebra software solution speed 
for GLSM normals, in a general purpose computer of 1 
MIPS and 0.25 MFLOPS (VAX 780), is already over 
7,000 nodes or posts per sec. This translates into over 



100,000 parameters per sec in today's workstations. A 
practical example illustrates this speed. 

For a comparison, some super computer CRAY-XMP 
results of (Fulton and Fausett, 1991) are shown in the 
elementary case of separable 2-D array solution where 
non-sparse matrices were used in the pre- and post­
multiplications of a matrix solution discussed in (R 
e1.al., 1989). The RAM user allocation limit of the con­
ventional reference solution was reached in CRAY at 
40x40= 1600 parameters, taking 69.38 sec CPU time, 
while the array algebra solution of the same 40x40 pa­
rameters required 0.02 sec. That is, array algebra at­
tained a speed of 80,000 parameters per sec. The 
CRAY RAM allocation limit was exhausted with the 
non-sparse array algebra solution at 600x600 = 360,000 
parameters, taking 26.48 sec. This is about the same 
speed per parameter as with the VAX 780 sparse array 
algebra GLSM solution (2-3 parameters per node) 
which is invariant on the number of nodes. In other 
words, the efficient software of sparse array algebra 
makes VAX 780 and the comparable micro computers 
to compete with the speed of a super computer solution 
using the non-sparse array algebra software. The 
brute-force solution of a practical size of the problem is 
defeated by its enormity in any computer. 

Some recent VAX 780 GLSM algorithms can handle 
close to 490,000 (700x700) nodes or over one million 
parameters in one batch. They can enforce seamless 
equality or mosaicking constraints among the neigh­
boring frames in real-time such that the mosaicked sol­
ution is the same as if the whole area of unlimited size 
had been processed simultaneously. A typical mapping 
area involves billions of GLSM modeling parameters. 

We will discuss GLSM in more detail in the application 
section of the nonlinear array algebra. 

5. NONLINEAR ARRAY ALGEBRA 

Nonlinear expansion of array algebra unifies the theo­
ries of nonlinear estimation, numerical analysis and 
signal processing. It can efficiently apply general 
Taylor expansions of functions to nonlinear estimation, 
(R 1990). New solutions of nonlinear systems are then 
found which surpass the capabilities of the Newton­
Gauss (NG) least squares and linear robust estimation. 
They also expand Newton-Raphson (NR) and some 
general techniques of mathematical geodesy, (Pope, 
1974), (Meissl, 1979), (Blaha, 1987). The fast numerical 
analysis and signal processing of linear array algebra 
is generalized to become applicable to the resulting 
nonlinear solutions. The basic ideas of the nonlinear 
array algebra estimation theory are: 

- Expansion of Taylor series by array multiplications 
- Derivation of nonlinear normals 
- Direct linear solution of nonlinear problems 
- Linearization of general noniinear normals 
- Expansion of "super" iteration 
- Nonlinear estimation beyond least squares 
- "Fast" GLSM type application of the theory 

5.1 Array Algebra Expansion of Taylor Series 

The concepts of array algebra serve to apply Taylor 
series: 

f(x + dx) = f(x) + f'(x) dx + 1/2 f"(x) dx**2 
+ 1/6 flll(x) dx**3 ... (2) 
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to the general case of multiple parameters when these 
are expressed as column vectors X and dX. Use of 
these general operators will show a shortcoming of the 
NG technique, explaining its narrow pull-in range and 
slow convergence. This shortcoming is corrected in NR 
but is usually ignored because of the resulting compu­
tational burden and increased analytic work of deriving 
the higher order partial derivatives f" and fill. Array al­
gebra, however, can often eliminate the computational 
problem justifying the increased analysis work. 

