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o ABSTRACT 

In typical photogrammetric image processing applications scale differences between the images are usually small. There are 
exceptions, however. In close range applications it can not be avoided that at least the image scales of some recorded objects differ 
considerably from image to image. The same problem we meet in the stereo-image recordings of the MOMS-02 digital space-camera. 
The pixel size related to the terrain surface is 4.4 m in the high resolution nadir channel and 13.2 m in the backward and forward 
locking channels. For many digital photogrammetric tasks like point transfer, orientation, DTM reconstruction, etc., the problem of 
image or feature matching has to be solved under such conditions. 
The paper presents theoretical and experimental investigations into the matching problem with significantly different geometric image 
scales. The special objective is to arrive at the highest possible precision by guiding the feature based matching by the high resolution 
image. This implies multilevel and focusing techniques. The quality of the matching is assessed by the experimental investigations 
with simulated and real images. 
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1 INTRODUCTION 

The reason for this paper is a very practical one: Within the 
MOMS (modular electrooptical multispectral scanner) - project 
exists the problem of matching images which are significantly 
different in geometric scale. Images of the terrain surface are 
recorded by a three line scanner. Because of limitations of the 
real-time recording capacity it has been decided to establish 
different resolution channels to solve the stereo tasks of photo
grammetry and mapping. Therefore in the panchromatric, high
resolution stereomodule of STEREO-MOMS the pixel size in 
both, the backward and fOlward channel is 13.2 m, whilst in the 
downward channel the size of one pixel measures linearly 4.4 m 
on ground (Ackermann et aI., 1989). So naturally the questions 
arises on how to exploit the more of information gained by the 
downward channel in combination with the lower resolved other 
two channels. At first the scale difference of factor 3 between 
the channels has consequences for all automatic measurement 
processes. This implies the selection of features in each channel 
as well as the establishment of feature correspondences. The 
typical steps of photogrammetric data evaluation like point 
transfer, orientation and point determination (Ebner and Kornus, 
1991), DTM reconstruction (Hahn and Schneider, 1991), which 
are investigated in the MOMS-project, depend all directly or 
indirectly on the measurement process. Because the quality of 
the measurement process propagates to all subsequent evaluation 
processes it is of primer interest to investigate possibilities on 
matching images of different scale. Similar problems we meet 
in photogrammetric close range applications or in navigation 
with image sequences. The scale differences of objects imaged 
from different places may amount to 100%, in navigation di
stinctly more in some tasks. In the latter case the appearance of 
an object in an image sequence when approaching e.g. by a mo 
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ving vehicle, may evolve from a small blob to a detailed thistle 
bush. This famous example is presented by Bobick and Bolles 
(1989) to explain, that recognition and tracking of objects needs 
knowledge based systems and a suited representation space for 
the description of an object at different scales. Sester (1990) 
poses the question of treating the representation and reasoning 
problem in a multiresolution of a single image. 

The closeness in considering two images recorded with different 
geometric scale and two level of pyramidal representation of an 
image are at hand. Assuming lowpass filtering of an image with 
a smoothing radius of 0 pixels and resampling a "new" image 
is generated. The recorded and the derived "new" image has a 
scale ratio of 0; 1. The most simple procedure for the measure
ment process would be to transform the higher resolved image 
to the scale of the lower one by low pass filtering. Matching can 
then performed with other images of similar scale. Of coarse by 
proceeding in this way the high quality information in the large 
scaled image is lost because of the smoothing operation. 

The procedure for intensity based matching of images presented 
by Hahn (1990) allows to estimate geometry and radiometry 
transformation parameters, and furthermore the difference in the 
smoothness b~tween the two images. The parameter used to 
measure smoothness differences is the Gaussian scale parameter 
0. This scale parameter of Gaussian smoothing is added to a set 
of other parameters, i.e., it is also estimated by the procedure. 
If the coarser resolved image is resampled to the sampling 
density of the higher resolution image the effect of smoothing 
as mentioned above is still present. By application of the mat
ching procedure proposed by Hahn the smooth image and a 
stereo partner are matched. This implies, that the transformation 
parameters between two images of different geometric scale are 



estimated. 

