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Abstract 

Humans are very good in deriving the flow directions of a river network from such representations are aerial photographs or remotely sensed 
images. Apparently, the 2-dimensional geometry of the network is in most cases sufficient to derive its sources and destinations by reasoning 
about the flow directions of river network, and they need no additional information about slopes or heights. Formalizing the problem such that it 
can be automatically performed, however, has proven to be an extremely difficult problem. Within the realm of reasoning about flow directions 
in river networks, a particularly important problem is the analysis of relevant hydrological features. This paper describes initial results of the 
development of an ontology for river networks and formalizes the features in terms of a graph. It is shown how certain reasoning processes, 
simplifying the complexity of a river network, can be expressed as graph operations. 

1 Introduction 

River or drainage networks are fundamental concepts used for 
various analyses in geo-sciences. Geologists, for instance, 
derive original slope and original structure from drainage 
patterns, or transportation engineers examine river networks to 
determine how to access undeveloped land via waterways. A 
common problem in analyzing river networks is that these 
studies frequently have to be based on "incomplete" spatial 
information, i.e., information that lacks some clues that are 
crucial for certain decisions. Remotely sensed images or aerial 
photographs, for example, are data sources that contain only 
the necessary information about the location and extent of 
rivers, but unlike in situ observations, they lack explicit 
information about the flow direction. While humans have a 
distinct ability to derive the flow directions of such a 
planimetric representation of a river network, it is a difficult 
problem to infer them automatically. 

Usually, additional information from a digital elevation model 
is used to complete the inference of the flow directions 
(O'Callaghen and Mark, 1984; Band, 1986; Frank et al., 
1986). While such an approach may be appropriate for steep 
terrain with significant elevation differences, it is infeasible in 
flat terrain. The Amazon region, located in northern Brazil, is 
a prototypical area of the latter type. It extends over 5,000,000 
km2 with approximately 100 m elevation differences along 
large parts of the Amazon and Solimoes rivers. Current efforts 
in building a geographic information system of this area to 
monitor deforestation (Souza, 1992) face the difficulties of 
covering a very large area with no existing maps and many 
temporal changes, e.g., due to high-water and erosion 
(Larovere and Goodman, 1992). In order to apply remotely 
sensed images as a means to monitor environmental changes 
in this area, it is necessary to explore alternative approaches to 
derive the flow direction in a river network. 
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This paper is part of a larger effort investigating different 
human reasoning mechanisms in geographic space (NCGIA, 
1992). Reasoning in geographic space is typically based on 
inference, rather than direct observations (Chase and Chi, 
1981). Different types of geographic spaces may be 
conceptualized such as complete partitions in 2-D as used to 
model such political subdivisions as countries; and networks 
to represent highway systems (Egenhofer and Herring, 1991; 
Frank and Mark, 1991). The geographic (large-scale) space 
that is made up by a river network is, in a first approximation, 
best modeled as a directed graph, in which the flow of the 
water determines the direction of the edges in the graph. (This 
model may be too simplistic for some situations such as tidal 
changes or human-regulated dams, which may periodically 
reverse the flow of some channels in a river network.) 

The first quantitative studies of river networks and drainage 
basins (Horton, 1945) introduced the idea of ordering channel 
networks. Further work (Strahler, 1952) simplified the Horton 
ordering scheme, making it purely topological (Melton, 1959). 
Geologists recognized early that the angles at which stream 
segments join contain crucial information for the inference of 
the flow directions in drainage networks (see Serres and Roy 
(1990) for a review), Previous work in this area uses remotely 
sensed images. These images frequently provide only a partial 
view of a river network. Flow directions have been inferred by 
skelettonizing the water channels and applying a set of 
constraint rules about the junctions (angles and channel 
lengths) of river channels (Wand et al., 1983; Haralick et ai., 
1985). A simplified set of rules uses only on the angle 
geometry at each junction of three channels and is based on 
the assumption that the two consecutive channels that bound 
the most acute angle are the upstream channels (Serres and 
Roy, 1990). 

Most work on river network topology takes into consideration 
the existence of channels and their junctions, while 
disregarding other hydrological features such as lakes, islands, 
or river deltas. An exception is Mark's and Goodchild's (1982) 
extension of Shreve's (1966; 1967) "probabilistic-topological 
model" for channel networks by lakes. This paper develops a 
more comprehensive model of features in a river network and 
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describes an ontology for reasoning about flow directions in 
river networks. The river network features will be formalized 
in terms of a graph data model. Such an approach is a 
prerequisite for developing robust methods to infer the flow 
direction of a (partial) river network. For example, it is 
necessary to identify islands in a river network, because for 
them the "most acute angle" rule infers contradicting 
directions for the "start" and the "end" of an island. 