Matrix algebra of the traditional NG iterations of (1 b) 
can handle the constant and linear terms of Taylor se­
ries when the scalar dx is expanded to a column matrix 
dX of n parameters. The constant term f(X~ is the "pre­
dicted" or evaluated value of the nonlinear function and 
f'(X~ is a row matrix of its first partial derivatives with 
respect to each parameter or element of dX. Con­
traction or inner product of the row by column matrix 
multiplication f'(X ) dX in (2) produces an element as the 
correction df(X~ to an observable due to the unknown 
parameters dX. But what about the product f"(X~ dX**2 
in (2) and its derivative d/dX = df'(Xo) = 2f"(XO) dX that 
will cause the missing linear component of NG to be 
shown in the more rigorous NR solution of (11)? 

Operator f"(X~ is a 3-D (1,n,n) array of one row, n col­
umns and n "depth slices" of the second partial deriva­
tives of nonlinear function f using the initial values XtJ. 
it grows into an (m,n,n) array F" of m observables. Ar­
ray algebra expands matrix multiplication and other 
rules beyond the traditional limitation of 2-D matrices. 
This facilitates estimation theory and numerical analy­
sis better than the indical notations of tensor calculus. 
The product df(i) = f"(i) dX**2 for an observable i con­
sists of the double summation or contraction 

dF = df(i) = F" dX**2 = 1 If"(i,j,k) dx(j) dx(k) (3) 
In I /finn nt ) AE 

where i,j,k are the indices of array F" and vector dX re­
sulting in vector dF of m elements. There are several 
short hand notations to express the double summation 
in (3). It can be expressed in traditional matrix no­
tations as 

df(i) = dX'" F"(i) dX, i = 1,2, .. m, 
I" 'I" " , (3a) 

by transposing the m horizontal slices of 3-D array F", 
or exchanging indices i and k, into (n,n) matrices F"(i), 
i = 1,2 .. m. Each matrix is then multiplied by the row 
matrix dXT' and post-multiplied by column matrix dX. 

The expanded rule of array multiplication in (3) for 
contraction of the second and third index (j and k) of 
F" with the post and "depth" vectors dX has two alter­
native notations. There is no need of transposing the 
2-D matrices or sub-arrays of F" into a position where 
the old matrix rules apply. The first alternative empha­
sizes the analogy of array multiplication to expanded 
matrix multiplications and polynomials by 

<1>,< 
dF = 'F" dX = F" dX**2 . 

ml IfIM rtl 
(3b) 

Post matrix multiplication of 3-D array F" by dX in (3b) 
contracts the second index of array F" (thereby allow­
ing array F" to have any number of indices) with the 
first index i of matrix dX written after it. Following this 
analogy, a "depth" matrix written above the array con­
tracts the third array index with the first matrix index 
k. A matrix written in front (unit matrix in (3b)) of an 
array contracts the first index i of the array with the 



second matrix index in analogy to the rule of matrix 
pre-multiplication. 

In the expanded polynomial notation of array multipli­
cation in F" dX**2 of (3) and (3b), the two (post and 
depth) matrices are the same vector dX. They contract 
the last two indices of array F" in two repeated (expo­
nential) array multiplications. Notice that the first power 
has to be noted in F dX**1 to indicate that contraction 
is to be done for the last index of any array F and not 
the second index in F dX of the expanded rule of post 
matrix multiplication. 

The second more general notation alternative (not de­
tailed here) of array multiplication can handle arrays 
of more than three indices as it is difficult to continue 
the analogy for pre, post and ildepth" matrix multipli­
cations for the fourth and higher order indices. This 
general notation convention need not transpose the 
second and third matrix before the post and depth 
multiplications. In this review paper, only a summary 
of nonlinear array algebra can be given. Details of the 
array algebra notations and their comparisons to the 
indical notations of tensor calculus are found in (R 
1974, 1976, 1980, 1990). 

