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ABSTRACT 

One of the basic tasks in digital photogrammetry is to find conjugate points in a stereo pair and to reconstruct the 3-D 
object space (DEM). Edges play an important role in that they may indicate breaklines in the surface. We use the LoG 
operator to extract edges (zero-crossings). In this paper the problem of matching zero-crossings is addressed. Zero-crossings 
computed from one image are matched with area-based method. A hierarchical matching approach is adopted by the use of 
both, interpolated disparity maps at each level of the image pyramid, and knowledge from image analysis at very high level of 
image pyramid. The method is particularly suited for matching aerial images for the purpose of restructing surfaces of urban 
areas. 
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1. INTRODUCTION 

One of the major research areas in digital photogrammetry is 
image matching for reconstructing the three-dimensional sur­
face of the object space. This process involves a fundamental 
problem of stereo vision: to find corresponding points in an 
stereo-pair. Once correspoinding points are determined their 
three-dimensional positions can be easily computed, and the 
surface is obtained from matched points by interpolation. 

Two methods are commonly used in image matching: area­
based image matching and feature-based image matching. 
Aera-based matching is predominantly used for the object 
space (DEM). Here, the corresponding points are found 
by comparing the gray levels of correponding areas (image 
patches) in a image stereo-pair. This approach is favored 
in photogrammetry because of its high accuracy potential. 
However, there are several critical factors that need special 
consideration in area-based matching. For example, 

.. good approximations for the corresponding image 
patches are required 

.. matching in flat area or of sharp relief changes is ex­
tremely hard and it produces bad results. Both cases 
usually occur in urban aerial images 

.. recovering the surface, especially in urban areas, from 
randomly distributed matched points is difficult 

.. the reliablity control of the matching is low 

.. computations are intensive 

Some of these problems are avoided in feature-based match­
ing. Here, properties (features) derived from the gray lev­
els are matched, rather than gray levels themselves. This 
method usually proceeds in two steps, the first being a lo­
cal similarity matching such as comparing the parameters of 
detected features, and the second being a global matching 
such as checking continuity constraints. Features detected 
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monocularly may differ and may include spurious data due 
to differences in reflectance which are not caused by the sur­
face shape. This problem is quite acute in large-scale aerial 
images of urban areas. Another point to bear in mind is that 
matched features (e.g. edges) do not necessarily consist of 
conjugate points. In general, feature-based matching is more 
robust and less computationally intensive. But most impor­
tant, matched features are more meaningful than randomly 
matched points if it comes to automatically analyzing image. 

The motivation for this research is to combine the merits of 
both area-based and feature-based matching methods. First, 
edges or zero-crossings (ZC) are detected as features. The 
edges are more likely to represent prominent features of the 
surface, such as breaklines. Instead of matching edges as en­
tities as described in [Schenk et. al. 1991], here we match 
every point of an edge by correlation. A match is accepted 
if it satisfies epipolar geometry and figural continuity con­
straints. This strategy proved to be quite successful [Li et . 
al. 1990]. In order to cope with urban areas where corre­
lation must be applied with caution, we have modified the 
strategy by including a surface analysis step in the hierar­
chical matching scheme. At each level of the image pyramid 
an interpolated disparity constraint map is generated which 
provides the necessary approximations for the next level of 
matching. Knowledge gained from previous levels is used 
to guide matching in the subsquent level of image pyramid. 
With this new strategy the success rate of matching aerial 
images of complex urban scenes is greatly improved . 

2. FEATURE EXTRACTION 

Detecting zero-crossings as features for matching was first 
proposed by Marr and Poggio [Marr and Poggio, 1979] on the 
basis of a computational theory on the human stereo vision. 
Mathematically, zero-crossings are obtained by applying the 
convolution operator V 2G over the image f(x,y) as 
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G(z,y) = -2 2ezp(--2 2) 
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/(z,y) = yr2G(Z,y) * f(z,y) 

where G(z,y) is a Gaussian filter, yr2G is the Laplacian of 
a Gaussian (called LoG), and f(:t, y) is the image gray level 
function. Convolution us denoted by *, and r = (Z2 + y2)1/2 
implies that the operator is rotationally symmetric. The ad­
vantage of the LoG operator is that it combines smoothing 
and differentiating into one operator. Moreover, it is local­
ized in space and frequency domains. The filtered image 
/ (z, y) is divided into positive and negative regions with 
average frequency of 0/ u. The boundaries of these regions 
are the zero-crossings. Zero-crossings occur wherever the 
gray levels change sharply. The degree of change can be de­
scribed by the first-derivative of the gray level function, or 
the gradient of the gray levels. Zero-crossings are separated 
by an average distance which is equal to the window size of 
LoG operator, the diameter of positive central region of LoG 
curve w = 20u. The larger the window size, the larger 
the dislocalization of detected zero-crossings from the real 
boundaries. 

