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ABSTRACT 

Because of the complexity of error estimation in statistical pattern recognition, error counting methodology has been 
extensively used for evaluating the performance of a classifier. The paper compares different error estimation procedures, 
both theoretically and experimentally by simulation. 

The classical error counting methods, like resubstitution, hold-out, leave-one-out and bootstrapping, are compared with 
the risk averaging methods and with methods using the relationships of error and reject tradeoffs. These second generation 
estimators have two clear advantages. First, they are designed to have a smaller variance. Secondly, and more importantly, 
the test samples can be unclassified. Thus, the risk -averaging methods are economical and in addition the mislabelling 
problems in the test set is avoided. Finally they are well suited in non-parametric methods and thus provide a possible 
solution for a general classification system. The simulation studies show that this is possible to achieve. 

1. INTRODUCTION tion of the apparent error rate. These methods are 

The problem of estimating the performance of a class­
ifier is a traditional one in statistical pattern recogni­
tion. The performance is usually measured with some 
estimate of the error rate, the percentage of errors the 
system will produce. Even in the Bayesian case 
(known statistical models), the expected error rate is 
extremely hard to evaluate, and is known to have an 
analytical solution only in some special cases (see e.g. 
Devivjer & Kittler 1982, chapter 2). In practice the 
probability models must be inferred from available 
training data. If the true density functions are replaced 
by the corresponding estimates, an estimate for the 
Bayes error is achieved. This is usually called the 
apparent error rate. Even the interpretation of this 
measure is ambiguous. It is also known to be optimis­
tically biased (Devivjer & Kittler 1982, chapter 10). 
The computation of the apparent error rate is extremely 
difficult involving numerical integration in complex 
regions, and often in high dimensional spaces. These 
difficulties have been pushing the practitioners and the 
theoreticians to look for more simple methods for esti­
mating the error rate of a classifier. 

If some finite number of test samples with known 
labelling is available, the so called error counting pro­
cedure is a natural choice for error estimation. That is, 
the test set is classified and the number of 
misclassifications is counted. The properties of this 
type of procedures have been extensively discussed in 
the literature and a multitude of methods have been 
developed. The limited number of labelled samples 
cause usually problems. Computation intensive 
methods have been developed to cleverly use the small 
number of samples so that both the design and the test 
sets can utilize all available pattern vectors (see e.g. 
Fukunaga 1990). 

There is another alternative for replacing the computa-
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either based on the idea of risk averaging or they use 
the relationship between the error and reject rates, the 
so called error-reject trade-off (Devivjer & Kittler 
1982). These estimators have two advantages over the 
traditional error counting procedures. First, their vari­
ance is designed to be smaller (large sample sizes). 
Second, they permit to use unclassified samples as test 
samples. In remote sensing applications this means 
that one can use all the pixels in the satellite image as 
a test set. In addition to the great economical benefit, 
the problem of outliers in the test set is avoided. A 
large test set is particularly essential to accurately eva­
luate a classifier with low error rate (Raudys & Jain 
1991). 

The difficulty, which arises in designing a pattern rec­
ognition system comes from the variety of choices 
available. A large number of classification rules, both 
parametric and non-parametric, have been developed. 
A multitude of optimization criteria for finding a mini­
mum set of features with maximal discrimination capa­
bilities have been established. At least fifteen different 
methods are available for empirical error estimation. 
The total number of classification methods is thus in 
the order or hundreds. One goal of this research pro­
ject is to test by simulation, if a general rule can be 
found, which can be applied to most cases, when no a 
prior information about the structure of the probability 
density functions is given. A general rule implies the 
use of a nonparametric classifier. The optimality of 
nonparametric classifiers must be found in practice by 
empirical error estimation (Fukunaga 1990, chapter 7). 
This error estimation criteria should have as small bias 
(hopefully none) and as small variance as possible, and 
should be robust against outliers. 

The paper is divided into five chapters. In chapter two 
we will discuss about the effect of finite sample sizes 
to the classifier design. This chapter is a review of the 



mostly theoretical results, which have been achieved 
until now in statistical pattern recognition. Chapter 
three discusses in detail about the methods of empirical 
error estimation. Altogether ten methods are discussed. 
The chapter can be considered as a review of empirical 
error estimation, and utilizes both theoretical and empi­
rical results from the literature. In chapter four, the 
simulation results are described. The simulations are 
based on an extensive work. Totally, more than 80000 
different cases have been studied (yet the test is 
limited). The most important trends of these simula­
tions are listed in chapter four. Finally, chapter five 
will draw some conclusions. 

2. ERROR ESTIMATION AND CLASSIFIER 
DESIGN 

In this chapter we review the effect of finite sample 
sizes to the empirical error estimators and to the 
classifier design. In the analysis below, like in the 
simulations in chapter 4, we will restrict to two class 
cases. 