In general nonlinear estimation, each element of row 
vector 1'(~) is a nonlinear function of all unknown ele­
ments of dX. The analysis work to derive f"(XCJ) is 
thereby 'multiplied by a factor of n in comparison to NG 
that uses only f'(~) ignoring all f" (~). It may appear 
that we need not care about the nonlinear term fl/(XCJ) 
dX**2 of the Taylor expansion as we have to linearize 
the problem anyway. The partial derivative d/dX of this 
term is linear. It equals to 2 f"{X] dX**1 (the last or third 
array index is contracted) = 2 f"(X-) dX (the second in­
dex is contracted but because of the symmetry of 
f"(i,j,k) among indices j,k the result is the same matrix 
after an array transpose). Its contribution on the linear 
term of the nonlinear normals is neglected in NG but 
included in NR as will be detailed in equations (9)-(12). 

The use of the 4-D array f"' is not as impractical as it 
may appear (increasing the work of an analyst by a 
factor of n**2 over NG). In most problems of global 
modeling philosophy, the terms of 1''' at a given nonlin­
ear finite element reduce to constants or null elements. 
In other words, they are invariant on X and dX. Simi­
larly, elements of F" = f"(Xo) of all observables need to 
be evaluated only once with very crude initial values. 
They can be updated (seldom needed in practice or 
only after the first iteration) by 3-D array corrections 
dF" =F"' dX**1 as a contraction among the accumu­
lated corrections of dX and the prederived scalars of 
F'", (Blaha, 1987), (R 1990). 

5.2 Nonlinear Normals and Their Taylor Expansion 

We first derive the nonlinear normals for the elemen­
tary scalar case of one single unknown dx using the 
nonlinear observation equations 

f(x + dx) = g(x) + v(x). (4) 

In an example of nonlinear single element 1.5. matching, 
x is the integer image coordinate of the observed slave 
gray values g(x) and unknown residuals v(x). The un­
known shift dx of the nonlinear reference function f(x) 
is modeled by one constant within a small window. 
Since f(x) and g(x) are taken to be known, as discrete 
gray-value grids approximating continuous functions, 
they could be matched with an infinite number of I.s. 
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observations using integral calculus vs. the discrete 
samples. The derivation and integration of such closed 
nonlinear normals will be discussed in section 5.3 as a 
limiting case of the regular discrete I.s. observations 
derived next. 

The function of (4) to be minimized in least squares es­
timation is 

sum(v(x)**2) = sum( ( f(x + dx) - g(x) )**2 ) (5) 

where the summation is made over the index of ob­
servables or variable x in our example. This nonlinear 
function of dx reaches its minimum when its first deriv­
ative d/dx vanishes. The consistent system of nonlinear 
normal equations 

n(x,dx) = sum( f'(x + dx)( f(x + dx) - g(x) ) ) = 0 (6) 

is found by applying the elementary rule d/dx(f(x)**2) 
= 2 f'(x) f(x) to (5) and scaling both sides of equation 
(6) by the constant factor of 2. 

The Taylor series of (6) is the product of the derivative 
of (2) 

f'(x+dx) = 1'(x) + fll(x) dx + 1/2 f"'(x) dx**2 (7) 

and f(x + dx) of (2) minus the observed g(x). This prod­
uct results, when f(x + dx) of (4) is truncated after term 
f'" in (2), in a fifth degree polynomial approximation 
n(x,dx) to the closed normals of (6) by 

n(x,dx) = 1/12 sum(f,l/f"') dx**5 
+ sum(5/12 fllf"') dx**4 
+ sum(2/3 f'f"' + 1/2 f"f") dx**3 

+ sum(1/2 f'N I + 3/2 f'f') dx**2 
+ sum(f'f' + fill) dx + sum(f'I) 0 

where 

I(x) = f(x) - g(x). 

(6b) 

This scalar case of a single element in dx is analogous 
to general array polynomials of parameter vector dX 
where l' is a matrix, f" is a 3-D array and 1'" is a 4-D 
array, (R 1990). The summation over products, such as 
sum(5/12 f'T") associated with dX"""4 contracts the (first) 
index of observables from the 3-D and 4-D arrays re­
sulting in an output array of 3 + 4-2 = 5 indices. Its array 
polynomial or quadruple contraction with dX**4 leaves 
out an array of only one index or a column vector of the 
same size as the constant terms F'TL. 

