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The paper considers a suboptimal by maximum a posteriori probability 
criterion procedl~e for finding of patterns moving relative to semifixed 
background in the series of two staggered in time frames of 
slightly-varying scenes. The procedure is synthesised on the asslunption 
that an images being analysed contains unknoun distortion and additive 
noise. 
The procedure is based on optimum IL~ear filterir~ of divergance field of 
previously combined by correlation method fragments of frames as well as 
statistical hypothesis partitioning operation applied to filter output. 
The adopted statistical image model is used for development of methods for 
defining the main statistical characteristics for the simple detection 
case. The attainable value of total error is presented which arise when the 
synthesised procedl~e is applied to some characteristic scenes. 
The ability to work for the procedl~e was proved dl~ing simUlation. 
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INTRODUCTION 

There is well-known (lliMpM8H, 1986) 
optimum by maximlun a posteriori 
probability criterion procedl~e for 
shifting image detection in complex 
scenes. The procedl~e is based on 
time-spatial filtering of the series of 
staggered in time frames of scenes are 
formed by any sensor. The procedure is 
highly tradious and is not practicable 
now. Also there are some heuristic 
methods (Lo, 1979; Holben 1980; Stuller, 
1983; Koskol, 1986) solving this task by 
passtng to separate time filtering and 
spatial filtertng. All this methods use 
frame subtraction as the simplest form of 
time filtering. The main difference of 
this procedures is compensation of 
geometrical distortion on analised image 
are called by interframe sensor position 
changing. 

For interfr&~e displacements compensation 
the first frame is offered to be 
corrected by a previous researcher 
(Holben, 1980). The correction is 
described by a polinom of the second 
order with parameters estimated by X2 -
criterion. The correction may be applied 
with the extrapolation not executed in 
any cases. 

Another procedure was sl~ested in 
previous paper (Lo, 1979). Th~s prooedure 
is free from shortcomings of (Holben, 
1980) and is not so tradious. In 
accordance with paper (Lo, 1979) the 
image is divided into separate 
fragments. The fragments are 
eorrelatively eombined and for each pair 
divergence fields are oreated and then 
they are analysed. 

Unfortlmately the divergence ima~e 
analysis was not given one's attention ~n 
previous papers. The attainable values of 
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alpha and beta errors are lack of too. 

The aim of this artical is the definition 
of mantional characters for the simplest 
interframe detector dealing with ideas 
of paper (Lo, 1979) and using linear 
filtering of divergance field. 

1. IMAGE AND MOTION MODELS 

We accume that the images available for 
processing consists of a discrete 
homogeneous random fields denoted as L o 
and Lb in pattern and background areas 
and additional Gaussian noise denoted as 
~ with exponential correlation fltnction 
and average which is equal to zero. Then 
pixel intensity is: 

[ 

Lo (A) + ~(A) ~ A E UTic Fi 
0i(A) = i 

Lb (A) + ~(A) ~ A E Fi\ UTi 
i 

Here A denotes the pixel ooordinates 
veotor, Ti denotes the moving object 
pattern area on 1-th frame denoted as F

i
. 

With accordance to paper (AeBWMH, 1978) 
we assume that one-variable probability 
density funotions of background Pb(x,I) 
and pattern P (X,A) are Gaussian: c. 

Pb(x,A) N(ab'O~) 
":I 

Po(x,A) N(a6,0;) 
ao > a

b 

0 0 ~ °b 

and their correlation 
double exponential: 

functions 

R { L 0 (A)} = o~. exp [ - (r 0 ' A )] 

(1. 1 ) 

are 



R{Lb(~)} = a;.exp[-(rb'~)] 

~ = (~x'~y)' 

r 
o 

(r r )' 
. OX' oy 

(rbX,rby ) , 

r ~r ...lr ""r e,x oy"" bx r by. 

(1 .2) 

Let Lill suppose that for the time distance 
denoted as 'T moving object pattern is 
displaced to L<L value. Here L is a 

c c 
characteristic pattern size. Four 
peouliar re~ions oan be distingLlished in 
the frame dlfference field: 

A: A E F/Tlt:t
1 

A A E Tlt:t
2 

B: A E Tlt:t
1 

A A E F/Tlt:t
2 

c: A E F/Tlt:t1 A A E F/Tlt=t
2 

D: A E Tlt:t
1 

A A E Tlt:t
2 

These definitions are illustrated 
Fig.1 in whieh pattern position 
moment t1 is shown by dotted lines 
at moment t2 by 1mbroken lines. 

D 

(1 .3) 

by 
at 

and 

Fig.1 Peculiar regions of the 
frame difference field. Pattern 
position at moment t1 is shown by 
dotted lines and at moment t2 by 
unbroken lines. 

We assume that frame fragment size is 
sufficiently small in order to 

V A E F\T ~ D(A)= D 
and pattern displacement has the 
determinate value and an accidental 
direotion. That is 

V A E Ti~ L(A)= L . 
Then with accordance to paper (~eBKH, 
1989) we can confirm that all ragions of 
frame difference field are also 
homogeneous Gaussian. Their averages may 
be easily defined by Eq.(1.1)-Eq.(1.3). 

