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ABSTRACT

Bundle adjustment has been widely used
the observation equations are non-linear,
the start of adjustment.

approximations automatically associated with any model
This method can realizes semi-automatic bundle adjustment or photogrammetry with-
relative orientation by the Tinear

tems .

out control points. The method s based on

ty condition and decomposition of rotation matrices to angular elements.
dated by experiments of simple orientation of a pair of photographs

in orientation and camera calibration.
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This paper discusses a method and a procedure to evaluate the
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coplanari-
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and a camera cali-
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1. INTRODUCTION

Bundle adjustment has been widely used 1n
camera calibration and triangulation. But
since observation eguations are non-
Tinear, approximations of all parameters
are required at the beginning of computa-
tion.

In c¢lose-range photogrammetry the approxi-
mations of exterior orientation parame-

ters are usually recorded at exposing
positions. But it Js time consuming and
sometimes hard, because a convergent or

parallel +dimaging configuration rather than
vertical one is often used. For a digital
plotter (digital~image-based plotter)
which 18 now being developed 1in many
organizations (Lohmann, 1989,
Ohtani, 1989), easy manipulation s sub-

stantially required by operators who are
not familiar with photogrammetry. Hence an
adtomatic or semi-automatic ad justment
procedure is now strongly called for.

This paper shows a method to automatically
calculate approximations of exterior
orientation parameters and coordinates of
object points associated with any model or
object gpace coordinate system. The method
is based on relative orientation using the
Tinear coplanarity conditdion and decompo-
sition of rotation matrices to angular
alements (Hattord, 19891).

In practice the purpose of many industrial
measurements s focused only on shapes of
objects, not absolute coordinates. And
camera calibration works also can be
executed only by the coplanarity condition
in any coordinate system (Fraser,1982).
The authors' method solves the problem
about the selection of a coordinate sys-—
tem, and realizes photogrammetry without
control points. It is very useful in
digital plotters, because one can easily
define any coordinate system on the
sareen, observing a model stereo-optical-

Ty .

2. OUTLINE OF EVALUATION OF INITIAL

VALUES OF PARAMETERS

shows an example of an imaging
in a camera calibration

Fig.1
configuration

Automatic Adjustment,
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Camera Calibration, Close Range Photo-

which will be again referred to in
experiments. A three dimensionally allo-
cated targets are +imaged convergently at
various positions and with various camera
rotations. The following is a flow of the
procedure to obtain approximations of
parameters.

(1) Overlapping photographs are separated
to each independent model. Rotation ma-
trices of +independent models are evaluated

and decomposed to angular elements (see
3.).
(2) The fndependent models are linked to

make a global model(see 4.1).

(3) If necessary, the global model coordi-
nate system is transformed to the object
space coordinate system using more than

three control points(see 4.2).
{4y Object space coordinates of target
points are calculated. Then the rotation
matrix of each photograph +in the object
space coordinates system ( or in the
global model coordinate system) s decom—
posed to angular elements(see 4.3).

3. RELATIVE ORIENTATION BY THE
LINEAR COPLANARITY CONDITION

Let ug start with a pair of overlapping
photographs. The dnterior orientation s
assumed complete. Model coordinates of
two corresponding points are expressed,
as shown in Fig.2-1, as

XP1 = myp mp mg| [

Ypq Moy Moy Moy ¥q

Zpy m3q M32 M33| ["¢ ]

(@D

Xpal = | Mg Mg Nyl | Xp| *|B

TP2 N1 Noa Moz | Vo 0

Zpo N31 N3z N33 |7° 0
where (x4 vy, ~C)T,(X2 Yo wc)T are._ photo-
graphic coordinates, (Xp; Ypq, Zpq) ', (Xp2
Ypy Zpp) are model coordinates, o s a

is & base length (
The copla-

camera distance and B
urnity with an unknown sign).
narity condition:




Yp1lp202p1Yp2 = 0 (2)

is rewritten to the form;
PyXXp+PaXqYo +Paxq(~a)+aqy X,

+apyqyp tagyq(—ed+rq(-e)xa+ ro(-clyy

+tra(-e¢)(-¢) = 0 (3)
where
Py = MaqNg17M3qN2q. P2 ¥ MpqNgo~MziNoo.,
P3 = MpqNgg~MaqNpz. dq ¥ MppNgq~Mzahaq.
fp ¥ Mppngp~MzpNon, A3 = MppNaz~Mapnog.
Py ¥ MogNaiTMgaNoq. Mp ¥ Mp3Ngp=Maznoy.,
Py ¥ MpzngzTMagnog- (4)
It 9s easy to see that a vector
a= (py Py P3 dq dp Az 'y rp radl

has a relation;

Expressing eq.{(3) in the form of
an observation equation

Xa = v , (5)

where X 1is a design matrix and v s a
residual yector, one can solve a by mini-
mizing v'wv. An objective function for

this purpose becomes with a
multiplier u

Lagrangean

U = a'x'xa - u(aa -2). (65

By diferentiating eq.(5) with X, one gets

(XTX-ulda = 0. 7
Namely a 1is an eigen-vector and u is a
variance of residuals; ]v{2/2. If an
imaging configuration is good, only one u
that s near zero Js obtained. Or other-
wise multiple candidates of u may be

obtained, out of which the correct one s

determined by the following procedure.

Then the rotation matrices (mﬁj) and (nij)

are evaluated from the vector a. Even
though Fig. 2-1 is assumed to be correct,

Figs.2-2,2-3,2-4 as well as 2-1 are +in-
cluded ¥9n solutdions. Figs.2-1 and 2-2 are
aquivalent, whereas Figs.2-3 and 2-4 are
false, because they are turned over ‘into a

negative position.

The rotation matrices must be defined as;

(mij):
cos ¢1 0 «sﬁn¢1 003k1 $ﬁnk1 0
0 1 0 -sinky coskq 0
sin g4 0 cosd, 0 0 1
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= cos ¢1mos k1 cOs ¢1$in k1 ~gin ¢1
-sin ki cos k
sin gqcos ky sin gisin ky cos gy
(8=1)"
(nﬁj):
1 o o} cos ¢2 0 =-sin ¢2
o] COs Wy sin Wo 0 1
0 -sin wy ©os wolisin gy 0 cos @o
cos kg sin kp 0
-sin ks cos ky 0
o - 0 1
= cos gy cos kp
-cOs W,y 8Tn ks + sin wy sin g, cos ky,
sin wy sin kg + cos wy sin g, cos ky
cos @By sin kjp
cos W, cos ky, + sin wy sin gy sin ky
-sin wé cos k2 + cos wy sin B, sin ky
—~sin ¢2 (8-2)
sin w, cos ¢2
COs W, COS ¢2

It should be noted that the rotation order
in the definition Y8 unique. For other
orders it can be shown that there are some
angles at which the rotation matrix be-
comes singular and fails to be decomposed
to angular elemants.

Since myg =0, from eqs.(4)
m3zNa1 =709,
Ma3zNez “"ra-
m33N23 =r3- 9
And then

maz?(ny124n,p2n,ps?) = ryPer,ery?.

Since the photographs are assumed dia-

positive, mgg > 0. From the orthogonality
of (nqj),

m3z ~ ¢r912 +rp2+ rg. (103
From eq.(10) two candidates of.¢7 are
obtained. Which +is correct dis suspended
here. Then from eqs.(9)

np1=-rq/maz.

Npo™~rp/myg,

n23:wra/m33‘ (11)

Multiplying the first, second and third of
egs. (4) with nyq, npp and nog respectively
and summing them up, one obtains

Myq = w(p1n21+p2n22+p3m23). (12-1)




X| =8 Ay A Aggl|Xml+ |B
11 A1z Arsl [ Xm 1

M Ay Agz AogliYm| |Ba| (18D

% Az1 Azz Aszf|[Zm ]

is commonly used for 3-D space transforma-
tion, where $ s a scale, A= (Ai') ig an
. . J
orthogonal matrix and 8=(B;) is a transla-
tion vector. B and $ are evaluated from
gravity centers and a scale ratio of two

coordinate systems. Thus eq.(18) s re-
duced to the form;