5.3 Direct linear Solutions of Nonlinear Problems 

A problem analyst should try to mentally derive the 
analytic expressions of the closed nonlinear normal (6), 
especially in such a simple problem as the present ex­
ample. The reader can do this by specifying a nonlinear 
f(x) in (4), such as a quadratic or cubic polynomial of 
known coefficients, or by switching over to your favorite 
nonlinear problem. The author made some preliminary 
explorations of nonlinear analytic normals of the bundle 
strip adjustment and range observations uncovering 
techniques similar to those of Direct Linear Transforms 
(DL T) of photogrammetry or the direct linear GPS re­
duction technique of Meissl (1979). The direct analytic 
derivation of normals of nonlinear least squares or ro­
bust estimation offers challenges to today's computer 
generation of problem analysts. It may take some time 
before these analytic derivations can be made in com-



puters. The mental derivations are complicated by the 
fact that the number and distribution of the (fictitious 
grid) observations affect the solution and that all arith­
metic expressions of n nonlinear equations of n pa­
rameters have to be explicitly deriverl. 

Perhaps the most elegant solutions in photogrammetry 
are still to come from the persistent analysts who en­
dure the search of the direct analytic solutions of non­
linear least squares and robust estimation. There are 
some signs in the recent literature of photogrammetry 
and computer vision toward this type of work in non­
linear problems (perhaps reinventing a "lost wheel" of 
the founding days of photogrammetry). GLSM can han­
dle every single pixel of a multi-ray stereo model as a 
tie point, allowing some simplifying assumptions to the 
nonlinear bundle adjustment such as regular and com­
plete grid observations of quite uniform weights. These 
simplifications cancel many nonlinear and linear terms 
in the analytically derived normals. 

The nonlinear problems of GLSM, bundle and range 
(SAR or range image) adjustments are not very far from 
the idea of direct linear solutions impacting their pull-in 
range and convergence rate. The main computational 
work is already done by the ingenious and hard analy­
sis of mental derivations of the normals and their ana­
lytic solution (no rounding errors) or other reduction 
before the computer is employed in the final stages 
evaluating the numerical values. The author has rou­
tinely employed this philosophy of special "inner loop" 
solutions of Array Relaxatioj:J such as in inertial net or 
continental datum adjustment of crossing traverses and 
Global least squares reseau reductions, (R 1982, 1986, 
1992), (Craig, 1992). 

The reader can independently confirm the existence of 
a direct linear solution in the simple matching example 
of (4). A quadratic polynomial f(x) results in a closed 
nonlinear normal equation in dx as a cubic polynomial. 
An added linear illumination difference parameter in (4) 
results in two nonlinear equations. After its elimination 
from one of them, the resulting reduced single equation 
in dx becomes linear reading 

f" dx = g' - f' (8) 

where g' -f' is the difference of the central first deriva­
tives of f(x), g(x) and f" is the constant f"(x). 

5.4 linearization of Nonlinear Normals 

The iterative Newton solution of the nonlinear normal 
equations can be derived in several ways. The direct 
way resulting in the NR technique assumes an initial 
value of dxo, and computes the discrepancy or residual 
vector n(x,dx"} of normals (6). An unknown correction 
ddx of each iteration is found by solving a linear system 
involving the partial derivative matrix n'(x,dx, in 

n'(x,dx~ ddx = - n(x,dxO) 

where 

n'(x,dx, = d/dx sum( f'(x + dx~( f(x + d~ - g(x) ) 
= sum( f'(x + dxO)**2 + fll(x + dx~( f(x + dxdl

) - g(x)) ) 
= sum(f'f' + fill), 
n(x,d~ = sum( f'(x + dx-')( f(x + dx") - g(x)) ) 
= sum(f'I), 
I(x,d~ = f(x+dx, - g(x). 