2. SUBOPTIMAL DETECTOR STRUCTURE 

Let's put restriotions to suboptimal 
detector str~cture. For this purporse we 
assu~e that the movir~ object pattern is 
in the middle of first frame fragment if 
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it is present there. Then let's reduce 
frame qLlantity to two and substitute 
time-spatial filtering for separate time 
one a...'1.d spatial filtering. Let's also 
sUPPoLilled that the spatial filter is 
linear one and it's area of definition is 
restricted to pattern size. 

We shall simply assert without proof that 
the best result is reached for this task 
if time distance 

'T = L .V- 1 (2.1 ) 
c 

and fragment size 
(2.2 ) 

Here V is design speed of pattern moving. 

It can be shown too that for the case of 
simple detection (Ba~TeMH, 1960) with 
above restrictions optimum detector of 
non-point movin~ objects has to make 
followir~ operatl.ons: 

(1) Frame difference field formi~. 
(2) Frame difference field filterlng by 

ripple mask (Pratt, 1978) with restricted 
to pattern size area of definition and 
constant impuls response. 

(3) Extremal pixels at the 
output 

searchL'1..g . 
(4) Deoision function denoted as 

"ij (x) ~ Hij 

calculating for hypothesises 

filter 

H : oh (A) ~ AEl A Oh (A) ~ AEj 
ij min . max . 

Here i,jE{A,B,C,D}. 
(5) Searched pixels olassification. 

It's clear that movir~ object pattern is 
detected if 

Let's define the based on operations 
(1 )-(5) detector as suboptimal. 

3. ANALYSIS OF THE SUBOPTIMAL DETECTOR 

As it was stated above frame difference 
image consists of a discrete homogeneous 
Gaussian fields. Therefore hypothesis Hij 

a posteriori probability subjects double 
Gaussian distribution law. Then 

(3.1 ) 

and separating surfaces which are 
associated as show Eq.(3.1) and Eq.(3.2) 

"cc(X) = "ij(X) (3.2) 

are the hyperquadrics (Duda, 1973). 
In Eq. (3. 1 ) : 

8 0 5 )"-1 
1j = - • '''-'1j 



().)) 

-0.5'~~j·~~1·~ij - 0.5'Iogl~ijl 
+ Iog(Wij ) 

1 ~ C " j ~ C . 

Here ~ij denotes extremal pixels 
correlation matrix. i1ij denotes 1 and j 

re~ions avera~e and Wij denotes Hij a 
pr~ory probabllity. 

Let's find H region. cc 

Filter impuls response and frame 
difference fild parametrs allows to 
define easily ~ij and i1ij (~eBHH, 

1989). Fig. 1 shell be used for Wij 
defining. Apriory probabilities of any 
pixel belonging to one of the regions 
followed Fig.1 are: 

WAC 

,"::) 

[Wi (1-W
2

)]'-

WBC = WCA WCB 

WBD = WDA WDB 

[1-W
1 

(2-W
2

)]2 

W
1
W

2
[1-W

1 
(2-W

2
)] 

WDC = W1W2 [1-W1 (2-W2 )] 

(W
1
W

2
)2 

Here moving object pattern area is 
Wi about frame area and pattern has not 
moved to W2 about his area for time 
distance 'to 

We supposed in what follows that W2=0. In 
this case it's easy to make sure (see 
(~eBHH, 1989)) that regions in which 
hypothesises are t~~e are placed as it 

a = ~ Wij,Pij(XIXEOnn) 
i#C ~ ~~ 

j¢C 

~ = Wcc,Pee(XIX,i°ee) 

Pz = a + ~ , 

whe~e 0ee is hypothesis Hee acceptence 
reglon. 

----T-------I 

Fig.2 Hypothesises acoeptence 
regions. Admissible hypothesises 
are above heavy line. 

As a~in ( ~.ax admissible hypothesises 
are above heavy line in Fig.2. Then HAB , 

HAC and Hem hypothesises are not 
admissible. This makes some easily total 
error calculatir~. Nevertheless it 
remains very tradious. 

As previous resercher (Holben, 1980) we 
have examined some particular cases which 
are tn:dcal for airborne sensors. 
Examined range of the pattern and 
background parameters is shown in table 
1 • 

Table 1. Range of examined parameters 

Parameters 
Background 

Average 0.240-0.400 
standart 0.036-0.265 
deviation 
Correlation 0.523-2.013 
constant 

shown in Fig.2. 

As it follows from Eq.(J.1), Eq.().2) and 
Eq.(J.3) hyperquadrics is defined by 
hypothesises parameters and may have 
different forms in some cases. In Fig.2. 
we show the simplest case in which random 
filds are not correlated. 

It's easy to make sure that with above 
restrictions total error of detector is: 
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Field type 

Pattern Noise 

0.320-0.550 0.000 
0.042-0.200 0.014-0.044 

1.043-5.996 2,5.56-31.12 

Here average and standart deviation is 
defined about m~~imum pixel value. 
Correlation constant is defined about 
oharaoteristic pattern size. 