2.1 Effect of finite sample sizes to empirical error 
estimation 

The expected performance of a classifier degrades 
because of two sources: the finite number of samples 
used to design the classifier and the finite number of 
samples used to test the classifier. A theoretical analy­
sis about the effects of both of these can be found from 
(Fukunaga 1990). 

The effect of the finite number of test samples in the 
error counting approach can be directly derived from 
the binomial distribution 

(1) 

where Er{~} is the expected value and VarT{~} the 
variance of the error estimate, £ is the true error rate, £1 

is the true error rate of class 1, PI and P2 are the prior 
probabilities and Nl and N2 are the sample sizes for 
both classes. The finiteness of the test set does not 
affect to the bias of the estimate, but produces a vari­
ance, which is the higher the smaller is the expected 
error rate. 

The effect of a finite design set is much more difficult 
to analyze and the derivation goes far beyond the scope 
of this paper. The interested reader can find a detailed 
derivation from (Fukunaga 1990, p. 201-214). It is 
shown that the bias produced by a finite design set is 
always positive and the variance of second order app­
roximation of a Bayesian classifier (assuming correct 
probability model is used) is zero. If the classifier is 
not Bayesian or higher order terms are used in the 
analysis, the variance is not anymore zero, and is de­
pendent on the underlying density structures being 
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proportional to 1/N~. 

When considering the effect of independent test and 
design sets, the following may thus be concluded: The 
bias comes mainly from the finite design set, and the 
variance from the finite test set. 

2.2 Effect of finite sample sizes in Classifier 
design 

There is a large variety of classification rules. We 
consider here only those, which we have used in our 
simulations. The primary concern is the bias produced 
by the finite design set, because the variance of the 
error estimate comes primarily from the test set. Also 
the robustness against outliers is considered. 

2.2.1 Parametric Classifiers If the density functions 
can be expressed in parametric form, corresponding 
classifiers are called parametric. Most often the den­
sity functions are described with the help of first and 
second order moments. Depending on the assumptions 
made, the decision boundaries are either of linear 
(linear classifier, equal covariance matrices) or of 
quadratic form (quadratic classifier, different 
covariance matrices). 

In the simulations carried out, we have used classifiers 
based on the assumption of multivariate normal dis­
tribution. The classifiers are known to be asymptoti­
cally Bayesian, if normality assumption is valid. In 

this case, the effect of the finite design set can be 
analyzed theoretically (Fukunaga 1990, chapter 5). 
The drift from the validity of the normality assumption 
(modelling error) is harder to analyze. The effect of 
this drift was analyzed by simulation during this pro­
ject, but this part is not reported here. 

If the covariance matrices in both classes are equal to 
the identity matrix, an explicit formula for the bias 
caused by the finite design set can be derived. This is 
of interest to have some kind of feeling about the de­
pendencies. For linear classifier the bias is (Fukunaga 
1990, p. 211) 

(2) 

where 

V
L 

= _e -1l;V. '[(1+~~)d-l1 
2J27t~TJ.l 4 . 

(3) 

Correspondingly, the effect of the final design set to 
the quadratic classifier in this case is 
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where 
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g
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In (2)-(5) No is the size of the design set, d 
dimensionality of the feature space and p is difference 
between the mean vectors (PCP2)' If d» 1, from (2)­
(5) it can be seen that the bias of a linear classifier is 
proportional to d/No and the bias of a quadratic 
classifier is proportional to d2/No. In the case of linear 
classifier this means that a number of datavectors, 
which is a fixed multiple of the dimensionality of the 
feature space (No=c*d), is enough to compensate the 
effect of finite sample size. As can be expected this is 
not valid for the quadratic case. The size of the con­
stant c is dependent on the separability between the 
classes (---the expected error rate). The higher is the 
expected error, the greater value should the constant 
have. 

2.2.2 Nonparametric Parzen classifiers The 
nonparametric classifiers are appealing, because they 
do not do any prior assumptions about the density 
structures of the underlying problem. However, they 
are more computation intensive and are shown to be 
heavily biased in high dimensional spaces (see below). 
They also have some parameters to tune for achieving 
optimality. The tuning of these parameters is extreme­
ly important and can be done by experimental error 
estimation. These topics are discussed in this chapter. 
The detailed derivations can be found from (Fukunaga 
1990, chapters 6 and 7). 

A nonparametric density function can be estimated by 
the so called Parzen method. The corresponding clas­
sifier is called a Parzen classifier. The Parzen estimate 
of a density function can be expressed as 

ND 

fJ(x) 
.:E k'K(Q,xt,x) 
1=1 

(6) 

where K is a kernel function, k determines the size of 
the kernel, Q is a metric used to compute distances and 
xi:s are the sample vectors. The corresponding class­
ifier compares the a posteriori probabilities to a deci­
sion threshold, t. An analysis of the effect of all these 
variables is needed. 