Xq = A Xwi- (i=1,2,,n) (18)
where suffix 1 means control point No.. X

and Xy; are coordinate vectors associated
with the object space coordinate system
and the global model coordinate system
respectively. Their origins are assumed
already shifted to respective gravity
centers and Xy are assumed to be scaled by
S. The matrix A +is determined so as to
minimize

&l
E = L(A Xyy=X)T

(A Xpi=%X4) (20)

‘e
This problem was already solved by some
researchers (Arun, 1987, Horn, 1888). The
authors adopted the Arun’'s method: By

expanding eqg.(20) one obtains

- TAT
2xmi A X5

E dis minimized when

n
Trace( ﬂ(XMiTArgﬁ))
=1

n
Trace ( ATﬁ§&<5MﬁT5ﬁ>>>

With appropriste orthogonal
V. which singular-value-

is maximized.
matrices u,

decompose ¥ (gMiTgﬁ) to
n
£ OM;Tx) = ovauT,  (22)
=1
where N s a diagonal matrix, the solu-
tion of the matrix A is given as
A o= vul. (23)
4.3 Evaluation of angular elements

After all rotation matrices (Mﬂj) assoct-
ated with the object space coordinate
system ( or global model coordinate sys-—

are obtained, they are decomposed to
Let the matrices related
d and Q be ex-

and [Q]. Here
capital Tletters.

tem)
angular elements.
to angular elisements K,
pressed simply as [K],[&]
angles are expressed by

If the rotation order of angles s fixed,
the matrix (Mﬁj) can be singular and
unable to be decomposed to unigue angular
elements . In order to assure unigue

[\
[\S)

decomposition, one has to change the order
of rotations depending on the valuses of
elements of the rotation matrix; i.e.,

a) If Myz = + 1,(My ;) =[Q1[6][K]
b) If Mgy = & 1,(My;) =[KI[6][Q]
c) If Myg = + 1 and Mgqy = + 1,
(Mﬁj> = [K][Q1[&]

Since the treatments for any cases are
similar, here only case a) is discussed.
From eguation sin & z~M13, one gets two
candidates for & for -TW<KHT. Since cos ©&
# 0,

sin @ = Mpg/cos &,

COs = M33/cos b,

cos | M11/cos &,

sin K o= M12/CD$ 6. (24)
For sach candidate for &, @ and K are
determined uniguely. They are tested on
whether to satisfy the following equations.

~cos gsin K + sin Qsin dcosK = My,

cos Qoos K + sin @sin dsinK = My,

sin @sin K + cos @sin dcosK = M31(25)

-sin Qoos K + cos @sin &sinK = Mg,
Sets of candidates which do not satisfy

all the eguations are discarded.

5. EXPERIMENTS

applied to two experi-
A simple rela-

The procedure was
ments for validity check;

tive orientation of a pair of stereo
photographs and a camera calibration
without control points.

5.1 Relative orientation of a pair of

A target field of 5m x Bm x 0.8m (depth)
was imaged by & 35mm metric camera, PENTAX
PAMS 645, f= 44.979mm. Two photographs
were taken vertically in stereo with a
base TlTength of 1.5m, overlapping each
other 50%. Common pass-points are 12 4n
number (minimum reguirement s 8). This
configuration 1is not good for the proce-
dure of automatic adjustment but very
commonin dindustrial photogrammetry.

In nine eigen-values obtained from
eq.(6), three of them were 0.0598,0.146
and 1.02, while others are greater than
100,000, As a result of applyving the
procedure mensioned in 3., a set of rota-
tion angles with respect to the mode)
coordinate system were obteined only for
the third minimal eigen-value. The other
sigen~values did not produce misleading
false solutions. Residual y-paraliaxes
obtained 9n the ensuing precise orienta-
tion were 7 um in RMS. Table 2 shows the
approximations and precise values of
angles.




Likely one gets

M3y = =(AyNpq+dpnoo*danyg) (12-2)
mgg = =(Pqnoq+ronoo+ransg) (12-3)
where eqg.(12-3) s tddentical to eq.(10).

3.4 Eyaluation of k,

Writing the first six expressions of

egs.(4) in the form of

ma1N3q = Pq¥mzqnpg.,

mpqfgp = PptMz Noo.

m21R33 = P3tMzqiNogz.

