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ABSTRACT: 

Over the past decade, adjustment of hybrid networks ~usually referred to as combined adjustment within 
the photogrammetric comunity- have deserved the attention of numerous researchers. In the software, when 
dealing with the heterogeneous data of hybrid networks, everything tends to be more complex. The paper 
shows how discrete techniques can help deal with this complexity. Two examples are discussed: the detection 
of a family of gross errors and the numbering of unknowns for fill-in reduction. The concept of discrete models 
for the network and standardized discrete kernels for the software are proposed. 
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1 INTRODUCTION 

Over the past decade, hybrid networks have deserved 
the attention of numerous researchers. This is wit­
nessed by the one time period 1984-1988 of WG 
Ill/1 (Working Group III/I: Accuracy Aspects of 
Combined Point Determination) of the ISPRS, the 
two time periods 1983-1987, 1987-1991 of SSG 1.73 
(Special Study Group 1.73: Integrated Geodesy) of 
the lAG, and by the meetings organized, either sep­
arately or jointly, by the two organizations. Today, 
integrated geodesy and combined point determina­
tion are still active research fields [5]. (The trend 
towards combined approaches in geodesy and pho­
togrammetry has been mainly influenced by three fac­
tors: the advent of satellite geodesy -in particular 
the Global Positioning System-, the development of 
comprehensive models incLuding all type of data, and 
the availability of high-speed large-capacity comput­
ers [9].) 

In general, combined solutions are expected to pro­
vide more accurate and reliable results. Not less im­
portant is that global approaches lead to a cost re­
duction in software development, maintenance and 
acquisition; that they promote closer collaboration 
and understanding between groups traditionally in­
volved -as well as traditionally separated- in point 
determination tasks; and that, as a result, they in­
troduce factors of rationality and coherence in the 
corresponding point determination projects. 

The combined adjustment philosophy, however, has 
found small acceptance in practice. 

In conventional adjustment problems, in the first 
step, the unknowns and their accuracy are deter­
mined. In the second step, it is common to detect 
poorly measured data subsets which can impair the 
quality of the global adjustment. When dealing with 
heterogeneous data sets everything tends to be more 
complex and even the first step may not be easy to 
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carry out. Thus, for day-to-day practical projects, the 
magnitude and structure of system equations which 
result from the above general approaches may be 
brought up as an argument against their application. 
Indeed, this is not the point if a suitable numbering 
for the unknowns is computed. 

The heyday of research and development in num­
bering of graphs associated to geodetic networks was 
the decade of the seventies and the early eighties. In 
addition to the availability of the obtained results ,1 

the increasing computer capacity has contributed to 
some decay of the topic. 

In combined networks, however, there are patho­
logical structures which perturbate the regularity and 
locality that classical photogrammetric and geodetic 
networks have exhibited so far (Section 5). In order 
to apply the old good algorithms, those structures 
must be understood and characterized so they can be 
detected and eliminated. For that purpose, discrete 
mathematics seem to be the best tool. 

Discrete techniques can also contribute to the 
structural analysis of networks, hybrid or not (see 
the related work in [7, 14]). These techniques, have 
already been [implicitely] used for the generation of 
initial approximations in the nonlinear cases and, in 
a much lesser extent, for the detection of what is 
known as gross errors. For instance, many times 

IThree statements describe the situation well. 
First, the rigorous solution of the problem is NP-complete. 

Secondly, there are many algorithms which perform well -
even at best- under certain regularity conditions. Last, the 
problem has been somewhat closed since it has been proven 
that problems not satisfying those regularity conditions are 
not amenable to sparse gaussian elimination. 

In what photogrammmetric and geodetic netwroks is con­
cerned, the pure numbering policy -that is, abstract time 
and space complexity considerations- can be summarized as 
follows: if the network is medium-sized (up to 2000-3000 un­
known groups or even less) use a sequential numbering algo­
rithm, otherwise use nested dissection; and, of course, try to 
take advantage of any regular pattern which might occur (for 
instance in photogrammetric blocks). 



identification errors are coped with pure statistical 
techniques like iterated reweighting. This approach 
sometimes leads to troublesome computation sessions 
and does not take into account that the error is of a 
structural nature and can be detected by structural 
means. This second aspect -structural analysis of 
networks- emerges in a natural way while investi­
gating the pathologies mentioned above. 