A second order approximation of the expected value 
and variance of the Parzen density estimates can be 
shown to be (Fukunaga 1990, p.258-259) 
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E{fJ(x) } 
p(x) +p(x) ex (x)k!-

2 
(7) 

and 

Var{fJ(x) } 

where 

_1 'g(p(x),a.(X),Q,p2(X),k!-) ,(8) 
ND 

a. (x) = tr{vaP(X) Q} , 
p(x) 

(9) 

and the precise form of (8) can be found from (Fuku­
naga 1990, p. 259). (7)-(9) show that only the vari­
ance is dependent on the sample size being propor­
tional to 1INo. Thus it can be reduced by increasing 
the sample size. On the contrary the bias is not at all 
dependent on the sample size and must be minimized 
by a proper selection of the parameters k and Q. From 
(9) we can see that both the bias and the variance are 
dependent on the curvature of the density structures. 

Of course the bias and variance of the density esti­
mates affect to the bias of the classification error. 
After some hard mathematics this can be expressed as 

where aI' a2• a3 and b are complicated functions depen­
ding on ul(x)-uix), Q and p(x), and At is the bias of 
the decision threshold. 

Although the constants aI' a2 and a3 are complicated 
functions, they are only dependent on the probability 
structures and the metric, and totally independent on 
the kernel size and on the sample size. When k is 
small, the term a3 is dominating. This term reflects the 
variance term, Var{p(x)}, of the density estimate. 
When k grows, terms al and a2 start to dominate. 
These terms reflect the effect of the bias term of the 
density estimate, E{p(x)}, to the classification error. 
Both terms should be adjusted properly. 

When k is small the variance term of the density esti­
mate dominates. Thus the bias can be reduced by 
increasing the sample size. However, on bigger values 
of k, the bias term of the density estimate dominates. 
This effect cannot be anymore reduced by increasing 
the sample size. The difficulty is overemphasized in 
higher dimensional spaces. When the intrinsic dimen­
sionality of the feature space is high it becomes hope­
less to increase the sample size (because the amount of 
samples needed grows so fast, Fukunaga 1990, p. 264), 
and the only choice to get a reasonable estimate is to 
increase k. However, we can see from (10) that a 



further reduction to the classification error can be 
achieved by choosing a proper threshold t, and form 
(9) that the metric Q and K also affect to the final bias. 

The effect of the decision threshold can be optimized, 
if the density functions of the underlying problem are 
normal (Fukunaga, p. 329). For more general cases an 
optimal t is impossible to achieve analytically. How­
ever, the following experimental procedure based on 
empirical error estimation can be carried out. For each 
value of k, find the threshold, which produces the 
smallest experimental upper bound for the error. The 
value of t, which corresponds to the smallest upper 
bound can be chosen together with the corresponding k 
to the final classification. 

Another way to compensate the effect of the bias terms 
is to consider the metric Q and the kernel shape K. 
From (9) and (10) we can see that the terms, which are 
independent of ND can be compensated, if (Xl(X)=Uz(x). 
Hence, for each x, one should find a solution to 

(11) 

This is extremely hard to obtain. Only in the case of 
normal distribution a solution can be achieved, and if 
additionally the covariance structures are similar, a 
choice of Qi=L, is reasonable. In the general case, if Q 
is of second order, an approximate solution can be 
accomplished by choosing (Fukunaga 1990, p. 337) 

Qi = Ei + 1j(X -lli)(X -llil , (12) 

where 'Yi should be chosen to be a little larger than 

-1 
(13) 

The effect of the metric is demonstrated in figure 1 
(adopted from Fukunaga 1990), which shows how dra­
matic can the effect be on bigger kernel sizes. 

0.4 

0.3 

0.2 

0.11--------------

0.5 1.0 1,5 2.0 2.5 
k (kernel size) 

Figure 1. The effect of the metric to the estimated error 
rate, data Gaussian with unequal covariance matrices. 

The kernel shape K is again a parameter to be choosed. 
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It was experimentally shown in (Fukunaga 1990) that 
the more uniform type the kernel is, the more it will 
affect the lower bound for the error, but have only 
little effect on the upper bound. If Gaussian kernel is 
used, it may happen that too much emphasis is put to 
the centre of the kernel. A uniform kernel, like the 
hyperball or hypercube, is another choice. It puts 
equal emphasis throughout the neighbourhood. It is 
quite evident that this produces many a posterior prob­
abilities in the border regions to be equal. 

A computation intensive estimate of the Bayes error 
can be achieved with the Parzen method from (10) 

-d 
(14) 

After varying k, we can finally perform a least squares 
fit using model (14) and from that have an estimate, £, 
of the Bayes error c. Because it is reasonable to 
believe that all the constants in (14) are positive, this 
can be used as a constraint in the estimation procedure. 
The fit should be repeated for each value of t, because 
for (14) to be valid, a Bayesian decision should be 
made in each case. The value of t, which gives the 
lowest estimate of error should finally be chosen. 