MpoNgq = dqtMmzsnoyg.

MagNgp = dptMzoNay.

MppNg3 = d3*Nnzonaz.
multiplying the first with the forth, the
second with the fifth and the third with
the sixth of each side of the above ex-
pressions and summing up them, one can
calculate the right side of 1it. And the

left side becomes

Mo imop(ng 2+ngp2+ng32) = myymyy

=—sink1cosk1= —1/2$in2k1.

This procedure produces four candidates
for kq-
Then ngq.n and ngy are evaluated for

They are evaluated
for

each candidate for kj.
from following different equations
better precision.

a) for -3/4FW <ky<-Ti/4 or TY/4<k<3/410
ngq =(pqytmgqngq)/(=sin kq),
nz2™ (Patmgqngp)/(-sin kq),
nga =(p3+m31n23)/cos k1 (13-1)
b) for -~T/4<k,</4 or 3/4T<k,<5/4T0
n3q=(aqtmyanyq)/cosky,
nzp=(dz*maangy)/cosky,

n33x(q3+m32n23)/¢msk1 (13-2)

From eqgs.(8~2)
sin wycos ¢2 = Npg,
cos

WoC0s B, =ngz. (14)

ngy >0, which means cos ¢2 # 0,
"/ 2 2
N23z™ *+ N33z” -

There are four candidates for #d,. And for
each candidate for d,, angle wy, is evalu-
ated by

cos (15)

252:

sin wy= n,yz/cos d,,

203

COB Wy @ m33/cos ¢2. (16)
3.8 Evaluation of kj
From egs.(8-2);
(-cos wydsin ky
+ (sin wo sin do)cos kp = nogy
{ cos w2)cos Ko
+ (sin wo sin ¢2)§1n kz = Ngo

( sin we)sin k2

+ (cos wy sin @gylcos ks = ngq (17)
(~sin wy)cos kjy
+ (cos Wosin ¢2)sin k2 = Ny,

one solves the first two equations to get
sin ky and cos ky. They are always solva-
ble, even if sin ¢2 ig zero. And this k2
is tested by substituting it 1into the
third and forth equations. Any sets of

candidates for d? and Wo that do not
satisfy both are abandoned. :
3.7 Strict relative orientation and deter-
mination of the sign of a base length

Since the precision of approximations
evaluated above is usually not suffi-
cient, one should execute relative orien-—
tation again using those approximations.
An findependent model dis thus obtained,
which s either Fig.1-1 or 1-2.

of a base length s deter-—
if Zp coordinates of
ohjects in the Independent model coordi-
nate system are lesser than 0, it is set
plus, and 9f Zp coordinates are greater
than 0, it s set minus.

Next the sign
mined the way that

4. EVALUATION OF ORIENTATION PARAMETERS

IN THE OBJECT SPACE COORDINATE SYSTEM
4.1 Model connection in the global model
coordinate system

Independent models thus produced are

Tinked to make a global model by usual
successive orientation. Scales of succes-—
sive models are adjusted by scaling base
Tengths. As a result exposing positions
and rotation matrices associated with the
global coordinate system XyYmZIy are deter-
mined.

Transformation

4.2 from the global model

When an object space coordinate system XYZ
is given, global model coordinates XyYmiy
are further transformed to the object
coordinates. Here let us consider the case
the object space coordinate system s
implicitly given in the form of a few of
3-D control points. In most Hdindustrial
measurements this 492 common. And in this
case one can calculates orientation param-—
eters automatically in the following way.

Similar transformation




A target field shown in Fig.1 was imaged
by a metric camera, GEODETIC SERVICE CRCI1
f = 240.0mm (changeable), film size =23
cm. The camera s designed to determine
precise coordinates of object points by
simultaneously adjusting with all other
parameters; interior orientation parame-
ters of the camera and exterior orienta-
tion parameters of photographs (Fraser,
1982).

The field was 4dm(height) x Bm(width) x

2m{depth) in size. 63 target points were
allocated three dimensionally. Most of
points were imaged Jn most photographs.

rotating kappa
The order of
in the experi-

Ten photographs were taken,
by 90 degrees to each other.
Tinking photographs adopted

ment Js shown +in Fig.3, where the photo-
graphs 3 and 8 make a datum model, and
others are lTinked to this model. The base

Tength of the datum model was set to unity

(1m).