2 BASIC TERMINOLOGY AND 
RESULTS 

In order to facilitate the understanding of the next 
sections some basic concepts from combinatorics are 
required. The concepts reviewed are graphs and their 
cycle structure, hypergraphs and matroids. Other 
more specific concepts will be introduced when re­
quired. 

2.1 Graphs 

Let V be a finite non empty set and E c {{x,y} : 
x i= y; X, Y E V} a collection of unordered pairs of 
elements of V. (V, E) will be called a finite undirected 
graph with no loops and no multiple edges or, in our 
context, simply a graph. If G is a graph then it will be 
written G = (V (G), E( G)). The elements of V (G) are 
the vertices or nodes of G and the elements of E (G) -
unordered pairs of V (G)- are the edges. The amount 
#(V(G)) is the order of the graph and #(E(G)) is the 
size. 

If {XI, X2} E E( G), then Xl, X2 are adjacent ver­
tices. Given a subset X of V, the adjacent set of X 
is defined as 

Adj(X) = {y E V(G) - X: 3x E X; {x,y} E E(G)}. 

Adj(x) will also be used for Adj( {x}). 

The degree of a vertex x, d(x) , is the number of 
vertices in Adj({x}), i.e. d(x) = #(Adj({x})). If 
d(x) = #(V(G)) - 1 then x is said to be a border 
vertex. 

The series Xl al X2 a2 '" an-l Xn (n ~ 2) where 
{XI, .. "Xn } C V, {aI, ... ,an-l} C E and ai = 
{Xi, Xi+l} is a path of length n - 1 which connects Xl 

and Xn. It is said, then, that the path contains the 
above vertices and edges and that it is a path through 
them. A path of length 0 is a series Xl. A closed path 
is a path such that Xl = Xn. A chain is a path with 
no repeated vertices. A cycle is a closed path with 
no repeated edges. A simple cycle is a closed path 
with no repeated vertices. Henceforth, if not other­
wise stated, it will be assumed that when referring to 
cycle a simple cycle is meant. 

A graph is connected if there is a chain which con­
nects each pair of vertices. 
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The distance dc ( Xl, X2) -or simply d( Xl, X2)- be­
tween vertices Xl and X2 of a connected graph G is 
the length of the shortest chain from Xl to X2. 

2.2 Graph numberings and elimination 
graphs 

A numbering of a graph G = (V, E) is a one-to-one 
mapping p ; {I, ... , #(V)} ---+ V. The graph G 
together with the numbering p is sometimes called 
an ordered graph and written as Gp = (V, E,p). 
In this paper, the equivalent definition p : V ---+ 

{I, ... ,#(V)} will also be used. 

For a given Gp the elimination graph is (G,EUF), 
where the new edges in F are the fill-ins; the fill-in 
factor is #(E U F)/#(E). Since the concept of fill-in 
is very well known in photogrammetry, only the path 
theorem [12) which characterizes them and which will 
be used in Section 4 as a definition is reviewed. 

The path theorem[I2]; Let G be a graph and p a 
numbering of G. Let i > j, i = p-l(a), j = p-l(b). 
Then {a, b} is a fill-in if, and only if, there exists a 
path 

a{a,XpJXpl ... xp .... {xp .... ,b}b 

in the graph GO, PI,'" 'Pm < j; where Pr = 
p-I(XpJ. 0 

Based on results derived from the above theo­
rem [12] [p.277] , a fast fill-in generation algorithm 
(running time: O(#(V) + #(E U F)) can be devised. 

2.3 Cycle bases 

Let G = (V, E) be a graph and p a one-to-one map p : 
{ 1, ... , #( E)} ---+ E; to each cycle c of G the element 
JL(c) = (UI, .. . ,U#(E») of zt(E) is associated, defined 
as 

Ui = { 1 if p(i) is an edge of c, 

o otherwise. 

Let Cl, ... ,Cn be n cycles of G and their respectives 
JL ( CI) , ... ,JL( cn ) as defined above. CI,···, Cn are said 
to be dependent if there is a non empty subset Q C 

{I, ... ,n} such that 

where, recall, the summation is taken in Z2' Other­
wise they are called independent. 2 

A cycle basis of G is a set {CI' ... , Ck} of indepen­
dent cycles such that any cycle c of G can be written 

2Usually, it is also written EiEQ Ci instead of the formally 

correct LiEQ J.L(Ci). 



as 

e= ~ei 
iEQ 

for some Q C {I, ... , k },Q =1= 0. The cycles of the 
basis will be called basic cycles. 