2.2.3 Voting kNN classifiers In the well-known 
voting kNN procedure distances to the k nearest design 
samples are computed and the pattern vector is 
addressed to the class, which gets the majority of the 
votes. If ties occur, a reject option can be used like in 
the following analysis. This simple, though computing 
intensive method has become appealing because of the 
following result, which is achieved via the asymptotic 
analysis (as ND~oo, P(aiIXkNN)~P(aiIX), see Devivjer 
& Kittler 1982) 

~ ~ e;NN ~ ... ~ € ~ •.. ~€':m ~ 2£, (15) 
2 

where C~NN stands for the asymptotic error based on k 
nearest neighbours and c stands for the Bayes error. 
According to this asymptotic result very tight bounds 
for the Bayes error can be achieved by applying a kNN 
classifier, if k is large enough. 

However, in practice we have to cope with finite sized 
design sets and (15) will be heavily affected by the 
corresponding bias. The simplified presumption 
P( aiIXkNN)=P( ailX) does not hold and the corresponding 
risks will be biased. A detailed study of this bias in 
the NN and 2NN cases can be found from (Fukunaga 
& Hummels 1987a). They showed that a second order 
approximation of the bias of the voting NN procedure 
is 

where 



(17) 

and Bl is a function depending on the probability struc­
tures and the metric used. Correspondingly, the second 
order approximation of the 2NN bias is 

where 

~ (19) 
'ND 

and Bz is again dependent on the probability structures 
of the underlying problem. 

The effect of the sample size to the bias is dependent 
only on the constants f31 and f3z. The bias seems to be 
very difficult to compensate by increasing the sample 
size. Luckily the bias of the 2NN case is much 
smaller than in the NN case. This can be seen from 
figure 2. This agrees with the fact that the NN method 
seems to give reasonable result in practice only in the 
lower dimensional cases. 

0.060-f3 

0.050-
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0.030-
0.020-
0.010-

• - • aNN-classifier 

:::~:::::~::=====:::~~~~:::~:::::: 
..... ....... , "'e- ____ ... _ - - .. .. , -
.. - - '... ..... - - -e.. ..... ____ ..... • - - - - -.-

.. --, ... -.. ---1-·---- , .. -----~-------j N 
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0.001- ~~;~~~~~~ 
ITT T TN 
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Figure 2. The bias terms of the NN and 2NN classifiers. 
The feature space dimension varies from 2 to 128 from 
bottom to top, respectively. 

For larger values of k, the kNN procedure reminds 
closely the Parzen procedure. Correspondingly it gives 
similar results in all aspects of the error estimation 
problem (Fukunaga & Hummels, 1987b). For large 
values of k, the bias can be expressed by 
Equation (20) has a remarkable similarity with equation 
(10). The a3 term is missing, because (20) is only 
valid for large values of k and the a3 term vanishes 
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E(Ae) • i + b,{ :D)~ + b3{ :J~ -a-At -

(20) 

when k is increasing. The constant term b/k is the 
only clear exception from (10). It shows that the kNN 
procedure converges to the Bayes error only for large 
values of k, even in the asymptotic case. A serious 
disadvantage of the voting kNN procedure is the fact 
that there is no possibility to adjust the decision thresh­
old for reducing the bias. 

2.2.4 Robustness of the classifiers The unbiasness 
of the estimated parameters of parametric density func­
tions is shown in every statistical textbook. The effect 
of outlying observations has been a primary concern 
during the last decade (see e.g. Huber 1981). For 
parametric classifiers the traditional estimation tech­
niques have been shown to be extremely sensitive to 
outliers, the breakdown point being asymptotically zero 
(a single outlier can cause the system to break down). 
However, the concept of the breakdown point is a little 
misleading, because it analyzes only the worst case. 
The robustness is naturally a function of the size and 
of the amount of outliers. A theoretical analysis of 
these effects is hard to carry out. To find out the 
dependence of the estimated error rate against these 
parameters, a simulation study is a feasible choice. We 
will shortly return to this subject in chapter 4. 

In case of the nonparametric methods the outliers are 
not so serious, because only some local neighbourhood 
is used for density estimation. If none of the outliers 
does not belong to this neighbourhood, no damage will 
be created. The situation is worse in the case of 
labelling errors in the design set, because in that case 
remarkable violations will occur also in the non-para­
metric case. We will simulate both these cases in 
chapter 4. 

Because we are more interested in non-parametric 
classifiers due to their generality, we will not concen­
trate in this context to the parametric robust estimation 
techniques. 

3. EMPIRICAL ERROR ESTIMATION 

In this context we classify the empirical error estima­
tion methods into three categories: error counting 
methods, methods based on risk averaging and methods 
based on the error reject tradeoff. In this chapter we 
will shortly review the methods, which we have used 
in the simulations of chapter 4. 

