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ABSTRACT 

The position of the non-zero elements in the coefficient matrix of the reduced normal equations are directly 
defined based on the existence of tie points between the models. The shape and the size of the matrix and 
the fill-in elements during its factorization depend on the geometric configuration of the models in the 
network, ~~ well as the order of sequencing the models in the block. The ordering scheme of the models of 
homogeneou~Onetworks is investigated for variable geometrical parameters. With the aid of computer 
graphics, the pattern and size of the reduced matrix could be established from the topology of the network 
before any measurements take place. Manipulation of the ordering of models, beside other considerations 
of the method and strategy of the matrix decomposition, and the computation facilities would lead to the 
most efficient use of the computer storage and economy in computation time. 
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1. INTRODUCTION 

In aerial triangulation projects the computation 
and the decomposition of the matrix of normal 
equations play a decisive role in the costing and 
execution time of the project. The size of this 
matrix for large networks is usually of large 
order. However, this size can eventually be 
reduced to involve either the models' transform­
ation parameters only or the ground coordinates 
of the tie points only. This procedure is well 
established and explained in many literature,e.g. 
Wong (1980). The number of models' transformation 
parameters is generally less than the number of 
the ground coordinates of tie points as unknowns 
in a block. Therefore, the reduced normal 
equations of the models' transformation parameters 
M is the one which is oftenly formed for economic 
computations and the one which is considered in 
this paper. Further/more M is sparse, symmetric 
and positive definite. Therefore, advantage 
should be taken of these properties in order to 
reduce both storage requirements and computation 
time. 

The shape and the size of the reduced matrix M, 
particularly the non-zero entries, depend on a 
number of parameters. The configuration of the 
block, the number of the strips s and their 
direction w.r.t. the block, the number of photo­
graphs in each strip g, the percentages of fore­
laps p and side laps q and the ordering scheme of 
the models are the main parameters. With the 
development and spread of microcomputers, the 
computationot large triangulation networ~using 
such device became an objective (Julia, 1984;Klein, 
1988). This necessitates the intorduction of 
economical storage schemes to make most efficient 
use of the limited core and memory capacity. The 
use of perephiral storage might be employed to 
overcome the problem (Lucas, 84). An attempt was 
made (Lucas, 84) to identify the structure and the 
pattern of the banded matrix M for p=q=67%, while 
the system was proposed to be solved by recursive 
partitioning. To avoid arithmetic operations with 
zero and storage of zeros within the regular band 
structure of M a nested dissection ordering 
technique is recommended (Stark and Steidler,79). 
The same ordering technique is proposed by Shan 
(1988) for combined networks. Another proposal to 
arrange the sequence of unknowns to reduce the fill 
-in of new elements during factorization of M was 
to use the graph theory (Kruck, 84). A search 
routine had been deviced (Julia', 86) to identify 
which point connect which models, and how many 
models share a particular point. 
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This study is an attempt to investigate the 
possibility of automatic definition of the shape 
and size of M from the input data,and to establish 
the number and location of the non-zero elements m 
of M for variable parameters. The defined pattern 
of M gives in addition an insight to the required 
computing device and facilities, which form an 
important aspect in project planning. The 
conditions for particular ordering to achieve the 
minimum band width of M, or the least fill-in 
during its factorization to be established. 

2. BASIC CONCEPTS 

By virtue of its symmetry the matrix M would be 
presented by its main diagonal and the upper 
triangle only. A model which contributes to the 
structure of M should be joined at least to another 
model. This contribution is summarised in the 
following:-

+ Any model I(i) of order i contributes to M a 
matrix,m(i,i) on its main diagonal 

as can be seen in figure 1. mu,i) i:;, 

conventionally called basic variance matrix. It is 
a7x7 symmetric positive definite matrix, which is 
sparse on its own. 

+ Any model I(i) which is joined with another model 
I(j) by one tie point, or more, contributes to M an 
off-diagonal matrix m(i,j) (figure 1), which is 
conventionally called basic covariance matrix. It 
is a 7x7 non-symmetric sparse matrix. 

However, a number of models which are joined in a 
sequential order would form a line of models L(K). 