(9) 
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The summations are done over the index of observa­
bles, the first index of I, f' and f". The same solution is 
found by the Taylor expansion (6b) containing only the 
constant and linear terms. Under the implicit assump­
tion that dxo= 0 or evaluation of I, f', f" with the latest 
parameter estimate, the first two Taylor terms of non­
linear normals in (6b) are 

sum(f'f' + fill) ddx = -sum(f'I). (10) 

The scalar normal equations of (9), (10) are analogous 
to the NR matrix equation of multi element ddX 

(11 ) 

Observables I(x + dx') have one index of column matrix 
L. First partial derivatives f'(x + dxO) have two indices 
resulting in matrix F' such that sum (rtf) = F'''F' and 
sum(f'I) = F'''L in matrix notations of NG. The second 
derivatives fll(X + dX') have three indices. Its first index 
is contracted with L in sum(f"I). According to the ex­
panded matrix notation of array algebra under equation 
(3b), this is achieved by L!F/I resulting in an (1,n,n) ar­
ray. It is then transposed in (11), by subscript T to ex­
change the first and third indices vs. the first and 
second index of superscript T, to a symmetric (n,n,1) 
matrix before addition to F,TF' of the NG matrix. 

In theory, the resulting symmetrix NR matrix N'(X,dX'l 
in (11) is non-negative definite in ""clean and smooth" 
problems but the empirical and noisy data of image 
matching often yields negative definite local normals in 
GLSM, perhaps because the "bad" areas (occlusions, 
etc.) do not obey the Gauss-Markov model. A deriva­
tion of the Taylor array series of matrices N'(XO,dX) as 

partial derivatives of (6b) reveals the 'decentered' NR 
normals of (R 1990) 

N'(Xo,dX) = F'1'Ff + (L1"(F" + F'"dX **1)) + 
F'l'(3 F"dX **1 + 2 F'"dX **2) .... T (11 b) 

All arrays F', F" and F'" are evaluated only once with 
very crude initial values XO. Updating of F,'1"F' is ap­
proximated by F'l'(3dF; +2dF"":) where matrix corrections 
dF,' , dF~ are found by the array polynomials F"dX**1, 
FI// dX**2 using the accumulated dX estimates. Updating 
of F" is done by F'" dX **1. 

5.5 Array Algebra Expansion of Super Iteration 

The basic 1976-77 idea of nonlinear I.s. matching in (4) 
introduced the local "scale space constraint" by using 
two closest integer locations to the latest dx

Q 

estimate 
as the initial values of two analytic NG adjustments. 
The combined solution from both initial values is re­
quired to result in the same (fractional) solution of dx. 
The application of this technique to NR in (11) combines 
several iterations into one "super iteration" of a much 
more robust solution than the use of a single initial 
value. Computing time is not much increased from a 
single iteration of a single initial value by the applica­
tion of the analytic techniques in section 5.3. 

NR technique of a single initial value is known to have 
a superior convergence region and rate over NG. 
These NR convergence properties are enhanced in the 
new Multiple Initial Value Constrained (MIVC) NR tech­
nique of array algebra because, like in GLSM, the con­
tribution of the poor region of the chosen initial value 
"search range" can be overruled by proper weighting. 
As the search range is refined close to zero or the 



standard error of the adjusted parameters, the MIVC 
technique approaches the limiting case of NR in the 
final iterations. NR, in turn, approaches that of NG as 
elements of L get small. The more sophisticated and 
therefore slower nonlinear least squares techniques are 
only required in the initial value refinement or "pull-in" 
process of coarse-to-fine grid method. 

Blaha (1987) showed a simulated example where the 
expanded NR of single initial values converged in 1-2 
iterations with orders of magnitude wider pull-in range 
than the limit of NG convergence region of over 10 it­
erations. Our preliminary experiments since 1988-89 
with nonlinear GLSM and MIVC techniques confirm his 
findings, although image matching inherently contra­
dicts theories requiring smooth and continuous math 
models. The MIVC technique has a realistic potential of 
converging in one iteration to the nearest solution of 
nonlinear local I.s. minimum. It bridges the gap to the 
nonlinear problems that can be solved with an unlim­
ited pull-in range of direct linear solutions. 