3.1 Error counting methods 

Error counting methods have been traditionally used in 
pattern recognition for estimating the error rate. Many 
variates exists, from which we have used four in this 
context. The error counting estimate is given by 



(21) 

where M is the set of misclassified samples. The 
methods differ from each other from the way they use 
the available sample set. 

3.1.1 Resubstitution In the resubstitution method 
the whole sample set is used for designing and again 
for testing the classifier. This method is known to be 
optimistically biased (e.g. Devivjer & Kittler, chapter 
10), thus giving a lower bound for the Bayes error (or 
for the asymptotic error). However the bias reduces 
then the sample size increases. Thus, if enough 
samples is in use, resubstitution method can be used. 

3.1.2 Hold-out The holdout procedure is a special 
case of cross-validation, where the available sample set 
is divided into exactly two sets. The other set is used 
for designing the classifier and the other set as a test 
set. The method is known to give an upper bound for 
the Bayes error. Its variance is a little bigger than that 
of resubstitution. What makes it rather complicated 
from the practical point of view, is the demand for 
independent test and design sets. The division is far 
from a non trivial problem. The neglectance of some 
part of the available data from designing the classifier 
is not very pleasing, too. An arithmetic average of the 
resubstitution and holdout methods should be used as 
the final estimate of the error rate. 

3.1.3 Leave-one-out The other extreme of cross­
validation is given then each of the samples in turn is 
used for testing the classifier and the ND-l remaining 
samples are used as a design set. The available 
samples are thus more effectively utilized. Also the 
design and test sets are statistically independent. In 
case of independent sample vectors, the method is 
known to be practically unbiased (Efron 1983). For 
long time the method has been recommended to be 
used in the context of small sample sizes. Unfortu­
nately, especially for small sample sets, the variance of 
the leave-one-out method is high. Because the vari­
ance component dominates in small sample sets (Efron 
1983), a low variance estimate is recommendable in 
such cases. Another disadvantage of leave-one-out 
method is the high computational cost for some types 
of classification algorithms, because ND different 
classifiers must be designed. Fortunately for many 
cases, recursive methods can be used to get the leave­
one-out estimate practically with the same computation 
time as the resubstitution estimate (e.g. Fukunaga, 
1990, chapters 5 and 7). 

3.1.4 Bootsrapping A bootstrap design sample of 
exactly size ND is generated by sampling with replace­
ment. Two different estimates can be computed. In 
the bootstrap resubstitution estimate, the samples of 
the design set are used also for testing. The bootstrap 
hold-out estimate is achieved by using those samples 
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for testing, which do not belong to the generated 
design set. The procedure is repeated 100-200 times 
(100 in the simulations of chapter 4) and the final 
estimate is the arithmetic mean of the individual esti­
mates. Many modifications have been developed from 
this basic algorithm. The one, which in various empi­
rical studies (e.g. Jain et al. 1987) has shown good 
performance, is called the 0.632 bootstrap estimate. In 
this heuristic method a weighted average of the two 
bootstrap estimates is computed given weight 0.632 to 
the holdout estimate. Theoretically (Fukunaga 1990, 
chapter 5) the bias of the original bootstrap method 
should coincide with the bias of the leave-one-out 
method. However, the variance should be smaller, and 
close to the resubstitution estimate. 

Some hints of the weakness of the bootstrap method 
have been reported. In (Chernick et al. 1985) the 
0.632 bootstrap estimate showed weaker results when 
used with linear classifiers in high error rate situations. 
In (Jain et al. 1987) it was reported that the 0.632 
estimator should not be used together with the NN 
classifier. 

3.2 Methods based on risk averaging 

The risk averaging methods are designed especially to 
have a low variance. A big advantage comes from the 
fact that an unlabelled test set can be used for testing 
the classifier. That is why the test set can be large 
(e.g. the whole satellite scene) and thus the method 
should be suitable for low-error rate cases. Because 
the variance of the error comes primarily from the test 
set, this already produces a low variance. In risk aver­
aging the risk for each decision is estimated and the 
final error estimate is the average of all of the esti­
mates. Thus 

NT 

Lei (22) 
e = i=1 

ra NT 

where £. is the estimated risk for decision i, which 
equals t~ I-max[P(O)jlxi)]. Estimate (22) is sometimes 
called the grouped estimate. The performance of this 
estimate has not been fully studied in comparison with 
the error counting. Note that the method is especially 
suitable for nonparametric classifiers, where the risks 
are always computed. No modifications for the algo­
rithms are needed. 

It is shown in (Devivjer & Kittler 1982, chapter 10) 
that the estimate is unbiased and the variance of the 
method is (in case of equal prior probabilities) 

€ 

2N ' 
T 

(23) 

which is less than half of the variance of error counting 



(compare to (1». 