Figure I. 
Basic elements 
of M. 
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The line Lfk) would contribute to M the summation 
of the contributions of its models. A correlation 
window (figure 2.1)could be introduced to indicate 
each model I(i) and the joined (correlated) 
together with it models I(j) in the same line L(k) 
as well as in other lines L(k+t) in the block, such 
that j>i. The sum of the contributions of the 
models I(i) in one line L(k) shall constitute a 
sub-block B(k), which is a partitioned slice of M 
(figure~2.2). The sub-block B(k)usually consists 
of a "train of" sub-matrices b(k,k) on the main 
diagonal followed by at least one b(k, k+l) (figure2. 
2) • 

The first "wagon" b(k,k) is a square matrix with 
its main diagonal as part of the main diagonal of 
M, and formed by the basic matrices m(i,i). The 
dimensions of b(k,k) corresponds to the range (No. 
of models) of L(k). It also has one off diagonal, 
or more, whose elements are the basic matrices m(i,j). 
The number of the off diagonals equals to the 
number of the correlated models with I(i) in the 
same line L(k) in the correlation window. The 
number of the subsequent wagons b(k,k+t) is defined 
by the number of the correlated lines L(k+t) in the 
correlation window. The number of columns of any 
of the submatrices b(k,k+t), which is g~nerally 
rectangular, equals to the number of models in the 
line L(k+t) in the network. The number of the 
diagonals containing non-zero elements in the 
b(k,k+t) corresponds to the number of models in the 
line L(k+t) in the correlation window. The non­
zero elements on these diagonals are formed by 
different arrangements of m(i,j). The intergration 
of the sub-blocks B(k) (for homogeneous networks) 
and/or the m(i,i) and m(i,j) (for irregular net­
works) would form the final pattern of M. 

3. HOMOGENEOUS NETWORKS 

By homogeneous networks is meant a network of 
regular geometry, i.e. there exist a similarity 
between the models in a strip, and repeatability 
between corresponding models in different strips. 
In such networks each and every model could be 
addressed by one and the same formula. Homogeneous 
networks perhaps better illustrate the application 
of the basic concepts to form the patterns of the 
matrix M. In addition it had been found much 
easier for these networks to construct the pattern 
of M from the sub-blocks B(k) rather than from 
individual rows of m(i,i) m(i,j). 
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4. STUDY CASES 

The assigned values to pare 60%, 80%; to q- 20%, 
60%, 80%. Different strategies are considered for 
the ordering of the models. The properties of the 
sub-blocks B (k) and their components b (k ,k), b (k ,k+t) 
as well as the resulting patterns of M are present­
ed, For each case the non-zero elements m of M 
are indicated. The number and location of the 
fill-in elements which arise during the solution 
(Gauss elimination) are given. Also the most 
economic way of ordering the models in each case is 
investigated. The criterion for the economy is the 
ordering which would give the least number of fill­
in elements during the solution. 

4.1 P = 60%, q = 20% 

Figure 3.1 represents the configuration of the 
photographs and the tie points in the block. The 
arrangement of the resulting models is shown in 
figure 3.2. For this case two ways of ordering 
the models are considered: Down-strip direction(~G1 
across--strip (of$). The correlation windows for an 
arbitrary model I(i) in a line L(k) according to 

the ordering scheme are illustrated by figure 3.4. 
The lines 1(1), I(s), I(g-l) indicate the boundary 
lines of these windows for models number (1) ,(s) I 

(g-l) respectively in the line L(k). Apart from 
the first and last models in L(k), the correlation 
window remain the same for all the rest of mOdels. 
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4.1.1 Ordering (+G): The matrix sub-block B(k) 
consists of two component sub-matricesb(k,k) , 
b(k, k+l) which are square and each is of size (g-l). 
b(k,k) has its main diagonal and a subsequent one 
off-diagonal as full of non-zero basic matrices m. 
b(k,k+1) has its main diagonal and one off-diagonal 
on each side as full. There are s sub-blocksB(k) 
forming the final pattern of M whose number of rows 
(or columns) becomes s(g-i) in terms of m. 

No. of original basic matrices = 5sg-8s-3g+5 
No. of fill-in (F.r.) basic matrices = (s-l) (g-2) 
(g-3) 

4.1.2 Ordering (+S): The matrix sub-block B(k) is 
formed of two s x s square s~b-matrices b(k,k) , 
b(k,k+i). b(k,k) has one off-diagonal beside its 
main diagonal, while b(k,k+1) is a tridiagonal 
matrix. The matrix M is constituted from (g-l) 
sub-blocks B(k) and has same size as in 4.1.1. The 
number of the original non-zero basic elements m 
should be the same as in 4.1.1. 