In this paper we explore the matching problem based on featu
res. For feature extraction we use the point operator proposed 
by Forstner (1987, 1989). The points selected in the different 
images have to be matched e.g. to solve the problem of point 
transfer or the problem of DTM reconstruction. Today image 
analysis and matching are based on pyramids and some strate
gies, which guide the process usually from coarse to fine resolu
tion (for examples cf e.g. Ackermann and Hahn, 1991). For the 
analysis of the single image, tracking of features through scale 
space is proposed by Bergholm (1987).The scale space Witkin 
(1983) is a kind of an image pyramid which consists of an infi
nite number of smoothed image levels. The characteristic of this 
representation is that the scale (smoothness) parameter is conti
nuous which is of benefit for tracking. In the matching case, 
e.g. in DTM reconstruction, it is usual to work with standard 
image pyramids, almost with a Gaussian image pyramid. The 
smoothing levels of this pyramids are fixed and the spatial 
resolution between two consecutive levels decreases from the 
bottom to the top of the pyramid. In this case not the tracking 
idea is dominant but the questions due to approximate values, 
efficiency of the algorithm and reliability of matching are ad
dressed. 

The concept of this investigations and according to this the 
organization of the paper is as follows: (1) We want to find out 
characteristics of the point operator in scale space. This implies 
questions due to the tracking of the point location of the interest 
point from fine to coarse and vice versa. Moreover the signifi
cance of the selected features in scale is important. The example 
used in section 2 is a synthetic image. (2) The scale space 
tracking of features in real images is discussed in section 3. 
Influences due to physical (illumination, etc.) and geometric 
(perspective projection) aspects can be observed. Mainly the 
consequences for the image location of the features and for the 
stereo displacements are of interest. For the synthetic image as 
well as for the real images we want to restrict ourself to one 
dimension. The one-dimensional real signals are taken from a 
epipolar stereo pair. 

1.1 RELATED WORK 

Related work which has not been addressed up to now mainly 
concerns the representation and reasoning about features in scale 
space. Since the early days of computer vision it was quite clear 
that high-level processes need and have to use a lot of different 
knowledge for reasoning. For low-level processes such as edge 
detection a common belief was that they are simply data driven 
without use of explicit knowledge. This assessment today chan
ges. A lot of operators for edge detection have been proposed in 
parts but research has clearly demonstrated that the edge detec
ted by these techniques do not give satisfying results (Lu and 
Jain, 1992; Bergholm, 1987). Because of this the role of reaso
ning in low level processing comes into the center of interest. 
As one of the first Witkin (1983) analyzed thoroughly the be
havior of edges in scale space. He reflected work of Man 
(1982), who argued "that physical processes act on their own 
intrinsic scales", A scale-structured representation, caned the 
interval tree, he introduced to describe contours over scale. This 
organization characterizes the information over a broad range of 
scale, that means, between a coarse resolution level with a small 
number of edges and a fine resolution level with usually signi
ficantly more edges. This organization is expected to be useful 
Witkin for matching or object reconstruction tasks. The sym-
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bolic image description over scale is generated by the zero
crossings of a Laplacian of Gaussian (LoG) convolved image, in 
which the Gaussian a is addressed as scale. Three typical edge 
behaviors in Gaussian scale space were observed by researchers: 
(1) The locations of edges in filtered images using different 
scale parameters can (and in general will) be different. (2) in 
scale space zero crossing occurring at finer scales can disappear 
at coarser scales. (3) Spurious edges are those that occur at a 
coarser scale but have no corresponding edges at a finer scale. 
For more details cf. Lu and Jain (1992). This two authors pre
sented the most sophisticated algorithm up to now, called RESS, 
which stands for reasoning about edges in scale space. The 
knowledge about edge behavior in scale space is explicitly 
formulated in 35 rules and is used in RESS to select proper 
scale parameters, to correct dislocation of edges (1), to recover 
missing edges (2), and to eliminate noise or false edges (3). The 
separation of significant edge information from noise mainly has 
been also the aim of Bergholm (1987) in his multiscale tracking 
procedure, called edge focusing, as well as Canny (1986), who 
proposed a multiscale edge detector. 