3.2.1 Direct ("resubstitution") estimate A direct 
estimate will be formed by directly evaluating formula 
(22) for each test sample. Because of the design 
phase, the bias and variance of the estimate £ must be 
taken into account. This will effect the final estimate 
to be optimistically biased and the direct estimate thus 
gives a lower bound for the error. 

3.2.2 Reference set ("holdout") estimate For 
getting an upper bound (and thus an estimate as the 
average) we must have another labelled set, which is 
now called the reference set. When this estimate is 
computed, the classification is taken from the design 
set, but the risk is computed with the help of the refer­
ence set. It is shown in (Devivjer & Kittler 1982) that 
this estimate is asymptotically unbiased and has a 
variance, which is in the order of (23). 

3.3 Methods based on error-reject tradeoff 

If a reject option is included to the classification sys­
tem, the error rate of the classifier reduces, because the 
reject option discards those pattern vectors, whose 
classification has a high risk. The dependence between 
the reject and error rates is (see e.g. Devivjer & Kittler 
1982) 

Ar 

€(lr) - J l'dR(l) , (24) 

o 

where R is the reject rate and Ar is the rejection thresh­
old (if risk is greater than "-r reject decision is made). 
Thus observing the rejection rate and varying "-r an 
estimate of E can be computed. 

These methods have all the advantages of the methods 
of the previous chapter, especially the one that an 
unlabelled test set can be used. 

3.3.1 A method utilizing ordered sets We have 
used a special version of error-reject tradeoffs, which is 
specially designed for the voting knn procedures. It is 
shown in (Devivjer & Kittler 1982, chapter 3) by 
asymptotic analysis that the following bounds can be 
formed for the error rate 

1 lC A2i,si 1 lC A2i,si 1 (25) - L -. - 5: € 5: - L -. - + -Ak-1,slC ' 
2 i=l 2, - 1 2 i=l 21 - 1 2 

where Ak,sj means the acceptance rate of kNN classifier 
with exactly s=i votes. (25) inherently measures the 
asymptotic probability of ties, which occur in 2iNN 
classifications and takes a series expansion of all of 
them. 

Unfortunately the bias produced by the finite design 
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sets (see (20» is heavily deteriorating the 
asymptotically tight bounds of (25). However, It IS 

hoped that the average of the upper and lower bounds 
will produce good results. 

4. SIMULATION RESULTS 

An extensive simulation work has been carried out. 
The primary goals of these simulations was: a) to com­
pare risk averaging methods with error counting 
methods, b) to compare nonparametric and parametric 
classifiers, c) to test the robustness of the different 
error estimation methods and d) to get at least an idea 
about a classification system, which is general and 
gives as reliable error estimates as possible in all cir­
cumstances. Although the simulation study is exten­
sive, it is still limited in many respects. This is un­
avoidable, because of the many parameters to be tested. 

The generated datasets are listed on table 1. 

Data ID OptImal Bayes error rate 
Classifier 

II Lmear U.251 
14 Quadratic 0.324 

NN Nonparametric 0.128 

Table 1. The three types of data used in the simulations. 

The datasets II and 14 are generated from normal dis­
tribution and the dataset NN from a mixture normal 
distribution. Unless otherwise stated the given Bayes 
error rates are the ones listed in table 1. The Bayes 
error rate of 0.128 for dataset NN represent the case 
when the generated dataset differs maximally from 
normal distribution. All simulations carried out are 
two class cases. 

Risk averaging methods vs. error counting 

As an example, the estimated error rates and standard 
deviations of the different error estimators for datasets 
II and NN in case of a two dimensional feature space 
are presented in Figures 3-6. 
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Figure 3. The estimated error rates of different estima­
tors. Data II, Bayes error equals the dashed line, 
m*d=ND• 
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Figure 4. Standard deviations of the different error 
estimators, data II, m=d*ND. 

The results mostly agree with what was expected. The 
variances of the risk averaging methods are smaller 
than the variances of the error counting methods, espe­
cially in small sample size situations. This result is 
clearly in favour of the risk averaging in small sample 
situations, where the variance term mostly dominates. 
The upper bounds in both cases have a bigger variance 
than the lower bounds as expected. The use of the 
error reject tradeoff is comparable with risk averaging, 
but the difference between the upper and lower bounds 
(not shown in figures) is extremely big in small sample 
size situations. E.g. in dataset NN for the two smallest 
sample sizes the upper and lower bounds are 0.17 vs. 
0.35 and 0.17 vs. 0.28, respectively. The convergence 

to the asymptotic case is slower than could be 
expected, which might come from the constant bias 
term of (20). However the mean of these bounds quite 
well predicts the error rate and the variance is nearly 
comparable to that of risk averaging. 
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Figure 5. Estimated error rates of different estimators, 
dataset NN, dashed line = Bayes error, ND=m*d. 