A new finding of "nonlinear loop inverse and array al­
gebra solution to neural nets" expands matrices and 
their general inverses of linear algebra into nonlinear 
operators, (R 1990). It continues the expansion of ad­
justment calculus in the fashion of linear loop inverses 
and array algebra. 

5.6 Nonlinear Estimation Beyond least Squares 

All of the above derivations, starting from the nonlinear 
observation equations (4), can be generalized by 
choosing more general minimization functions in (S) in 
place of the least squares or the second power of the 
absolute values of residuals. Laplace's estimation uses 

the first power @ = 1 and the related robust estimation 
(often with more general functions of residuals than a 
polynomial of their absolute values) employs 0 < @ < 2. 
The resulting estimates V = L - A X are more robust 
than their BLUE of least squares in revealing the 
outliers, (Krarup et.a!., 1980). The integer powers @ of 
the exponent are of a special interest. The nonlinear 
normals and their Taylor series show that, structurally, 
@ = 1 is the "central power" among the complete class 
of this unified estimation theory of minimized residuals. 

The linearized normals or the basic system of equations 
of nonlinear estimation by minimum residuals with ar­
bitrary @, vs. (11) of@=2, are 

(12) 

The reader is urged to work out the details of this deri­
vation in analogy to equations (2)-(11). The diagonal 
"power weight matrix" P has elements 

p(i,i) = (abs{l(i)) + e)**(@-2) 

where a suitable small positive constant e prevents the 
infinite weights of I(i) = ° for @ < 2. 

A major expansion to the NG and linear least squares 
estimation (1b) is achieved in (11) and (12). The central 
power @= 1 reduces into 

(sign(Lt F") ... ddX = -F,l'sign(L), (13) 

All cases of arbitrary @ are handled by the same gen­
eral least squares routine by regulating the power 
weight matrix P (as a part of the traditional weighting 
process) and the "power relaxation" term 1/(@-1). This 

term equals 2.0 for @ = 1.S and -2.0 for its symmetric 
@ = O.S in the final iterations of small or no contrib­
utions from L'f'PF". The symmetric case @ = ° to least 
squares has the reasonable "power weights" (inverse 
of 1(i)**2). In the final iterations of small L (or small F"), 
it walks an equal amount with the least squares solution 
- but in the opposite direction! (@-1 = -1 for @ = ° vs. 
+ 1 for @=2). 

All terms in (12) are scaled by @ such that minimizing 
v**O = 1 of @ = 0 makes more sense and we should 
keep in mind the philosophy of loop inverse estimation. 
Parameters X themselves are seldom fully unbiasedly 
estimable and we are mainly interested in their 
projections and other functions A X in the observable 
and estimable space, including a robust rejection and 
automated fill-in of the outliers. Only then the second 
stage of estimation is started for parameters X by mini­
mizing the bias, variance, norm or some other problem 
dependent estimation criterion. This widens the free­
dom of the problem analyst beyond the traditional one­
step process of least squares estimation. While we take 
the new steps on this new territory, we may find the 
classical special case of least squares as a safe guide 
toward new explorations. 

5.1 Application in Nonlinear GlSM 

The 1976-77 invention of Global Least Squares Match­
ing (GLSM) and the associated automated technique of 
on-line OEM validation has prompted many inventions 
of array algebra and advanced system designs of 
multi-ray softcopy workstations. Their fast array algebra 
solutions detailed in (R et.al., 1989) can handle 1kx1k 
2-ray stereo frames of GLSM with 1-4 pixel node spac­
ing of over one million modeling parameters in VAX 780 

and SUN work stations, in a few minutes of CPU time. 
The resulting 0.OS-0.2 pe average standard error of x­
shifts and high OEM resolution of dense posts is found 
(by running same test cases using both techniques) to 
be in the order of 4-16 times better than that of cross 
correlation over a rugged terrain. The automation reli­
ability is not far from 100%, even on urban, forested 
and steeply mountainous areas of the poor 2-ray mod­
els, confirming the 1986-88 GLSM results of the inter­
national (ISPRS) image matching test, (R 1988), (R 
et.a!., 1992). GLSM can handle cases, including those 
of close range photogrammetry, at about the same or 
better reliability for all (infinite number) points as the 
point wise (vs. global I.s.) cross correlation over few 
good candinate points selected by an interest operator. 