No. of F.I. (g-2) (s-l) (s-2) • 

It is noted that the numbers of F.I. elements are 
proportional to g2, s2 according to the ordering. 
The No. of F.I. in both cases is the same if 
s=g-l. Therefore, the economic No. of F.I is 
achieved by ordering in the direction of least 
number of models. The resulting patterns of M and 
its banded form are demonstrated in figure 3.6. It 
is also noted that whether the ordering is (+G) or 
(+S) the same pattern is achieved. The only 
differences are in the dimensions of b and the 
numbers of B. 

4.2 P = q=60% 

In some projects need might arise to increase the 
percentage of the fore-lap (p>60%) and/or the side 
lap (q>20%). Figure 4 represents the case of 
p=q=60% in a similar manner to figure 3. The 
condition for economic ordering is given in table 1. 

4.3 p=q=60%(+C) 

When the side lap is increased to 60% or more, full 
models between adjacent photographs in subsequent 
strips might also be formed, provided that proper 
alignment between these photographs do exist. Such 
models shall be called cross models and, if 
constructed and included in the computations, the 
case shall be denoted by (+C). 
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Figure 4.6. Matrix patterns, P = q = 60°/0 . 

The ordering of models in this case was tried using 
different strategies, namely: (~G), (~S), diagonal 
front, Cuthill-Mckee method for minimum bandwidth 
(Cuthill, 1972) and spiral front. The ordering 
according to these strategies is demonstrated in 
figure 5 for a network of g=5 by s=3. The minimum 
number of F.I. as well as the minimum bandwidth had 
been achieved by ordering the models either (~) or 
(+S) pending the dimension of the network (see 
conditions for economic ordering in table 1). The 
patterns according to these orderings are presented 
in figure 6. It should be noted that -the resulting 
patterns are the same and the differences are only 
in the dimensions of b and the number of B 
constituting M. 

4.4. p=80%, q=20% 

If the fore-lap is increased to 80% the models from 
consequetive photographs in a strip would be con­
structed with a base = 20%. This base would give 
intersections in the model space of less reliability 
if compared with the intersections produced from a 
base = 40% (figure 7·1). Therefore it might be 
advantageous in this case to construct the models 
in a strip from every other photograph (figure 7·2). 
Moreover this approach resultsin half the number of 
successively constructed models from a strip, which 
leads to economy in both observations and com­
putations. It shall be assumed, therefore, for all 
the cases of p=80% that models from a strip are 
constructed from every other photograph. Figure 8 
represents the patterns for ordering (+G) and (~S). 

4.5. p=80%, q=60% 

The patterns corresponding to this case are 
illustrated in figure 9. 

4.6. p=80%, q=60% (+C) 

In this case the cross models are introduced. The 
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Figure 7·'· Photogrammetric 
rays intersections. 

Fi9ure 7·2· Strip of photographs (p= 800/0) and 

models. 
ordering (+S) is considered according to the two 
schemes denoted by (+Sl) , (+S2). The corresponding 
patterns are shown in figure 10. 

4.7. p=g=80% 

For this case the cross models would not be 
considered as they excessively increase the number 
of models. The patterns are presented in figure 11. 

Table 1 summarises some information for the 
different cases. 

5. NUMERICAL EXAMPLE 

A land 6 x 20 kms is assumed to be covered by 
23 x 23cm aerial photographs of scale 1:10,000. 
Lines of flights are assumed once to run parallel 
to the width, second - parallel to the length. 
These flight directions did exclusively satisfy in 
this example the economic conditions for the order­
ing (+G) and (+S) respectively. Table 2 gives a 
summary of the numerical values of the calculated 
parameters. 

6. COMPUTER GRAPHICS 

An attempt was done to produce the pattern and size 
of the matrix M by using Amstrad PC and Lotus 
graphics programme for a network s=3, g=5, p=60%, 
q=20%. The results are shown in figure 12. The 
numbers 1 simulate the basic matrix m, while the 0 

represents the fill-in element. The non-zero 
envelop is also demonstrated by bold lines. 



Table 1. Matrix Dimensions 

---- --_. __ . 
T(1) (2) 

p% q% m 
ACross-Strip Ordering (+S) Down-Strip Ordering (+G) 

D (3) w(4) F.I. 
(5) 

D W F.I. 