One comment concerning the nonparametric results. 
The tuning of the kernel size of the nonparametric 
classifier was done in too rough a quantization in case 
of small sample sizes. That is the probable reason why 
some of the curves (e.g. resubstitution curve) do not 
behave smoothly. The bias term still dominates in 
some cases. 
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Figure 6. Standard deviations of different estimators, 
ND=m*d. 

In table 2 the different types of error estimation 
methods are compared with each other as a function of 
the Bayes error. All results are average values from 
the lower and upper bounds of the estimated Bayes 
error (e.g. error counting = ~[leave-one-out+resubstitu­
tion]). The following can be observed from the table. 
a) Risk averaging methods have dominantly smaller 
variance than the traditional methods. The difference 
is the bigger the smaller is the Bayes error and the 
smaller is the sample size. b) As has been illustrated 
in many simulations, bootstrapping method does not 
perform well in low error rate situations. c) The risk 
averaging methods and the method using error reject 
tradeoff are pessimistically biased in low error rate 
situations. These methods (also bootstrapping) works 
better under such circumstances, if the lower bound 
only is used (e.g. the lower bound for risk-averaging in 
the 0.01 error rate case with 5*d samples equals to the 
correct value 0.01, but the upper bound claims 0.02). 
The effect could be corrected by using a leave-one-out 
type procedure for the upper bound. d) The traditional 

Method Bayes error m=5 m=10 
€ e cr e cr 

l:rror counting 25.1 25.6 10.6 25.4 6.6 
Bootstrapping 27.3 9.9 26.2 6.5 
Risk averag. 23.8 6.0 23.1 4.3 
Error reject 26.1 7.8 24.7 6.6 

Error counting 10.0 9.7 6.3 1004 4.8 
Bootstrapping 11.8 6.7 10.6 5.2 
Risk averag. 9.9 3.0 9.8 2.2 
Error reject 14.5 5.9 11.8 4.2 

Error counting 5.0 4.9 5.0 5.0 3.3 
Bootstrapping 604 4.8 5.5 2.9 

Risk aver. 5.5 2.2 4.9 1.5 
Error reject 7.5 3.3 5.8 2.6 

Error counting 1.0 0.9 2.3 1.0 1.6 
Bootstrapping 1.6 2.3 1.0 1.4 

Risk aver. 1.5 1.1 1.2 0.6 
Error reject 1.7 1.2 1.4 0.8 

Table 2. Comparison of error counting methods as a function 
of the separability between classes, all numbers in percentages, m 
stands for sample size (m*d=ND), d=8, linear classifier. 



methods work quite nicely, if the sample size is high 
enough. However, the variance term is always about 2 
times bigger than in risk averaging methods. 

Parametric vs. nonparametric methods 

Table 3 shows that the nonparametric method, if the 
parameter tuning is properly performed (see chapter 2), 
has potential also in the cases, where the optimal 
classifier is simpler. The opposite is of course not 
true. A linear classifier will never do proper work in 
datacase NN. Especially in higher dimensional spaces 
a successful application of a nonparametric classifier 
presumes that experimental parameter tuning is per­
formed. 

case m-3 m-5 m=lO 
~ (J ~ (J ~ (J 

Linear .25 .13 .25.10 .25.07 
Nonparam. .27 .13 .26 .10 .25.08 
Quadratic .33 .12 .32.09 .32.08 

Nonparam. .33 .11 .31 .08 .32.08 

Table 3. Comparison of a nonparametric classifier to the 
optimal ones in cases, where the asymptotically optimal 
classifiers is either linear (II) or quadratic (I4), d=8, ND=m*d. 

In table 4 the robustness of the different type of 
classifiers are compared. The dataset is contaminated 
with outlying design samples, and the bias produced by 
the contaminated data is shown. As predicted the 
nonparametric methods are much more robust against 
the outliers. A closer look to the results (not shown in 
the table) reveals that the upper bound (leave-one-out 
estimate) of the nonparametric method grows when 
then percentage of outliers comes high, but the lower 
bound grows only moderately (the lower bound of the 
given example is 0.28 (£=0.25) when 50% of outliers 
are present). In the parametric case both bounds grow 
equally fast. 

25 30 
50 30 
25 5 

0.194 
0.206 
0.060 

0.036 
0.084 
0.038 

Table 4. Robustness of classification methods against outliers, 
dataset II, d=4, m=20, p=percentage of outliers, ~=size of out­
liers (multiple of feature standard deviation). 

However, the type of outliers affect to the robustness. 
If the errors are labelling errors, also the nonparametric 
methods are more affected. An example is given in 
table 5. Again the lower bounds (resubstitution esti­
mate in this case) are only moderately biased, but the 
upper bounds are strongly distorted. 

Robustness of the error estimators 

In table 6 the error estimators are compared with 
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p 

29 
50 

~E paramo 

0.152 
0.219 

~E nonparam. 