By applying the procedure mentioned in
3., relative orientation parameters asso-
ciated with each independent model coordi-
nate system were uniguely determined. AT
approximations of fdnterior orientation
parameters but a camera distance were set
to zeros. The camera distance was set
initially to 249.85mm, which were read out
from a micro-meter-based indicator of the
camera. No false solutions did not appear.
In additional experiments the authors con-
firmed that any other combination of
photographs than 9n Fig.3 could make
models, as long as their convergent angles
were not near 90 degrees.

In the case of no control points adjust-
ment can be done by the method of free-
network or by the method of minimal con-
straints. The authors adopted the latter.
Seven degree of freedom was fixed by
giving the infinite precision to Zy of

point a and XM,YM,ZM of point b,c. 1in
Fig.1. As a result of the procedure in 4.
Table 2 was obtained, which ‘includes the

approximations and the adjusted values of
the interior orientation parameters of the
camera (except for ones related to Tens
distortions) and exterior orientation
parameters for photo 1 and 10 as well as a
RMS difference between approximations and
adjusted wvalues of target point coordi~
nates. The rotation matreces determined by
the procedure in 4.3 are both in the form

[Qllae] (K],

Table 1 and 2 prove that the algorithm
produces approximations of parameters
precise enough for ensuing bundle adjust-
ments.

6. CONCLUSION

This paper discusses the algorithm for
automatic calculation of approximations of
parameters 1in bundle adjustment. Relative
orjentation parameters of. each pair of
photographs are evaluated from the linear
coplanarity condition. A1l models are
Tinked to form a global model. Then their
rotation matrices are uniquely decomposed
to angular elements. If the object space
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the transfor-
automatically

coordinate system
mation parameters
avaluated.

is given,
are also

The procedure realizes photogrammetry
without control points or easy orfentation
and camera calibration. It +ds very useful
for digital-image~based plotters ( digital
plotters), which features easy manipula-

tion for everybody who are not familiar
with photogrammetry. Actually this has
been already fimplemented into a digital
plotter, TOPCON PI-1000 and now In test
use.

The authors would Tike to acknowledge
Mr.H.Ohtani, Mr.M.Chida +9n TOPCON Corp.
and Mr.H.Hasegawa and Mr.K.Uesugi 1in PASCO
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Table 1 Approximations and the
) . 3==8-=8
most probable values of relative

-

orientation parameters } :“vg

pemm T N | 1==10

langles(® )| Approx. M P V | |

e R l -5

| 1 | 349 359 | —

| k1 | 345 360 | [~~2

P | -2.43 360 | |1

| ¢2 | 0.0 =1.07|

[u_nﬁg*w«*l“:iuﬁ?wwﬂmwwfigwj Fig.3 Photograph connection

The number stands for photograph No.
Photographs 3 and 8 make a datum
mode

Table 2 Approximations and the
most probable values of
parameters in the camera calibration

|Int. orjentation parameters |

|

| | approx. mpv . |
|camera dist.(mm) | 248.5 249.575 |
lprﬁngipa? X0 (mm) | 0.0 -0.076 |
|  point y | 0.0 -0.341 |
0 0 |

| photo 1 | approx. mpwv . |
| Q) | -15.258 -14.952 |
| b ) | -0.717 -0.182 |
| K ) | ~-88.176 ~88.379 |
| Xg{m) | 0.971 0.959 |
| Yolm) | -0.025 ~0.255 |
| Zg(m) i -0.236 -0.255 }
' wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

] photo 10 | approx. mpwv . |
| 0¢ ) | ~-47.681 -47.327 |
| &) | -16.021 -15.588 |
| K ) | -97.909 -97.966 |
| Xg(m) | 1.969 1.960 |
| Yo (m) | 0.495 0.489 |
| Zg(m) | ~1.139 ~1.121 {

| RMS difference of the approximations and the most |
| probable values of target point coords. +in the global|
| model coordinate system |
| 0.918(mm) |
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