The number k above is constant for all cycle basis 
and is called the eyclomatic number of G. If the graph 
has p connected components the cyclomatic number 
equals #(E) - #(V) + p. It is denoted by v(G). 

2.4 Hypergraphs 

If V is a a finite non empty set and E, E c P(V), a 
family of non empty subsets of V such that 

U Ei=V, 
E.EE 

then the couple H, H = (V, E), is called a hypergraph. 
The elements of V are referred to as the vertices of the 
hypergraph. The edges or hyperedges are the elements 
of E. 

2.5 Matroids 

In 1935, H.Whitney introduced the matroid concept 
in order to investigate linear independence in an ab­
stract way. Let A = {al,' .. , an} be a finite set· and 
Fe peA). (A, F) is defined to be a matroid on A if, 
and only if, 

2. {ai} E F, for i = 1, ... , n, 

3. FE F, F' =1= 0, F' c F => F' E F, 

4. and for each SeA, the members of F that are 
maximal in S have the same cardinality. 

The elements of A are called the elements of the ma­
troid (A, F) and the elements of F are called the in­
dependent sets of the matroid. Maximal independent 
sets are called matroid bases and minimal dependent 
sets are called circuits. 

It is very easy to show [3][Chapter 2] that, if 

C = {H E E(G) : H is a cycle}, 

and 

F = {I E P( C) : I is an independent set of cycles}, 

then (C, F) is a matroid on C whose bases contain 
v( G) elements. 

If a weight w(c) for each element c of C is defined 
-for instance, wee) could be taken as l(c); the length 
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of e in G- then the weight weB) of a basis B, B E F, 
is defined as 

weB) = ~ wee). 
cEB 

For an elementary introduction to the subject 
see [2]. 

2.6 NP-completeness 

The class NP contains the problems solvable by non­
deterministic polynomial algorithms. The subclass 
NP-complete of NP contains the hardest problems of 
NP in the sense that a solution for a NP-complete 
problem is a solution to any other problem in NP 
through a transformation by a polynomial time algo­
rithm. 

A nondeterministic algorithm is an algorithm that 
at each step has several choices for the next step. A 
polynomial or polynomial time algorithm is an algo­
rithm that gives a result after a number of steps which 
is bounded by a polynomial function. 

3 NETWORK DISCRETE MODELS 

In [4] the practical convenience that network discrete 
models be available is discussed in connection with 
the many algorithms of a discrete nature involved in 
the software; the conclusion is that comprehensive 
discrete network models and their corresponding dis­
crete software modules are missing concepts in our 
systems. 

A widely long since accepted abstraction is the 
correspondence between a network NE and a graph 
G (NE): to each unknown parameter group3 a graph 
vertex is associated; there is an edge connecting 
two vertices if their corresponding parameters are in­
volved in a same observation (see [6]). 

It is also known how an undirected graph G(N) 
describes the zero-nonzero sparsity pattern of a block 
symmetric matrix and that G (NE) = G( N) if N is 
the normal equations matrix of NE. 

This, however, represents only a part of the prob­
lem. 

To improve the situation consider the net­
work adjustment [sparse] design matrix A 
(aijh$i$m,l$j$n and the hypergraph H such that 
#(V(H)) = n, and a numbering p of the vertices 

3 A parameter group stands for a set of parameters related 
in the obvious way. In a photogrammetric block, the three 
coordinates of a point constitute a parameter group, also the 
six orientation elements of an image; the set of selfcalibration 
parameters constitutes as well another parameter group. 



v (H). Then, consider the map € 

€ : {I, ... , m} ~ E(H) 

i ~ Ei 

where €(i) = Ei if Ei = {p(i l ), ... ,p(iq)} and the 
only non zero elements of row i in A are aiil , ... , aiiq • 

€ may be non bijective. 

H does contain all structural information of the 
network, including the observations. The problem of 
finding an optimal sequence for loading the partial 
normal equations -if required- can be formulated 
in terms of finding a proper numbering for the hyper­
edges of H. 