0.111 
0.157 

Table 5. Robustness of classification methods against outliers, 
dataset II, d=4, m=20, p=percentage of labelling errors. 

respect to the robustness. The numbers are again aver­
ages of the upper and lower bounds. For the risk 
averaging and error reject also the lower bounds are 
listed, because they are very robust against outliers. 

The risk averaging method is extremely insensitive to 
labelling errors in the design set of a parametric 
classifier. As can be seen the bias is between 1 and 2 
percent (true bayes error 25%). On the contrary, if the 
errors are just outliers lying far away from the true 
distribution, the risk-averaging tends to be strongly 
optimistically biased. This is because the scatter will 
spread out, but the unlabelled test set does not obey 
that distribution. Both the upper and lower bounds 
will be similarly biased. 

In the nonparametric case, opposite to that of the para­
metric case, risk averaging is robust against outliers, 
but pessimistically biased in case of labelling errors. 
The same applies for the method utilizing the error­
reject tradeoff. This is because of the upper bound. 
The lower bound is extremely robust in the nonpara­
metric case. This phenomenon can be taken into ad­
vantage. If the difference between the upper and lower 
is big compared to the difference between the tradi­
tional error counting and the lower bound, the design 
set contains labelling errors, and the lower bound can 
be used for prediction. 

Case ~eEC ~eRA ~eEr 
t"arametnc 
p=10 0.05 0.01 
p=29 0.15 0.02 
p=50 0.22 0.01 

p=5 ~=30 0.11 -0.11 
p=25 ~=30 0.20 -0.13 
p=50 ~=30 0.21 -0.18 
Nonparam. 

p=10 0.04 0.03 0.06 
-0.04 0.01 

p=29 0.12 0.10 0.15 
-0.01 0.08 

p=50 0.16 0.12 0.18 
0.00 0.10 

p=5 ~=30 0.01 0.01 0.02 
-0.03 -0.02 

p=25 ~=30 0.04 0.03 0.03 
0.00 -0.01 

p=50 ~=30 0.09 0.04 0.04 
0.00 0.00 

Table 6. Robustness of different error estimators, p=% of 
outliers, ~=size of outliers, labelling errors if none, EC=error 
counting, RA=risk averaging, Er=Error reject. 



General classification system 

According to the above results it seems possible to use 
the nonparametric classification method combined with 
the risk averaging methods in favour of a general clas­
sification system. 

CONCLUSIONS 

Empirical error estimation has been studied by simula­
tion. The comparison was made between traditional 
error counting, risk averaging and a method utilizing 
the error-reject tradeoff. The error counting methods 
included resubstitution, holdout, leave-one-out and the 
bootstrapping method. 

There are three reasons, why the risk averaging 
methods are recommended. First, it was confirmed 
that the variance of the risk averaging methods is 
superior to that of error counting. Secondly, because 
an unlabelled test set can be used, the method is econ­
omical and can always utilize a lot of test samples. 
Thirdly, and most importantly, the method is extremely 
robust against outliers, especially in the context of 
nonparametric classification. The use of the error 
reject tradeoff is also appealing because of the same 
reasons, but more research is needed to test it. On the 
other hand the MacLaurin expansion in the derivation 
of the elegant voting kNN modification is unfortunately 
not easily expandable to the multiclass case. This is in 
favour of the risk averaging. The bias of the direct 
risk averaging method causes it to act as a lower 
bound. This must be compensated somehow. The 
upper bound used in this project is based on the use of 
a holdout type estimate via a reference set. This 
method is not feasible from the practical point of view, 
because the method ignores half of the learning 
samples from the design. In this respect the usage of 
error reject tradeoff is more viable. Unfortunately its 
sample based upper and lower bounds are not at all 
tight and do not converge to the asymptotic case unless 
the kernel size, k-7oo• A leave-one-out type of an 
estimator for the upper bound of the risk averaging 
could be economically established in the context of 
nonparametric estimation, because the design set uses 
only a local neighbourhood. It is hoped that in this 
case the upper bound behaves more nicely. 

The simulations confirmed that a nonparametric classi­
fier, if it is properly tuned, can perform as well as a 
parametric one, even in the case the prior information 
favours a simple linear classifier. 

The primary goal of this simulation study was to test, 
if a general classification system (performing well in 
most cases) can be found so that a designer does not 
have to choose from so many different possibilities. 
The recommended system consists of: a) A nonpara­
metric classifier, preferably a Parzen classifier, because 
it is easier to tune. It is of utmost importance to 
optimize all the parameters of a Parzen classifier. This 
concerns both the kernel shape and size, and the deci-

334 

sion threshold. This optimization can be done via 
empirical error estimation. The error estimation should 
be done via risk averaging methods, which have a low 
variance and are robust against outlying observations, 
especially when nonparametric methods are used. 

The extension of these results to multiclass cases is a 
demand for future research. 
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