Finally we want to address the work of Heikkila (1989), which 
has some similarity to our investigation because he used also 
the Forstner point operator. In the one-dimensional case the 
point operator coincides with an edge detector. The estimated 
point position locates the edges with subpixel accuracy, at least 
in theory. Therefore the estimation of the edge location in scale 
space will be interesting. In the paper of Heikkila the properties 
of the operator by varying the scale parameter of the integrating 
window are investigated. The integration works on the squared 
gradient image. Consequently the interest operator is a nonlinear 
edge operator. So far this is presumably the main difference to 
other edge operators like the linear LoG operator mentioned 
before. Our interest is not the problem of a varying window 
size. We investigate the behavior of the operator applied to a 
series of Gaussian smoothed images. In the 2 D case the opera
tor can be formulated as 

With 0 1 the scale space image of f(x,y) is generated, whilst02 
is responsible for the size of the weighting in the window. the 

dyadic product ",,,,T indicates the nonlinearity of the operator. If 

0
1 

is constant and O 2 varies mainly the following characteristic 
for edges can be observed: 

With increasing O 2 the number of edges decreases, i.e. the 

edges fuse or disappear with coarser scale O2 , Just invert is the 

situation when the scale space parameter 0 1 varies and O 2 is 

constant: 

y 



Even though on the finer scale more edges are detected which 
disappear at coarse levels, it is to observe that in tracking from 
coarse to fine contour elements merge together. 

In the next sections we want to deepen insight mainly from an 
experimental point of view. 

2 EDGE DETECTION IN MULTISCALE IMAGES 

The surface obtained by convolving the image with a Gaussian 
kernel with varying scale parameter is called the scale space 
image. In practice only a series of a finite number of multiscale 
representations can be generated. For our experiments we there
fore approximate the Gaussian kernel by binomial kernels which 

are recursively obtained by convolution with ~(1 1). 
2 

The interest operator proposed by Forstner for point detection is 
described in detail in (Forstner and Gulch 1987). In the two di
mensional formulation the operator is designed to detect, classi
fy and precisely locate corners, circular features and other iso
trop textures. The 2x2 matrix (e.q. 1), written in terms of con
volutions and matrix multiplication, is the so-called normal 
equation matrix used within the point location step. In the one
dimensional case this matrix reduces to a scalar quantity and the 
point operator is just an edge operator. Denoting the signal with 

1(X) and the scale space image generated from the signal by 
convolution with a Gaussian kernel by according to 

g(x,o)= .f{x) '" Go' 

the formalism for edge location with the 1D-interest operator 
reads as 

(2) 

As outlined above p can also be a Gaussian, i.e. p= Go,. The 

scale 02 stands for the width of the convolution window and by 

this also for the window size. Varying 02 as investigated by 
Heikkila (see above) produces scale space of the squared gra

dient image. In this investigation we keep 02 and choose 02 

throughout all the experiments. In the discrete approximation of 
the Gaussian kernel by a binomial kernel this fits to a window 
size of 5 pixels. The second operator in (2) denoted by px can 
be computed according to px(i)= p(i) . xCi) for all pixels i 
within the window. For convenience the coordinates x are cen

tered to the mean of the window, so that px is symmetric and 
shift invariant. Thus £ gives a field of edge positions, in which 
for each pixel the corresponding edge location is estimated. The 

quantity w= p '" g; also found for each pixel is sometimes 
called interest value or weight or response of the window opera
tor. It measures the roughness of sale space image. In the expe-

riments presented below the roughness wand edge locations 
x+£ are computed for all pixels x of the multiscale image in a 
series of discrete scale levels. For calculation of the gradients 
the image is convolved with (-1 1). 