60 20% s (g-l) 5sg-8s 2(s) s+2 (g-2) (s-l) (s-2) 2(g-1) g+l (s-l) (g-2) (g-3) 
-3g+5 s;S(g-l) sf;; (g-l) 

60 60 s(g-l) 8sg-13s. 2(s) s+3 (g-2) (s-2) (s-3) 3 (g-l) 2g (2s-3) (g-2) (g-3) 
-9g+15 ~(6) 2 (g-1. 3) ~ 2(g-1.3) 

60 60 2sg- 32sg-46s 5s-3 4s (7g-11) (s-2) (s-3) 5g-3 4g (7s-11) (g-2) (g-3) 

(+C) (s+g) -46g+66 s;Sg s~g 

80 20 s (g-2) 8sg-25s 3(s) 2s+2 (2g-7) (s-l) (s-2) 2 (g-':2) g+l (s-l) (g-4) (g-5) 

-5g+16 s;;;;0.5(g-1.5) s~0.5 (g-1.5) 

80 60 2s (g-l) 55sg-151s 5(2s-1) 8s-3 (10g-22) (s-2) (s-3) 5g-6 4g-1 (7s-11) (g-4)(g-5) 
(+C) -g -80g+218 +(g-5) (4s 2 -13s+13) r4P.5g 

(+S1) ~ 5g i g@7-t{25/ S ) 

80 60 s (g-2) 13sg-41s 3 (s) 2s+3 (2g-7) (s-2) (s-3) 3 (g-2) 2g-1 (2s-3) (g-4) (g-5) 
-15g+48 s;S (g-2) s~ (g-2) 

80 80 s (g-2) 23sg-73s 3 (s) 2s+5 (2g-7) (s-4) (s-5) 5 (g-2) 4g-5 (4s-10) (g-4) (g-5) 
-50g+160 ~2g-5) ~(2g-5) 

(1) Dimension of M in terms of basic matrix m. (2) No. of basic matrices. 
m, taking b as a unit. (4) Width of band in terms of m, taking m as a unit. 
of m. (6) @, @: approximate relationship. 

(3) Width of band in terms of 
(5) No. of fill-in in terms 

Table 2. Numerical Example 

Ord. (+8) 

p% q% s m L: = TW TD 
g F.I. m+F.I. (+%) * (+%) 

60 20 4 381 513 552 736 
24 132 (7.6) (43.5) 

60 60 6 873 1137 1424 1656 
24 264 (25.2) (45.6) 

60 60 6 3294 5178 6192 6966 
(+C) 24 1884 (10.3) (40.0) 

80 20 4 1104 1590 1680 2016 
44 486 (5.7) (26.8) 

80 60 6 2534 3506 3780 4536 
44 972 (7.8) (29.4) 

80 60 6 10312 18409 21240 (+S 1) 25960 
(+C) 44 8097 19240 (15.4) (4.10) 

8928 21712 (+S2) 25960 
(12.8) (34.9) 

80 80 11 8289 11691 12474 15246 
44 3402 (6.7) (30.4) 

*% increase over L:. 

7. IRREGULAR NETWORKS 

Irregularity in networks could take place due to 
de via tionof some flight parameters from the des ign­
ed ideal, or some irregularity in the boundary of 
the photographed object. 

7.1 Shift of models in adjacent strips 

This is a very common phenomenon in aerial 
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Ord. (+G) 

s m L: TW TD 
g F.I. (+%) (+%) 

12 365 695 756 1176 
8 330 (8.8) (69.2) 

22 1065 2295 2688 3528 
8 1230 (17.1 ) (53.7) 

22 4318 8608 10304 1~914 

8 4290 (19.7) (38.4) 

12 899 1691 1848 2904 
13 792 (9.3) (71. 7) 

22 2669 5621 6050 7986 
13 2952 (7.6) (42.1) 

22 11586 21882 27387 31683 
13 10296 (25.2) (44.8) 

44 9454 21406 22748 26620 
13 11952 (6.3) (24.4) 

triangulation. It happens due to the inability 
during the flight to adjust the position of one 
photograph, or more, in a strip to exactly match 
the position of corresponding photograph in an 
adjacent strip (figure 13). The result is a shift 
in the area of the triple lap between two adjacent 
strips. In this case the identification of common 
tie points between strips to fall simtLtaneously in 
these areas becomes either difficult or impossible. 
This would lead to an intermediate model in one 



strip being joined to only two models, and not 
three, in the adjacent strip (assuming q=20%,p=60%). 
Thus the subblock B(k) of the matrix M would take 
one of the patterns illustrated in figure 14. Here 
one off-diagonal (e~gher the upper or the lower) 
of the submatrix b(k,k+1) becomes zero. 
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Figure 8. Patterns 
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Figure g. Patterns of M, p=80% ,q=60% . 
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Figure iO·2. Pattern of M,p=80% ,q=60% ,(+C). 
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Figure II. Patterns of M, p = q= 800/0 . 