The remainder of this paper is structured as follows: Section 2 
introduces some notions from graph theory. Section 3 
describes fundamental river patterns and shows their abstract 
representations as graphs. Section 4 analyzes these graphs and 
draws some conclusions about simplifications of river 
patterns, without losing information necessary for a formal 
reasoning process about flow directions. The conclusions in 
Section 5 discuss future work. 

2 Graphs 

The formal basis for modeling river networks is the 
mathematical structure of a g rap h. Graphs have been 
investigated extensively in computer science and applied 
mathematics. The following fundamental definitions are based 
on Knuth (1973) and Gill (1976). 

A directed graph, or di-graph, is a set of vertices and a set of 
arcs where each arc leads form a vertex V to a vertex V'. V and 
V' are also called respectively the initial and final vertex of an 
arc e. The orientation of an arc is an equivalence class, 
defined as a positive value from the initial vertex to the final 
vertex, and negative in the reverse direction. The out-degree 
of a vertex V is the number of arcs leading out from it, i.e., the 
number of arcs e, whose initial vertex is V. Conversely, the in­
degree of V is the number of arcs whose final vertex is V. The 
degree of a vertex V is then the sum of the in-degree and out­
degree ofV. 

A directed graph will be depicted as a sequence of nodes (for 
the vertices) and edges between the nodes (for the arcs). The 
orientation of each arc will be represented by an arrow 
pointing from the node for the initial vertex to the node for the 
final vertex (Figure 1). 

Figure 1: A directed graph. 

Given a set of arcs (el, e2, ... , en), <el, e2, ... , en> is an 
oriented path of length n from V to V' if (1) V is the initial 
vertex of el, (2) V' is the final vertex of en, and (3) the final 
vertex of any ek (1 5{ k < n) is equal to the initial vertex of ek's 
adjacent arc e(k+l). The length I of an oriented path is the 
number of arcs along the path. A path < e 1, e2, ... , en> is a 
loop if the initial vertex of e 1 coincides with the final vertex 
of en .. A loop is called a cycle if the initial vertices of all arcs 
in the path are distinct. Based on the concept of a cycle, two 
specific kinds of graphs are defined: (1) A multi-graph is a 

319 

graph in which cycles of length 2 are permitted, i.e., two 
vertices can be linked by more than one edge, and (2) a di­
graph without cycles is a directed acyclic graph or dag. 

An ordinary graph GO abstracts from a directed graph G the 
orientations of the arcs. Thus, GO has an edge between V and 
V' if G has an arc either from V to V' or from V' to V. Two 
vertices, V and V' in an ordinary graph are connected if there 
exists a path between V and V'. Reversely, two vertices, V and 
V' are disconnected if there exists no path that connects V with 
V'. If V 1 " GOi and V2 " GOj are disconnected, then the two 
graphs GOi and GOj are disconnected as well. 

3 River Junction Patterns 

The identification of possible node configurations in a river 
network is an important step in the chain of reasoning about 
the network's flow direction. An example of a drainage pattern 
is shown in Figure 2. 

Figure 2: A drainage pattern. 

Such channel patterns can be constructed from a small set of 
some basic river junction patterns. This paper focuses on the 
formalization of the most common river junction patterns as 
they are formed by channels, islands, and lakes. For the time 
being, we exclude such river features as waterfalls or dams, 
although their recognition and inclusion into out model may 
be an additional source of information for the inference of 
flow directions. 

3.1 Channels 

Channels are ways along which fluvial processes act to 
transport water and minerals out of a local region. In our 
model of river networks, a channel is a connected segment of 
a river between two distinct nodes. These nodes may be 
metrically significant points, such as sharp turns, or 
topologically significant landmarks, such as a source, a 
destination, or a junction. Each channel has a flow direction 
"upstream" or "downstream," which corresponds to the natural 
flow direction of the water. It is assumed that this flow 
direction is constant for each channel, i.e., that it does not 
change periodically. 

Each channel maps onto an arc of a di-graph, with the flow 
direction of the channel being represented by the orientation 
of the arc. This mapping abstracts quantitative differences in 
length and shape of a channel. On the other hand, it preserves 
such qualitative information as the connectivity and the flow 



direction, i.e., which arcs are linked by which vertices. Figure 
3 shows examples of channels that map onto the same directed 
graph. 