Edges in aerial images represent object boundaries or mark­
ings (e.g. shadows). Many object boundaries correspond to 
surface breaklines. The LoG operator is applied to both left 
and right image to obtain the' zero-crossings. Several param­
eters are chosen to control feature detection. The window 
size w of LoG operator is selected according to the quality 
and the scale of the images to ensure surface feature detec­
tion. In order to supress noise or less important features, 
a threshold value t is chosen according to the distinctness 
of the zero-crossing. The result of applying LoG operator 
are two binary images. Zero-crossings as feature entities are 
obtained in the left images as following: 

.. The location of zero-crossings is obtained by an edge 
following algorithm. The connected zero-crossing 
points form the zero-crossing curve as feature entity. 

.. Then each zero-crosssing curve is segmented using local 
curvature maxima as end points of each segment. 

As a result, edges are detected as individual zero-crossing 
curves connected by several possible segments. 

3. CORRELATION MATCHING 

The flow chart of the matching scheme is shown in Fig. l. 
Like most area-based matching algorithms, epipolar geome­
try is employed to constrain the searching to one dimension 
[Cho et. al. 1992]. At each level of the image pyramid, the 
image patches are first enhanced since area-based matching 
methods require good image quality. Next, zero-crossings 
are determined in both images. For each zero-crossing point 
in the left image the corresponding point on the right image 
is found along the epipolar (scan) line by area correlation. 
right image zero-crossings only help to define the searching 
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window for the correlation matching. The matching is per­
formed in two steps: initial point to point correlation, and 
figural continuity checking acceptance criterion. During the 
initial matching, points with maximum correlation values 
larger than the preset threshold value are selected as matched 
points. The key point here is to find a good approximation of 
the search window in the right image. This is accomplished 
by using the disparity constraint map at each level of the im­
age pyramid. Once matching is completed, an interpolated 
disparity image is generated, providing the approximations 
needed for the next level matching . In the highest level of 
the image pyramid, knowledge gained from surface analysis 
is also fed back to the matching process through the use of 
the disparity map. After the initial matching, all matched 
points must satisfy the figural continuity constraint for final 
acceptance as conjugate points. 

Fig. 1. Flowchart of matching scheme 

3.1. Hierarchical Disparity Constraint 

The search window in correlation matching is defined by two 
parameters: location and size. Obviously, the window size 
depends on the goodness of the approximations. We deter­
mine the window size (search range) dynamically based on 
the disparity map. If the search window is close to a zero­
crossing contour detected in the right image, it is adjusted 
accordingly, because this zero-crossing is likely to be the con­
jugate point. 

A crucial step in any matching system is the approximation 
of the matching location (center of search window). At the 
top of the image pyramid we have two options. One is using 
an average disparity value for all matching positions. This 
average approximation is computed from the matched points 
generated during automatic orientation [Schenk et al. 1992, 
and Zong et al. 1991]. The second option is to convert the 



,,,piatched points from the automatic orientation to dispar­
i'ty"valuf':~~/I'hese disparity values are then interpolated to 
generate a disparity map to determine the location of the 
search window. After the matching process is completed in 
one level of the image pyramid, the disparity map is up­
dated to ensure that better approximations in the next level 
are available. This is quite important, particularly in urban 
areas where the disparity values may abruptly change. It 
should be noted that the disparity map always corresponds 
to the resolution of current level in the image pyramid. 

3.2. Surface Analysis in High Level Matching 

The use of the disparity map provides not only good approx­
imations for correlation matching but also a closer surface 
approximation after each level of matching. In higher levels 
of the image pyramid such a surface can even provide a lot of 
three-dimensional object information. This information can 
then be used for real object surface analysis, as discussed in 
[Wang et. aI. 1992J. On the other hand, the information 
gained from the 3-dimensional analysis can be fed back to 
guide the matching. 

One of the most difficult matching cases are urban aerial im­
ages in which there exist man-made features with extreme 
height, such as tall buildings or chimneys. The deformations 
and disparities of such features in stereo images can be very 
large causing the matching to be either incomplete or unsuc­
cessful. The solution here is to analyze the disparity map. 
As one application of 3D feature analysis discussed in [Wng 
et. al. 1992], a contour map can be generated after segment­
ing a disparity map. The following rules are implemented to 
superimpose knowledge to the existing disparity map and 
used to guide the program to find potential high features. 