The edge detection scheme is based on the roughness image. 

The local maxima in ware considered to indicate edges. The 
window size for extracting local maxima (or suppressing non-
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maxima) is chosen in accordance with size of the convolving 

operator p, i.e. in the experiments also 5 pixel are used for the 
non-maxima window size. Though a larger non-maxima window 
may suggests that the remaining edges are more distinct, in our 
opinion this is not recommendable. A quite not rare observation 
in scale space is that with increasing scale parameter the weight 
of a local maxima may decrease considerably faster than that of 
a neighboring edge. One common aspect in the strategies behind 
edge focusing (BerghoIm, 1987) or RESS (Lu and Jain, 1992), 
but also the work of Lindeberg and Eklundh (1990) on scale 
space blobs is that those features are of interest which achieve 
high weights on all levels or on the coarser scales. 

The rest of the paper is devoted to experiments. Even the first 
experiences with simulated and real image data have shown that 
for example the very nice rules for reasoning in the linear LoG 
scale space presented by Lu and Jain can not simply be applied 
to the nonlinear edge detector (eq. 2). The characteristics of the 
zero crossings in the LoG scale space we have outlined above. 
Moreover a further property we have to include which occurs 
just in the case of nonlinear operator: new edges may be gene
rated as the scale parameter increases (Yuille and Poggio, 
1986). 

3 TRACKING IN A SYNTHETIC IMAGE 

In this section we would like to illustrate the tracking problem 
at the example of an idealized synthetic image. The signal 
shown together with the multiscale representation in fig. 3.1 has 
just two intensity levels. It consists of a series of pulses whose 
width is chosen randomly. The number of pixels plotted is 
approximate 200. 

I 

0.0 
I 

50.0 
I 

100.0 
pIxel 

I 

150.0 
I 

200.0 

Figure 3.1 Multiscale image with 23 levels and step size .too= 1 

The following three figures show the roughness of the signal in 

scale space. The logarithm In w(x,o) is plotted. The partitioning 
of the scale range (0= 0-23) in three parts mainly intents to im
prove the visual impression from details of the plots. The global 



view of the figures shows dramatic changes on true scale levels 
(figure 3.2) and significant generalization on the coarser levels 
(figure 3.4). 

In w 
10.0 -

8 . 0 - IAI rt--lIJd-+--h 

2.0 -

0.0 -

·2.0 -
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Figure 3.2 Roughness of the signal in scale space (0 varies 
from 0 to 7, AO= 1) 
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Figure 3.3 Roughness for the scale levels 0= 8-15, AO= 1 
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Figure 3.4 Roughness for the scale levels 0= 16-23, AO= 1 

Further in figure 3.4 two nodes (at x = 70 and x = 90) are easy 
to recognize. A local maxima in w (at x= 160) could also be 
noticed. It is verged on local minima and which are far away 
from the edge. 

A closer look to the data shows some of the scale space pheno
mena mentioned in section 1.1. For this purpose the range 0 s 
x s 35 is zoomed in figures 3.5 - 3.9. The AO intervals in the 
multiscale image are chosen smaller with step sizes A02= 0.5. 
The area marked by a rectangle in figure 3.2 (cf. also figure 
3.5) shows that an edge is splitted into two edges increases as 
the scale parameters. 
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Figure 3.5 Roughness of the scale space images for high 
resolution levels (0= 0-2, A02= 0.5) 

35.0 

The area marked by a circle in figure 3.2 indicates a local mini
ma which switches to a local maxima. That means the edge is 
detected up to a certain level and then it is lost. This effect in 
figure 3.6 (at x= 11 and x= 27) can be visually tracked very 
well. 
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Figure 3.6 Roughness for the scale range (0= 3.1-3.5, A02= 
0.5) 

