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Abstract 

Regression analysis is used for enhancing spatial res­
olution of thermal information of a LANDSAT-TM 
5 image. This information layer can be used as an 
input for an urban area classification, which then can 
be used for extracting a functional link between the 
brightness temperatures and urban structures, again 
using the regression model. Finally, a simulation of a 
possible change of urban structures and its impact on 
brightness temperatures (as one important bioclima­
tological factor) is carried out. 
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INTRODUCTION 

While experimenting with different classification ap­
proaches in a selected area I around Basel (Switzer­
land) in the REKLIp2-project (area ~ 35000km2), 
the possibilities of including the thermal band 6 of 
LANDSAT-TM (see table 1) for classification pur­
poses was analysed. One of the problems using this 
band, is the different resolution of thermal informa­
tion (it contains 16 pixels of the other bands resolu­
tiol'!; see table 1), which either reduces the resolution 
of the classification or reduces the use of the thermal 
information. As the major interest of the classifica­
tion was to differ the urban areas, a lot of the seperat­
ing information can definitely be found in the thermal 
band. 

MULTIPLE LINEAR REGRESSION ANA­
LYSIS 

The assumption made by a linear regression model is 
that the value for one response variable (y) can be 

1~ 576km2 with the city of Basel in its centre (located in 
the Upper Rhine Valley with the Jura in the south and the 
Black Forest in the north) 

2 REgionales KLlmaProjekt: a trinational project between 
Germany, France and Switzerlan9-
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explained by a simple linear function of the k inde­
pendent variables (XI,X2, ... ,Xk): 

k 

Y = Co + 2=: Ci X i 

i=1 

(1) 

The characteristical statistics can be defined and all 
data then standardised to avoid scale dependencies. 
The regression values can be received by inverting the 
correlation coefficent matrix: 

Rc* = g {=} c* = R-Iff (2) 

k * k partial correlation coefficent matrix of 
the k independent variables 

vektor with the correlation coefficents be­
tween each independent variable Xi and the 
dependent variable y 

c* vektor with the partial regression coefficents 
of the standardised data 

By destandardising the regression coefficents of the 
standardised data the regression results of the raw­
data can be received: 

* O"y 
Ci = c·­

, 0" i 

k 

and Co = Y - L CiXi 

;=1 

(3) 

Using the ordinary least square procedure to deter­
mine the regression coefficents brings along restric­
tions which are encapsulated in the Gauss-Markov 
theorem. The multiple linear correlation coefficent 
can be calculated as: 

k 

r2 = Lc;ri
ll 

i=l 

(4) 

ENHANCING THE SPATIAL RESOLU­
TION OF THE THERMAL INFORMATION 
OF A LANDSAT-TM 5 IMAGE 

Using additional geographical information, Scherer 
and Parlow (1990) developed a method to enhance 
spatial resolution of NOAA-images. Here the aim was 



Figure 1: Multiple Regression: (A) Regression Analysis. (B) Using the results to recalculate the dependent 
variable. (C) Residual between original and recalculated dependent variable (grey: within ±cr; black/white: 
below / above) 
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Band Spectral bands IFOV 

# J-lm (m) 
1 0.45 - 0.52 (blue) 30 x 30 
2 0.52 - 0.60 (green) 30 x 30 
3 0.63 - 0.69 (red) 30 x 30 
4 0.76 - 0.90 (near IR) 30 x 30 
5 1.55 - 1.75 (mid IR) 30 x 30 
7 2.08 - 2.35 (mid IR) 30 x 30 
6 10.4 - 12.5 (thermal) 120 x 120 

Table 1: Characteristics of LANDSAT-TM 
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Figure 2: Histogramm: independent datalayers 

to enhance thermal resolution of band 6 without any 
additional data besides the satellites measured bands. 

In the above mentioned area around Basel the original 
data3 (for spatial resolution and spectral bands see ta­
ble 1) was geocoded4 . Band 1 to 5 and 7 as indepen­
dent and band 6 as dependent variables were choosen 
for the multiple regression analysis. As the resolution 
of the independent bands is four times higher than 
the thermal band 6) the former had to be adapted 
to band 6's resolution. As the satellite's sensor does 
the same operation (though physically) for band 6) a 
4*4-arithmetic mean filter was used and then reduced 
taking every fourth line and column. The resulting 
datalayers were then used for the multiple regression 
analysis and are displayed in figure 1 (A) with band 1 
in the back and band 6 in the front. The histogramms 
(see figure 2) of the independent variables show al­
most a normal distribution for each band. Doing 
so for other areas (such as in polar regions) makes 
it necessary to use alternative sampling distributions 