If the side l.ap in this case is increased to 60%, 
it-wouid not. be possible to construct the cross 
modelSc" .. as . they pecome incomplete.. The same 
princ-iples ~escribed for hpmogeneous networks could 
be extended to cases of increased p%, q%. 
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Figure 15. Sub-matrix bek, k+l) for irregular 
boundaries. 



7.2 Irregular boundary 

The irregular boundary of the photographed area, or 
the existence of lakes or large water bonds, or the 
intentional extension of one strip, or more, to 
cover a ground control point outside the boundary, 
or any other reason might give rise to a situation 
whereby the numbers of models in adjacent strips 
are not the same, and/or the starting models in 
them might not coincide. The change in M would 
take place in the structure of the correlation 
submatrix b(k, k+1). The key to define this 
structure is to find the order of the first and 
last models (a,~) in a line L(k) and the order of 
the joined with them first and last models (S,y) in 
the following line L(k+1); and the number of models 
joined with each. It should be noted that a and/or 
S is the first model in its line, also wand/or y 
is the last. The order of these models (a,S), 
(w,y) gives the start and end non-zero basic 
covariance matrix m of one diagonal (if they fall 
on one diagonal) or two boundary diagonals 
respectively (if they fallon different diagonals) • 
The number and location of non-zero diagonals of 
b(k,k+1) are then identified as in the two 
illustrated cases by figure 15. 

The resulting pattern of M for any combination of 
irregularities with different p%, q% could be 
constructed by integrating the appropriate basic 
concepts. 

7.3 Irregular scale and orientation of photography 

The irregular scale and/or orientation of photo­
graphy could arise when different date photography 
are used for aerial triangulation. This might 
result in a model being connected with several 
other models by varying numbers of tie points. In 
this case a search routine should be employed 
(Julia, 86) to identify the points common to 
particular models, and which models are connected 
by one and the same point. The minimum bandwidth 
strategy for ordering the models might be suitable 
for this situation. 

8. CONCLUSION 

The established patterns of M and the numerical 
examples make it possible to conclude the following 
remarks and recommendations: 
(1) The sparsity and structure of the coefficient 
matrix M has the property of regular band pattern, 
where the non-zero basic matrices m lie within a 
diagonal band W. The decomposition of M can be 
performed within this band. 
(2) The storage of the matrix M is most suitably 
accomplished by diagonal storage. The storage space 
of the non-zero envelop is the most economical. 
This storage system is most suitable for solution 
by Gauss elimination. 
(3) The storage of M with its full half bandwidth 

W would require extra storage facilities from 5%-
25%. 
(4) If the solution is sought by partitioning, the 
best candidate for a partitioned unit is the sub­
matrix b. The half bandwidth of M in this case is 
D, with 25%-70% additional storage requirement. 
(5) The ordering of the models has a prime influence 
on the size of M. The number of F.I. ~ s~ g2 for 
ordering across - strip, down-strip respectively. 
(6) The conditions for economical ordering depend 
on p% ,q%"p an<lg •. These conditions could be set in 
the computer program to resequence the models. 
Together with a suitable computer graphics facility 
manipulation of the ordering for least size of M 
could be achieved. 
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(7) The rise in the p%, q% increases the number of 
models. The increase is almost linear with every 
20% step increment of p & q (q=20% = q=40%). 
(8) The inclusion of the corss models, if they are 
possible to be constructed, almost doubles the 
number of the constructed models and quadrable the 
size of M. 
(9) The inclusion of the cross models is antici­
pated to strengthen the solution. The significance 
of the improvement yet to be established versus the 
cost of additional observations and increase in 
storage and computation time. In this case the 
economy in storage and computation of M composed of 
models' transofrmation parameters against coordi­
nates of the points should be investigated. 
(10) For very large M,per~erals are recommended to 
be used with micro computers to transfer to and 
from the core the active part of M necessary for 
forward reduction or back substitution of one step 
at a time. 
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Errata to Table 1 

Ordering (~2) for p=80%, q=60%, (+C) 

D 

5 (2s-1) 
(+S2) 

W 

8s-2 

F.r. 
(13g-37) (s-2) (s-3) 
+ (g-6) s (2s-1) 
~.5g;~7+(25/s) 