The dependenoe of the total error on the 
background displacement for typical scene 
in some seasons is shown in Fig.). We 
supposed that W

1
=0.001. 

In Fig.3 displacement value is defined 
about characteristic pattern size. 
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Fig.3 Dependence of the total error 
on the baokgroVl.'TId displaoement for 
the typioal scene in diferent seasons. 
Winter is marked by 0, autumn - by • 
and summer - by o. 

maximum increases the total error in 7-
20 times. 

4. PROCESSING ILLUSTP~TION 

Let's illustrate the ability to work of 
the suboptimal detector after the example 
of experimental-based frames digital 
processing. 

In Fig.4 you oan see the first frame. We 
lilled ~ this frame above for deteotor 
~~alisis. The frame parameters are equal 
to: ao =38.1 ab=25.2 00=6.2 0b=5.7 
r =.874 r =3.469 ~ =.040 rb =.183. ox 07 DX Y 

The histograwm of intensity and 
oorrelative fltnotion of this frame 
landsoape IR-image is shown in Fig.5 by 
brolcen lines. 

As shown in Fig.5 the histogramm of 
intensity is well approosimated by 
Gaussian ourve and oorrelation funotion 
by exponential ourve. It's shown in Fig.5 
by smoose lines. 

Fig.4 Experimental image. The first frame. Prooessing fragments is 
bordered by blaok lines. Correlation processing area is drawn by white 
lines. ~ 

We shall suppose in what follows that 
interframe prooessing is well founded if 
total error of suboptimal deteotor 1S 
less then s ingl frame one. Linear 
singlframe detector of bright area was 
described L~ paper (BaftHmTeaH, 1960). The 
total error is shown in table 2 for this 
detector. 

The first frame has been prooessing by 
optimum linear pattern detector whioh was 
desoribed in paper (Ba~TeaH,1960). As a 
result six regions have been pioked out. 
Five of them corresponds to the moving 
objeot patterns. The fagments have been 
segmented round the all re~ion oentre. 
You oan see these fragments 1n Fig.4 (it 

Table 2. Singlframe detector errors for some seasons 

Features 
Winter 

Total error 0.932.IO-.4-

The results followed table 2 and Fig.3 
are: 

(1) The overframe processing is well 
founded for IDI~(0.2 - 0.4)Lc ' 

(2) The changir..g of the bacl{gr"ound 
interframe displasement from zero to 

Season 
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Autumn 

0.747. IO-3 

was drawn 
has been 
Eq. (2.2) • 

Summer 

0.96I.IO-3 

by black lines). Fragment size 
choosen in acoordance with 

By the moment of the second frame forming 
which was determined accordir..g to 
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Eq.(2.1) the distance along the line of 
sight has been decreased by 7% along the 
frame border - by 23% and along the 
distant border - by 1% approximately • 
Here W

1
=O.2. 

Enlarged by three times approximately 
frame- difference fields of processing 
fragments are shown in Fig.6. Before the 
subtraction the fragments have been 
preliminaryly combined in accordance with 
the serial correlation algorithm (Barnea, 
1972). Correlation processing areas are 
drawn by white lines in Fi~.4. In Fig.6 
the fragment interframe dlsplacement is 
one pixel along Y datum line and two 
pixels along X one. 

You can see in Fig.6 that the real speed 
of moving pattern is less than design one 
which causes partial pattern shading. 

Fig.5 Approcsimation of the histogramm 
of intensity (Fig.5a) and correlative 
function (Fig.5b) of a typical landscape. 
Broken lines is experimental and smooth 
lines is approcsimated curves. 

Fra~~ent frame difference fields have 
been filtered by trunckated to pattern 
area constant impuls response filter. We 
use extremal filter outputs to deoision 
funotion calculation. Decision function 
values for each fragments are shown in 
table 3. 

Fig.6 The result of preliminary combined fragments subtraction. 

Table 3. Extremal filter outputs 
and decision function values 

Fragment nl1.'1lber 
Features 

I 2 3 4 

oh 
mtn -3.8 -1 .9 -6.1 0.6 

oh 
max 5.9 6.0 8.9 1 .7 

Pli(X) .00001 .00012 .00000 .00032 

PBB(X) .00000 .00001 .00000 .00001 

Pec(X) .00004 .00009 .00000 .. 03250 
I 

PB.A.(X) 1.00379 .00036 .02089 .00015 

.00014 .00006 

5 6 

-4.5 -2.7 

7.6 4.7 

.00001 .00001 

.00000 .00000 

.00002 .00012 

.00868 .00063 

PBC(X) 1.000041 .00000 . 000~3! .00003 
- I I 

100028310008141000037100025110000041000121 
I I I I I 
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As it shown in table 3 the fragments 
nl~b.1, 3, 5, 6 decision function 
value are maximum for HBA hypothesis. 
Decision flmction value for fragment 
numb.4 which ha\~'t movi~ pattern is 
maximum for Hcc hypothesJ.s. Fragment 
numb.2 one is maximum for HCA hypothesis. 
This is consequence of partial pattern 
shading. 

Thus propoused suboptimal procedure makes 
absolute true result. 
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