Figure 3: Channel patterns that map onto the same graph. 

The following algebraic specification describes formally the 
behavior of channels. It is based on the definition of a vertex, 
which is a simple type with operation to make a vertex from a 
unique id, to get the id from a vertex, and to test whether or 
not two vertices are equal (isEqual), i.e., whether they have 
the same id's. 

sort channel 
operations make vertex x vertex ~ channel 

initialVertex: channel ~ vertex 
finalVertex: channel ~ vertex 
isEqual channel x channel ~ boolean 
upStream: channel x vertex ~ boolean 
downStream: channel x vertex ~ boolean 

variables cI: channel; vI, v2, v3, v4: vertex; 
axioms initialVertex (make (vI, v2» == vI 

finalVertex (make (vI, v2» == v2 
upStream (cI, vI) == finalVertex (cl) = vI 
downStream (el, vI) == initialVertex (el) = vI 
isEqual (make (vI, v2), make (v3, v4» == 
vertex.isEqual (vI, v3) and vertex.isEqual (v2, v4) 

3.2 Channel Connections 

In a river network, channels can be connected in various ways. 
The constraint between two consecutive channels is that their 
flow direction is the same. In terms of the graph model, two 
arcs, eland e2, may join if they have complementary vertices, 
i.e., either initial (e 1) = final (e2) or final (e 1) = initial (e2). 

In order to have connections between channels, channels must 
be part of a network. Such a network is built iteratively by 
adding channels. Channels are connected through common 
vertices. These vertices can then be classified according the 
number of its upstream and downstream channels. 

sort network 
operations create: ~ network 

add Channel: network x channel ~ network 
isIn: network x channel ~ boolean 
inDegree: network x vertex ~ integer 
outDegree: network x vertex ~ integer 

variables nl: network; cl: channel; vI: vertex 
axioms isIn (create, c 1) == false 

isIn (addChannel (nl, cl), c2) == 
if isEqual (cl, c2) then return true 
else isIn (nl, c2) 

inDegree (create, vI) == 0 
inDegree (addChannel (nl, cl), vI) == 
if upStream (cl, vI) then 1 + inDegree (nl, vI) 

else 0 + inDegree (nl, vI) 
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outDegree (create, vI) == 0 
outDegree (addChannel (nl, cl), vI) == 
if downStream (el, vI) 

then 1 + outDegree (nl, vI) 
else 0 + outDegree (nl, vI) 

The specification will be extended throughout this paper as 
new features are introduced. 

3.2.1 Source and Destination 

The source is the origin of the water flow. Each river network 
has at least one source. In terms of the graph model, a source 
is a vertex of out-degree 1 and in-degree O. 

A similarly distinct river landmark is the destination of a 
network. Rivers flow either into a lake or into the sea. Each 
river has one destination, though there are river networks with 
multiple destinations such as in river deltas. In terms of a 
graph, a destination is a vertex that has in-degree 1 and out­
degree O. 

sort network (cont.) 
operations source: network x vertex ~ boolean 

destination: network x vertex ~ boolean 
axioms source (nl, vI) == inDegree (nl, vI) = 0 and 

outDegree (nl, vI) = 1 
destination (nl, vI) == inDegree (nl, vI) = 1 and 

outDegree (nl, vI) = 0 

3.2.2 Auxiliary Nodes 

Auxiliary nodes are nodes whose in-degree and out-degree are 
1 (Figure 4). 

Figure 4: An auxiliary node and its graph representation. 

Unless such nodes are specific features, such as lakes, they 
contain no topologically significant information. 

sort 
operation 
axiom 

network (cont.) 
auxNode: network x vertex ~ boolean 
auxNode (nl, vI) == inDegree (nI, vI) = 1 and 

outDegree (nI, vI) = 1 

3.2.3 Junction 

Two or more channels may join at a junction and merge into a 
single channel. In the di-graph model, a junctio~ correspon.ds 
to a vertex of out-degree 1 and in-degree 2 or hIgher. The lll­

degree represents the upstream channels, while the out-.degree 
is a measure for the number of downstream channels. FIgure 5 
shows an example of a junction and its mapping onto a di­
graph. 