3LANDSAT-TM of 07.07.1984; 0000 cloud coverage) 
4 Coordinates of the Schweizexjsche Landestopographie 
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datalayer regression coefficent 
band 1 not significant 
band 2 not significant 
band 3 not significant 
band 4 -0.122E+00 
band 5 0.109E+00 
band 7 0.208E+00 
regression constant 0.121E+03 
mult. correlation coeff. 0.846E+00 
explained variance 71.65% 
order (band) 7, 4, 5 
increase of variance 64.7%,70.4%,71.7% 

Table 2: Regression results 

( due to the multimodal distributions). After calculat­
ing the correlation coefficent matrix and the covari­
ance matrix for the multidatalayer, the regression was 
done (results are displayed in table 2 ), and then, us­
ing these results, the synthetic band 6 was produced 
(see figure 1 (B)) according to equation 1. Although 
the dependencies between the bands are most probaly 
anything but linear, in this approach, the three bands 
in the visible spectrum are of no significance for the 
explanation of the thermal band (table 2 ), whereas 
the remaining three b~nds of the infrared can explain 
72% of the variance of the dependent variable with 
a multible correlation coefficent of 0.846. Compari­
son of the original band 6 (figure 1 (A); front) to the 
synthetically calculated band 6 (figure 1 (B)) shows 
that the structural information is represented by the 
recalculated dataset. The cutting of the extrema (the 
river Rhine gets brighter and the city of Basel is gets 
darker) is a result of the regression procedure (see 
above). 

The linear regression was calculated on a spatialy re­
duced dataset, but the use of the regression coefficents 
in equation 1 can be applied to the original band 4, 
5 and 7 in their 30m*30m resolution. The resulting 
synthetic band 6 has now a 30m*30m resolution and 
can be used for classification purposes. 

RESIDUAL BETWEEN ORIGINAL AND 
SYNTHETIC BAND 6 

For image analysis, it is now interesting to have a 
look at the areas which cannot be explained by this 
linear approach and have typical deviations. So the 
residuals between the synthetically recalculated band 
and the original band 6 were calculated according to 
equation 5 for each pixel. 

P:&y = Paynthetic:&y - Poriginal:&y + 128 (5) 



The resulting datalayer is displayed in figure 1 (C) 
with a resolution of 120m*120m. There are only three 
differentiations made in the display of the residual: 

1. grey: within ±u. 

2. black: below mean - u. Track systems and high 
density built-up areas and part of the forest areas 
(caused by the sun exposed steep slopes). 

3. white: above mean + u' Water, part of the for­
est areas (caused by the not-sun exposed steep 
slopes). 

Doing the same operation for the high resolution 
dataset (using band 6 original 30m*30m (that means 
always 16 equal pixels) and the above described re­
sulting synthetic band 6 in 30m*30m) results in a 
much more differentiated residual with typical devia­
tions for individual classes (example: the runways of 
the airport have typical deviations). This newly cre­
ated datalayer was added to the original bands and a 
maximum likelihood classification led to excellent re­
sults within the focused urban study area5 (for clas­
sification and a discussion of its results see Wuthrich, 
1991). Amongst the rural classes, it was possible to 
separate 16 urban classes. 6 

BRIGHTNESS TEMPERATURE AND UR­
BAN STRUCTURES 

The thermal pattern of a landscape is strongly influ­
enced by the surface characteristics, especially in ur­
ban agglomerations (Oke, 1987). The regression anal­
ysis represents a method to quantify the influences of 
different built-up areas on the spatial distribution of 
radiation temperatures. In this context the following 
topics have to be mentioned: 

• The longwave emission/radiation temperature is 
of fundamental importance for the energy bal­
ance, especially during autochthone weather con­
ditions. The net radiation is described in equa­
tion 6. 

E* = (5 + Ed 1) * (1 - p) + E/ 1 -E/ i (6) 

S direct solar irradiance 

Ed 1 diffuse solar irradiance 

5 for the classification a further dataset was created: a vari­
ance filtered vegetation index (NDVI) in order to get the dif­
ferences of unifonn areas and spatially rapidly changing areas 

6The accuracy of the result was an average 80% of correctly 
classified pixels within the training areas. The area within 
Switzerland was superimposed with the communal boundaries 
to get classification results for each community. So these results 
could be compared to conventionally achieved data (such as A: 
planimetered on topographical maps using aerial photographs 
and B: official areastatistiks of S",itzerland) 
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Albedo 

atmospheric counter radiation 

terrestric longwave emission 

net radiation 

The radiation temperature TR is directly con­
nected with the longwave emission through the 
law of Stefan-Boltzmann (equation 7) . 

(7) 

E/ i terrestric longwave emission 

(J' Stefan-Boltzmann-constant 
(5.6697 * 10-8Wm- 2 J{-4) 

TR radiation temperature 

• The quantification of the landuse influences im­
proves the understanding of the energetic pro­
cesses between surface and atmosphere. 

• This quantification is a prerequisite to simulate 
synthetic thermal images under the conditions 
of a modified landuse (e.g. as a consequence of 
urban planning) 7. 