.. A cluster of close-centered contours indicates a poten­
tial hump 

.. If the inner disparity values are much larger than the 
outer ones, a potential high hump is indicated 

.. For a potential high hump, information is fed back to 
guide a future matching 

.. The boundary of a potential high hump is the second 
closed outer contour since the first one may indicate 
boundary of the environment 

.. The potential disparity values inside the selected 
boundary are the average disparity values of the 
matched points inside the boundary 

.. The obtained disparity values of the potential hump 
are appended to the matched data and a new disparity 
map is interpolated 

3.3. Figural Continuity Constraint 

The figural continuity criterion implies that the disparity 
values along zero-crossings must be continuous. We imple­
mented the figural continuity constraint by performing a 
Hough transformation of all the matched points belonging 

,to one segment of a zero-crossing contour. Continuous dis-
parity values show up as clusters in the Hough space. If fewer 
than 15 points fall into the cluster a flag is set to indicate 
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that there is no corresponding zero-crossing segment. Fi­
nally, the location of the corresponding segment in the right 
image is determined by the Hough transformation and the 
correlation threshold. 

4. EXPERIMENTS 

The matching algorithm was tested with several pairs of 
aerial photographs. In this paper, we present the results 
from stereo-images (193, 195) taken over the campus of the 
Ohio State University. This model represents a very typi­
cal urban area of all the different models tested, it was the 
most difficult one. The photo scale here is approximately 
1 : 4000. The diapositives were scanned to a resolution of 301' 
pixel size by Intergraph Corporation using the PhotoScan. 
However, we only used a resolution of 601' which yielded a 
4096 x 4096 pixel image. The ground coverage of a pixel is 
approximately 25 x 25cm. 

Fig. 2 and 3 show the original aerial images at the coarsest 
resolution of 512 x 512. Zero-crossings were first detected 
with the LoG operator (w = 5), and then matched with a 
single average disparity approximation. The range of the 
search window was set to 10 pixels in order to avoid wrong 
matching. The matched zero-crossings are shown in Fig. 4 
and 5. A disparity map was interpolated by using Modular 
function on Intergraph workstation. The result is shown in 
Fig. 12. which outlines the surface of the whole overlapping 
area of the model. Some humps are clearly visible. 

The interpolated disparity map was then converted into an 
image of 512 x 512 resolution and the disparity values were 
treated as graylevels. Fig. 6 and 7 show matched zero­
crossings of a 512 x 512 image patch selected from stereo 
images of 1K x lK resolution. Fig. 13 shows the interpolated 
3D disparity map. The humps are now more prominent. Fig. 
Sand 9 depict matched zero-crossings of a 512 x 512 image 
patch from 2K x 2K resolution images. The interpolated 
disparity values are shown in Fig. 14. The surface is fairly 
well approximated at this level. 

The procedure is repeated at the finest resolution, again with 
an image patch size of 512 x 512 pixels. In this example 
the disparity values range from 0 to 118. The segmented 
disparity image resulting from matching is shown in Fig. 
16 where the hump is clearly indicated. Fig. 10 and 11 
show the matching results. superimposed to the resampled 
images, while Fig. 15 and 17 show the interpolation of the 
final matching results in the disparity map and the three­
dimensional object space, respectively. 

5. CONCLUSION 

The presented matching scheme combines the merits of both 
area-based and feature-based matching methods and proved 
succussful in the aerial image matching. The use of a hi­
erarchical approach and surface approximation makes this 
approach particularly suited for urban area image matching. 
It is found that the precise detection of prominent features 
is helpful for recovering the object surface. The reliability of 
the correlation matching is improved by the employing the 
figural continuity constraint. Finally, this matching scheme 
shows a great potential for object surface analysis and re­
construction. 
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Fig. 3. Original right epipolar image 193 in 512 x 512 res. 

Fig. 4. Matched ZCs of L-image (512 x 512 ~es.) Fig. 5. Matched ZCs of R-image (512 x 512 res.) 

Fig. 7. Matched ZCs of R-image (lK x 1K res.) 
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Fig. 8. Matched ZCs of L-image (2K x 2K res.) 

Fig. 10. Matched ZCs overlapping in L-image (4K x 4K) Fig. 11. Matched ZCs overlapping in R-image (4K x 4K) 

Fig. 12. Segmented disparity map from 4K matching Fig. 13. DEM in object space from the final matching (4K) 
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Fig. 14. Interpolated disparity map from 512 res. matching Fig. 15. Interpolated disparity map from lk res. matching 
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Fig. 16. Interpolated disparity map from 2k res. matching Fig. 17. Interpolated disparity map from 4k res. matching 
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