The node to the right (x= 13) seems to have a certain meaning 
for this process. For a lot of other nodes which are stable in 
their position over a certain 0 range similar processes are to be 
recognized: local maxima which are weaker and lie in the 
neighborhood of such a node will be absorbed, i.e. the edge is 
lost at this point. The comparison of figures 3.6 and 3.7 gives 
further hints to the stability of nodes. 
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Figure 3.7 Roughness for the scale range (0= 3.6-4.0, A02= 0.5) 



In figure 3.8 the estimated location x (eq. 2) are plotted for all 
pixels. The underlying multiscale image is that of figure 3.1. At 
a= 0 the position of the pixels without point estimation are 
marked for reference. It is interesting to note that the order of 

the estimated location x was never changed, i.e. for all pixels i 

the relation x(i) s x(i+ 1) produces xU) s .~(i + 1). The equal sign 
was only observed at a= O. The dislocation of edges over scale 
is easy to see at the dominant edge in figure 3.8. 
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Figure 3.8 Location of edge candidates in scale space. The de· 
tected edges are marked by '" 

Again, figure 3.9 gives a detailed view of the locations x esti· 
mated with subpixel position. The tracking of the edges from 
coarse to fine seems not a severe problem with these small 
differences between the scale levels. Between 0= 2 and a= 3 
we left a gap. The missing information caused by this gap does 
not rise any reasoning problems in this example. 
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Figure 3.9 Detailed view on the estimated locations i in scale 
space (a range is 0.7·5.0, Aa2= 0.5) 
The splitting process of an edge (at x = 30) with increasing 
scale can be observed at the level a= 1.4. 

4 TRACKING AND MATCHING IN REAL IMAGES 

The task of tracking images through scale space and the conse· 
quences for matching will be demonstrated with examples of 
real images. The real images are taken from Hahn and Forstner 
(1988). The stereo pair is given in epipolar geometry. The real 
data example used consists of corresponding rows from these 
images. The scale space images are visualized in figures 4.11 
and 4.1r. The appended I and r denote the left and right stereo 
partners, respectively. 
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Figure 4.11 Scale space image with 13 levels and step size 
AO= 1 (left stereo partner) 
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150.0 200. 

Figure 4.1r Scale space image with 12 levels and step size 
Ao=1 (right stereo partner) 

In the fine scale levels striking differences between two signals 
are recognized resulting from geometric and radiometric scale 
differences between two images. These influences are also 
easily observable on the coarser scale. The roughness images of 
the corresponding image pair can be seen in figures 4.21 and 
4.2r for the finer scale levels and in figures 4.31 and 4.3r for the 
coarser scale levels 0= 8-13. 
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Figure 4.21 Roughness of the signal in scale space (0 varies 
from 0 to 7, AO= 1) 
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4.2r Roughness for the signal in scale space. (0 varies from 0 to 
7, AO= 1) 
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Figure 4.31 Roughness for the scale levels 0= 8-13, AO= 1 
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Figure 4.3r Roughness for the scale levels 0= 8-12, 60= 1 

In the case of detailed manual analysis the direct comparison of 
the roughness images on the finer scales (figures 4.2) is a really 
severe problem. The job of solving this problem on the coarser 
(figures 4.3) levels is much simpler. Similarity in this generali
zation allows to establish corresponding edges. We do not want 
to recall the statements observed in section 3 with the simulated 
image, though they can also be observed in these real images. 
But one characteristic feature which can be seen in figure 4.21 
is not discussed up to now. In the area marked by a circle (cf. 
figure 4.21) a spurious edge is generated (at X= 26, in level 0= 
3.0). But this edge is only present on a small scale range (mo
ves to X= 28 in level 0= 4.2). 