ANALYSING THE INFLUENCE OF THE 
LANDUSE ON THE RADIATION TEM­
PERATURE 

Using a multiple linear regression analysis, which ex­
plains the radiation temperature TR as a linear com­
bination of the percentages of the different landuse 
classes i (i = 1 to n classes) within the pixel Pizll , 

multiplied with a regression coefficient and summed 
up with a regression constant. The spatial resolution 
of the classification data (30m * 30m) and the ther­
mal data (120m * 120m) differ, so the percentage of 
the landuse classes is calculated from 16 pixel (4*4), 
which build up one thermal pixel. As the satellite's 
sensor measures an energie flux, the values of band 6 
had to be transformed to brightness temperatures us­
ing the method of Schott and Volchok (1985). The 
regression results for the urban area are listed in ta­
ble 3. The explained variance reached 88.4% . Using 
these results, it was possible to recalculate the radi­
ation temperatures inside the study area. The origi­
nal data received from band 6 is displayed in figure 3 
(A) for a selected frame. The recalculated/simulated 
radiation temperatures are placed on its right side in 
figure 3 (B). Calculating the difference of the original 
data Porigzll minus the synthetic data P8yntzll for each 
pixel indicates that 67% of the resulting Pdi/ /Zll are 
within the range of ±O.9J{ (with maxp08 = +3.6J{ 
and maxneg = -5.2I<). 

7The influence of vegetation changes on the net radiation 
has been quantified (Parlow and Scherer, 1991) for an area in 
Swedish Lappland 



I 
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Figure 3: Radiation temperature. Pixelresolution 120m*120m. (A): LANDSAT-TM band 6 original. (B): 
Recalculated using the multiple linear regression method. (C): Simulated new landuse park within the rectangle 
(D): Simulated new landuse CBD within the rectangle 
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Medium density 0.0171 K per % 
High density 0.0422 K per % 
CBD 0.0332 K per % 
Industrial 0.0542 K per % 
Track system 0.0722 K per % 
Riverside -0.0365 K per % 
Road 0.0431 K per % 
Water -0.0670 K per % 
Forest -0.0367 K per % 
Park -0.0379 K per % 
Regression constant 293.7553 K 
Explained variance 88.4 % 

Table 3: Regression results (urban area) 

The Rhine river in both images appears as the struc­
turing element with the lowest radiation tempera­
tures, which separates the upper right quadrant from 
the other parts. The bright (high radiation temper­
atures) areas from the center to the right and in the 
middle of the upper right quadrant are affected by 
track systems. An industrial area causing high radi­
ation temperatures is located in the bottom right cor­
ner. 

SIMULATION OF THE INFLUENCE OF 
LANDUSE CHANGES 

An area of approximately 0.26km2 in the upper right 
quadrant (rectangle) was selected for a simulation of 
change of landuse and its impact on the radiation 
temperatures. The area is currently used as a track 
system. Two possible landuses were assumed: park 
and CBD (Central Business District). The different 
landuses were implemented into the classification and 
then using the regression results from table 3, radi­
ation temperatures were recalculated. The results are 
displayed as images in figure 3 (C) and (D). In the left 
image (C), the change in radiation temperature for a 
possible use as a park to the existing landuse is an 
average -6.01<. Further information is listed in table 
4. With a possible use as a high density CBD-area 
the average radiation temperature differs by -1.5K 
to the present use. Comparison of the two possible 
future landuses in the selected area results in an av­
erage difference of -4.5K in the park area. 

CONCLUSION 

Thought as an analysing method for linear depen­
dencies, the regression model and its application mu­
tated as a possibility to reveal latent information hid­
den in the measured satellite data on one hand and 
of simulating radiation temperatures under different 
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track system track system park 
- park - CBD - CBD 

[K] [K] [K] 
mean +6.0 +1.5 -4.5 
(J' 3.5 1.2 2.3 
min +0.4 +0.0 -0.4 
max +10.7 +3.6 -7.1 

Table 4: Different landuses and their impact on radi­
ation temperatures (differences) 

landuse conditions on the other hand. Using all the 
bands of LANDSAT-TM, band 6's resolution can be 
enhanced to 30m*30m. Using a landuse classification, 
it is possible to recalculate/simulate band 6 very pre­
cisely (figure 3 (A) and (B)) in a 120m*120m resolu­
tion. The application of this method is to get into cli­
mate modelling on a regional or local scale. Commu­
nal planning authorities normally have detailed plans 
which imply a modification of the existing landuse, 
e.g. definition of new industrial areas etc .. This mod­
ified future landuse can be integrated in the existing 
landuse dataset, and then a further simulation ofradi­
ation temperatures with the modified landuse can be 
carried out (figure 3 (C) and (D)). Alternative plan­
ing variants can be simulated and then compared to 
each other. So the climatological effect of planned 
landuse modification can be quantified very detailed 
in a local scale using a simple linear regression model. 
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