Figure 5: Junction pattern and its graph representation. 



sort network (cont.) 
operation junction: network x vertex ---t boolean 
axiom junction (nI, vI) == inDegree (nI, vI) ~ 2 and 

outDegree (nI, vI) = 1 

3.2.4 Split 

Reverse to the junction, a single channel may split into two or 
more separate channels. Such a situation occurs usually in a 
river delta or when islands are formed. In terms of the di­
graph model, a split corresponds to a vertex with an in-degree 
of 1 and an out-degree of at least 2. 

sort network (cont.) 
operation split: network x vertex ---t boolean 
axiom split (nI, vI) == inDegree (nI, vI) = 1 and 

outDegree (nI, vI) ~ 2 

Figure 6 depicts an example of a splits and its mappings onto 
a di-graph. 

Figure 6: Split pattern and its graph representation. 

3.3 Lakes 

A lake is a waterbody without a flow direction. River channels 
carry water into and out of a lake; occasionally, lakes may 
have no (observable) channels associated with them. 

For lakes the same classification of vertices applies, i.e., a lake 
may be a source, destination, junction, split, or simply an 
auxiliary node of a river network. In addition to these 
configurations, a lake may be the destination of several 
channels, i.e., the lake vertex is of in-degree> 1 and out­
degree O. Likewise, a lake may be the source of multiple river 
branches, sometimes even of different river networks. Thus, a 
lake may also have out-degree> 1 and in-degree O. Even the 
combination of in-degree 0 and out-degree 0 is feasible for a 
lake (without any visible channels); however, such a vertex 
would be an isolated vertex and, therefore, would not be part 
of any river network (Figure 7). .. o 

Figure 7: Configurations with a lake and their representa­
tions as graphs. 
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In terms of the graph representation for a river network, the 
degree of a vertex does not provide any clue whether the 
vertex is a lake or not, because a lake can have any 
combination of in-degree n (0 :;; n) and out-degree m (0 :;;m). 

3.4 Islands 

An island separates a channel temporarily into two separate 
channels that must join later on. In terms of the di-graph 
model, an island is an ordered sequence of two vertices, the 
first of in-degree 1 and out-degree 2, and the second of in­
degree 2 and out-degree 1. Figure 8 show examples of islands 
and their graph representations. 

Figure 8: Configurations with islands and their represent­
ations as graphs. 

A formal analysis whether two vertices, V I and V2, form an 
island or not has to consider the following issues (for 
simplicity, only nodes of degree 3 are considered, but the idea 
generalizes to vertices of higher degrees): 

VI must be a split vertex in the network n; 
V2 must be a junction vertex in n; 
the downstream paths from the final vertices of the 
two downstream channels of the split VI must have a 
junction in V2; and 
the upstream paths from the initial vertices of the 
two upstream channels of the junction V2 must have 
a split in VI. 

This operation can be easily expressed as an operation on a 
partially ordered set (Birkhoff, 1967), made up by the set of 
vertices and the orientation of the edges between the vertices 
(such that downstream is :;; and upstream :2 ). In a partially 
ordered set, an element u is an upper bound of a set A if a :;; u 
for all a " A. The least upper bound (lub) is then the smallest 
element in the set of upper bounds of a given set. Reversely, 
an element u is a lower bound of a set A if u :;; a for all a " A 
and the greater lower bound (glb) is the largest element in the 
set of lower bounds of a given set. Applied to the 
identification of an island in a channel graph, the glb and lub 
define an island as follows: 

sort network (cont.) 
operation island: network x vertex x vertex ---t boolean 
axiom island (nI, vi, v2) == 

split (nI, v2) and junction (nI, v2) and 
(glb (finalVertex (downStreamChannell (nI, vI», 

finalVertex (downStreamChannel2 (nI, vI») = v2) 
and 
(lub (initialVertex (upStreamChannell (nI, v2», 

initialVertex (upStreamChannel2 (nI, v2») = vI) 



3.5 Deltas 

A delta is a split that is not followed by a junction of the 
downstream channels or their subsequent channels (Figure 9). 

Figure 9: A river delta and its graph representation. 

The analysis is similar to the process of identifying islands; 
however, in lieu of searching for the least upper bound, it is 
the goal for a delta vertex that its downstream nodes do not 
have a common least upper bound. 

sort network (cont.) 
operation delta: network x vertex ~ boolean 
axiom delta (nI, vI) == 

split (nI, vI) and 
(glb (finalVertex (downStreamChannell (nI, vI», 

finalVertex (downStreamChannel2 (nI, vI») = 0) 

3.6 Channel Pattern Analysis 

Table 1 shows the compilation of the features and their 
corresponding graph representations. 

inDegree outDegree 
source 0 1 
destination 1 0 
auxiliary node 1 1 
iunction >1 1 
split 1 >1 

Table 1: Summary of channel features and their vertex 
degrees. 