Multi-temporal, SAR-to-SAR and other image registra­
tion applications where the old techniques have failed, 
have been reliably experimented with GLSM while tak­
ing in the order of 100-1,000 times less arithmetic op­
erations per point than a cross correlator. GLSM 
sample speed covering tiny 3x3 to SxS pe windows in 
VAX 780 is over a thousand posts per sec in one iter­
ation including the reshaping computations. This sam­
ple speed is exceeded by the earlier discussed global 
OEM solution of array algebra for automated edit and 
fill-in of the x-shifts. The GLSM speed advantage per 
point over the single element special case of digital 
LSM point transfers of about 32x32 pe (vs. 1 k x 1 k pel 
windows is larger than over the cross correlation. A 
general purpose computer of 1 MIPS with the fast 
GLSM software has beaten many published image 
matching throughput rates of super computers, array 
processors and transputer nets by a factor of 10-100. 
The demonstrated 9S-100 % reliability of GLSM vs. a 
more typical range of 60-90% of the old automated 
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OEM techniques removes the bottleneck of manual edit 
work improving the total production throughput from 
the sustained manual edit rate of about a second per 
point to 100-1,000 points per sec in the weak. 2-ray 
mode. 

The global simultaneous OEM solution of x-shifts is only 
one part of the overall GLSM process of each iteration. 
These iterations of nonlinear estimation have to be re­
peated several times in NG at each minification level of 
the hierarchical pull-in. The 2-ray throughput speed of 
NG varies in 200-600 nodes/sec in VAX 780 class of 
computers depending on the sophistication and oper­
ations mode of the algorithm to optimize the quality. 
The nonlinear expansion of GLSM is straight forward 
increasing only slightly the global NG timeline of one 
iteration. Because of its wider pull-in range and faster 
converge rate it is expected to improve the overall 
speed and quality (economy) after it is fully developed 
and tested. The processes of hierarchical multi­
resolution, multiple initial values, multi-grid, multi­
layer, multi-ray, multi-spectral and continuity relaxation 
are gradually integrated to the (inherently multi­
temporal) GLSM sofware in parallel with the work on 
the GO/HAl sofcopy workstations, (Miller et.al., 1992). 

6. SUMMARY 

A general theory of linear estimation by loop inverse 
technique and fast numerical analysis of linear array 
algebra was reviewed with some applications in digital 
photogrammetry. The resulting theory was then ex­
panded to general nonlinear estimation. The closed 
nonlinear normals opened a way for direct linear sol­
ution of nonlinear estimation including continuous 
functions of observables vs. discrete samples. Newton 

solution of the nonlinear normals revealed the NR 
technique of linearized normals where its partial deriv­
ative matrix had a contribution from the second order 
derivatives of the nonlinear function overlooked by the 
classical NG technique. NR was expanded by a general 
Taylor series expansion of array algebra resulting in 
decentered NR where the normal equations are up­
dated without an explicit re-evaluation of the first and 
second partial derivatives. The generalized NR was ex­
panded into a super iteration combining several initial 
values and iterations. Finally, the new nonlinear esti­
mation theory of array algebra was generalized beyond 
least squares using any power of the absolute values 
of residuals in the sum of minimized residual functions 
yielding nonlinear least squares, Laplace and robust 
estimation as special cases. An application in global 
image matching of automated softcopy mapping sys­
tems was used as an example of the generalized fast 
transform technology and numerical analysis of nonlin­
ear array algebra. 
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