The contours of the estimated edge locations in scale space for 
this stereo pair are drawn in figures 4.41 and 4.4r. The corre
sponding edges are identified and marked. In figure 4.4r two 
dominant edges are present. Unfortunately the left of both is 
just outside the region shown in figure 4.41. 
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6.0- ............... lIf ............. ~ .... .. 
5.0- ............. ol!fo •••••••••••• ~ •••••• 

1.0 - .... • •• ' ••••• lIfo..... .. .... * ......... * ....... . 
3.0 - •••• • .,,*,.. . .. + .... . ..... ol!f, •••••••• :t •••••• 

2.0 - •••• • .,,*,.. . .'*'..... . ..... "*'... . ...... .... . 
1.0- •••••••••••••••••••••••••••••••••• * . 
0.0 -, _. • •• '!M. • ...... • • ...... o.jj4o. -. ..... •• 

4B.O 59.0 68.0 78.0 98.0 98.0 
pixel 

Figure 4.41 Location of edge candidates in scale space. The de
tected edges are marked by >Ie (left stereo partner) 
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(1 12.0- ............ * ................ . 
~ 11.0- ••••••••••••• * ............................. * .. . 
~ 10.0 - •• 0 .......... *.. ..... ......... . .......... * .... . 

9.0 - ............. * .......................... * ..... . 
8.0 - ············lIf··········· ... ··· .......... l!fo .... . 

7.0 - ........... lIf ......... ®.. ... . ........ lIf .. ·.· .. 
6.0- •• .. ······* .. ·········lIf .... ··· ........ ol!f ••••••• 

5.0 - ......... ·lIf······ ....... )j(...... .. ...... lIf ..... .. 
4.0 - •••••••••• :t....... • ••••• *...... ..·· ... lIE·· •••••• 

3.0 - ••••• ••• .. ·lk .. •• ••••••• :t .......... ol!f ....... + 

2.0 - .-. • .... o)j( .................... "*'... .. . 
1.0- - ............................ * .....• 
0.0 -; ••• •••• • --1M' ••• !M. ••• .. •• "'JI( ...... . 

48.0 58.0 68.0 78.0 98.0 98. 
pixel 

Figure 4.4r Location of edge candidates in scale space. The de
tected edges are marked by '" (right stereo partner) 

Finally we address some consequences of tracking edges 
through scale for matching. The correspondence of edges is 
established manually and with signal control. We start (a) the 
tracking at level 0= 3 and (b) at level 0= 12. The results are 
listed in table 1. 

Table 1 Influences of tracking to point location and matching 

image left image right left - right 
AX (pixel) AX (pixel) APX (pixel) 

mad mse mad mse mad msa 

a start 3 
1,03 0,62 0,54 0,77 

N-15 points 

a start- 12 
1,05 0,55 0,31 0,39 0,89 0,88 

N- 8 points 

6X measures the dislocation of the edges between the start level 
(ostart) and the level 0= 0, i.e. the unsmoothed image. 6pX 
measure the difference in these dislocations, i.e. it gives the 
resulting systematic effect for the parallaxes. mad stands for 
mean about differences and mse denotes the mean square error. 
This statistic shows that in theses cases a dislocation of about 1 
pixel is observed on the average. The largest shift between two 
levels ( .... 0= 1) amounts to 2.9 pixels. The area in which this 
shift occurs is marked by the rectangle in figure 4.41. The syste
matic effect for the parallax nearly reaches about 1 pixel on the 
average. Because such a parallax error directly propagates on 
the calculated heights, we have to investigate this effect in more 
detail in future. 



5 CONCLUSION AND OUTLOOK 

It is quite clear that reasoning in scale space will be a key to 
come to a satisfying solution for edge detection and location. To 
approach the reasoning we analyzed simulated and real image 
data to gain insight into problems of tracking and matching in 
multiscale images. Aspects due to the tracking of edges located 
by the Forstner Operator are observed and discussed. Those 
edges which can be tracked through a large scale range are most 
important for solving the matching process. They may serve for 
the elimination of spurious edges and give approximate informa
tion for matching edges which are missed after smoothing with 
a small scale parameter. Further we expect that other knowledge 
like smoothness of the displacement field will be a complemen
tary and helpful information, suited to support the tracking and 
matching in combination. 
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