InDegree I OutDegree Feature 

0 0 lake with no inlet or outlet 
1 0 destination 

lake with inlet 
0 I source 

lake with outlet 
1 I auxiliary node 

lake with inlet and outlet 
2 0 lake with 2 inlets 
0 2 lake with 2 outlets 
3 0 lake with 3 inlets 
2 I junction of 2 rivers 

lake with 2 inlets and 1 outlet 
1 2 split 

lake with I inlet and 2 outlets· 
0 3 lake with 3 outlets 

Table 2: Classification of vertices according to their degrees. 
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Reasoning about these features will involve the reverse 
operation, deriving from a graph representation. the kind of 
feature that made up the graph. Table 2 shows an extended 
"inverted" table, classifying vertices by the number of links 
and their flow directions, and assigning the corresponding 
river features. Besides the features from Table I, the 
corresponding lake-river patterns are included as well. 

4 Simplifications of River Graphs for Flow Inference 

The goal of the inference of the flow direction is to derive 
such a directed graph from an ordinary graph and additional 
metric information about the junction angles. In order to 
simplify this process, a few simplifications of the directed 
graph are possible by removing channels (and corresponding 
vertices) that are not necessary for the inference process. 

Removing a channel puts the network into a state as if the 
channel had never been inserted. 

sort network (cont.) 
operation remove: network x channel ~ network 
axioms remove (create, cl) == create 

remove (addChannel (nI, cl), c2) == 
if equal (el, c2) then return nl 

else addChannel (remove (nl, c2), cl) 
isln (remove (nl, cl), cl) == false 

4.1 Elimination of Auxiliary Nodes 

Auxiliary nodes, connecting exactly two channels, can be 
eliminated, because they contain no significant information 
from which the flow direction can be inferred (Figure 10). 

o 

2 

Figure 10: Simplification by eliminating auxiliary nodes. 

After removing the upstream and downstream channel from 
an auxiliary node, the simplified channel, preserving the 
connectivity and the flow direction, must be inserted. 

sort network (cont.) 
operation merge: network x channel x channel ~ network 
axioms merge (cl, c2) == error if 

finalVertex (el) <> initialVertex (c2) 
merge (el, c2) == error if 

(inDegree (finalVertex (cl) + outDegree (cl») > 2 
merge (nl, el, c2) == 

if not (isIn (nl, el) and isIn (nl, c2» 
then return n 1 
else addChannel (make 

(initialVertex Cel), finalVertex (c2»), 
remove (nl, cI), remove (nl, c2). 

initial Vertex (merge (nl, el, c2» == 
initialVertex (cl). 

finalVertex (merge (nl, cl, c2» == finalVertex (c2). 



4.2 Elimination of Islands 

Islands are features that are irrelevant for the assessment of 
the flow direction of the river network and their existence 
would make the reasoning process more difficult. Since an 
island consists of an ordered sequence of a split and a 
junction, for a single island between two nodes V I and V2, the 
two downstream channels from V I to V2 can be replaced by a 
single channel from VI to V2 (Figure 11). 

.... 

Figure 11: Simplification by eliminating islands. 

This assumes that auxiliary nodes between V I and V2 have 
been eliminated before. 

sort network (cont.) 
operation elimlsland: network x vertex x vertex -7 network 
axioms elimIsland (nl, vI, v2) == 

errorif not island (n 1, vi, v2) 
else remove (nI, downStreamChannell (nl, vI» 

More complex is the issue if each channel along the island 
cannot be simplified, because both contain further junctions. 
In such cases, before eliminating a channel, its junctions have 
to be incorporated into the other branch. Since junctions on 
opposite sides of islands are partially ordered, it is impossible 
to decide which junction should come first and a random 
choice has to be made. For the inference of the flow 
directions, such simplifications should not matter. 

5 Conclusions 

This paper investigated the formalization of river networks. 
Such a formalization is necessary as a first step in the 
development of formal reasoning methods about river 
networks, e.g., to infer the flow direction. We have shown 
how the junction patterns in a river network can be mapped 
onto a directed acyclic graph. Irrelevant features, such as 
auxiliary nodes and islands, can be removed from the graph to 
make to simplify the inference process. 

While the classification of nodes based on their in-degrees and 
out-degrees is powerful, it may occasionally need user 
interaction. For example, channels may be hidden so that they 
do not appear in the data source. Such channels may be 
running naturally under ground, primarily in karst regions, or 
they may be hidden from the data collector by such obstacles 
as overhanging trees. Another possibility for channels being 
invisible is that the resolution of the data collector is too low 
to capture narrow waterways. In all cases, the natural flow of 
water continuos while the observed network is interrupted. 

323 

6 Acknowledgments 

Thanks to David Mark and Diogenes Alves for their valuable 
comments. 

7 References 

L. Band. 1986. Analysis and Representation of Drainage 
Basin Structure with Digital Elevation Data, in: D. Marble 
(ed.) Proceedings of the Second International Symposium on 
Spatial Data Handling, Seattle, W A, pp. 437-450. 

G. Birkhoff. 1967. Lattice Theory. American Mathematical 
Society, Providence, RI. 

W. Chase and M. Chi. 1981. Cognitive Skill: Implications for 
Spatial Skill in Large-Scale Environment. in: J. Harvey (ed), 
Cognition, Social Behavior, and the Environment. Lawrence 
Erlbaum Associates, Hillsdale, NJ, pp. 111-136. 

M. Egenhofer and J. Herring. 1991. High-Level Spatial Data 
Structures for GIS, in: D. Maguire, M. Goodchild, and D. 
Rhind (eds.), Geographical Information Systems: Principles 
and Applications, Volume 1, pp. 227-237, Longman, London. 

A. Frank and D. Mark. 1991. Language Issues for GIS, in: D. 
Maguire, M. Goodchild, .and D. Rhind (eds.), Geographical 
Information Systems: Principles and Applications, Volume 1, 
pp. 147-163, Longman, London. 

A. Frank, B. Palmer, and V. Robinson. 1986. Formal Methods 
for the Accurate Definition of Some Fundamental Terms in 
Physical Geography, in: D. Marble (ed.) Proceedings of the 
Second International Symposium on Spatial Data Handling, 
Seattle, WA. pp. 583-599. 

A. Gill. 1976, Applied Algebra for the Computer Sciences. 
Prentice-Hall, Englewood Cliffs, NJ. 

R. Haralick, S. Wang, L. Shapiro, and J. Campbell. 1985. 
Extraction of Drainage Networks by Using the Consistent 
Labeling Technique. Remote Sensing and Environment, 
18:163-175. 

R. Horton. 1945. Erosional Development of Streams and their 
Drainage Basins: Hydrophysical Approach to Quantitative 
Morphology. Geological Society of America Bulletin, 56:275-
370. 

D. Knuth, 1973, The Art of Computer Programming, Vol. 1 
Fundamental Algorithms, Addison-Wesley, Reading MA. 

R Larovere and S. Goodman. 1992. Computing in the 
Brazilian Amazon. Communications of the ACM, 35(4):21-24. 

D. Mark and M. Goodchild. 1982. Topologic Model for 
Drainage Networks with Lakes. Water Resources Research, 
18(2):275-280. 

M. Melton. 1959. A Derivation of Strahler's Channel-Ordering 
System. Journal of Geology, 67:345-346. 

NCGIA, 1992, NCGIA Update, 4(1):5-6, National Center for 
Geographic Information and Analysis, University of 
California, Santa Barbara. 



J. O'Callaghan and D. Mark. 1984. The Extraction of 
Drainage Networks from Digital Terrain Data. Computer 
Graphics and Image Processing, 13:323-344. 

B. De Serres and A. Roy. 1990. Flow Direction and Branching 
Geometry at Junctions in Dendritic River Networks. The 
Professional Geographer, 42(2):194-201. 

R Shreve. 1966. Statistical Law of Stream Numbers. Journal 
of Geology, 74:17-37. 

R Shreve. 1967. Infinite Topologically Random Channel 
Networks. Journal of Geology, 75:178-186. 

R. Souza et al. 1992. Spring: An Object-Oriented Geographic 
Information System, Technical Report, National Institute for 
Space Research (INPE), Sao Jose dos Campos, SP, Brazil. 

A. Strahler. 1952. Hypsometric (Area-Altitude) Analysis of 
Erosional Topography. Geological Society of America 
Bulletin, 63:1117-1142. 

S. Wang, D. Elliott, J. Campbell, R. Erich, and R. Haralick. 
1983. Spatial Reasoning in Remotely Sensed Data. IEEE 
Transactions on Geoscience and Remote Sensing, GE-21:94-
101. 

324 