G(NE) can be obtained from H(NE) as follows 

H(NE) ~ H(NE)* L L(H(NE)*), (1) 

where G(NE) = L(H(NE)*) , L(H(NE)*) is the rep­
resentative graph of H(NE)* and H(NE)* is the dual 
hypergraph of H(NE). 

If H = ({VI, ... ,vn }, {El , ... ,Em}) is a hyper­
graph, the dual hypergraph H* 

H* = ({ ell ... , em}, {Vi, ... , Vn }) 

is defined through the relation 

ei E Vj ¢} Vj E Ei 

for 1 ::; i ~ m and 1 ::; j ::; n. It is apparent that 
(H*)* = H. 

The representative graph L(H) of H is a graph of 
order m -i.e., V(L(H)) = {Xl, ... ,Xm}- defined with 
the equivalence 

for 1 ::; i, j ::; m. 

In the above two definitions, for the sake of a sim­
pler notation, the existence of a one-to-one correspon­
dence between sets of same cardinality has been high­
lighted with subindices. 

In transformation (1), step a is a discrete trans­
pose, step (3 is a discrete -symbolic- product of dis­
crete matrices. The composition of them is a discrete 
transpose product. (There are algorithms available 
that given H(NE) and a numbering p of its vertices, 
directly generate the elimination graph of Gp(NE).) 

H(NE) can be introduced as the network discrete 
model-for hystorical reasons one could call G(NE) 
the network [associated] graph- although it is an 
open question whether one should allow for multi­
plicities in the edges of the hypergraph H (NE). If 
so, then the map in 1 would be one-to-one. 

A last observation is that network discrete mod­
els provide the skeleton for the network abstract data 
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types to be used in the adjustment systems. More­
over, since graphs, hypergraphs, lists and sets are ba­
sic mathematical objects, the fundamental operations 
and algorithms on them can be borrowed from stan­
dard discrete mathematical software packages. 

4 A REMARK ON CLASSICAL 
PHOTOGRAMMETRIC NETWORKS 

Graphs associated to photogrammetric blocks, for 
both bundle or independent model methods, are bi­
partite. A graph G is called bipartite if V (G) can be 
partitioned into two subsets -parts- in a way that 
an edge always connects vertices of different parts. In 
the case of a bundle network, one part has as many 
vertices as points are in the network and the other 
part has a number of vertices that equals the number 
of images. 

n-partite graphs are defined in a similar way. For 
a given graph G, its chromatic number X(G) is the 
smallest n for which G is n-partite. In general, com­
puting X(G) is NP-complete. Note that a bundle net­
work with additional selfcalibration parameters can 
be associated to a tripartite graph. 

For photogrammetric blocks, in the frame of a 
general network adjustment program, the traditional 
steps of forming the reduced normal equations and 
numbering of their group unknowns, can be put in 
an abstract form as follows: 

• check the network graph for bi- or tripartiteness. 

If the answer is yes, then proceed and 

1. generate the two or three partitions, 

2. generate a partial elimination graph R, 

3. number the vertices of a suitable subgraph of R. 

Testing whether a graph is bipartite and generating 
the vertex parts is easy (the well known equivalence 
between bipartite graphs and graphs with no cycles 
of odd length must be used). For tripartite graphs 
the generation of the parts is more involved but it 
still can be done [3][Chapter 3]. This solves step 1. 

For step 2, consider the following less restrictive 
definition of graph numbering than the one given in 
Section 2.2: any map p : V ~ {I, ... ,#(V)}. If p 
is taken as p (any point) = 1 and p (any image) = 2, 
then the elimination graph R generated by applying 
the path theorem to p corresponds to the graph of the 
intermediate symmetric matrix obtained after factor­
ization of the point unknowns [3][Chapter 2]. 

For the last step, it suffices to extract the subgraph 
of R corresponding to the image unknowns and apply 
your favorite numbering algorithm to it. 



F\C 1234567890123456789012345678901 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 

+ ..... + ..... + ..... + ..... + ..... + 
........................... ** .. 
..................... ** .. '*0 .*. 
.................... * .. *.* .... * 
.................... * .. *.* .... * 
.................... . ** ... * .. *. 
+ ..... + ..... + ..... + ..... + .. **.+ 
.... 0 ................ ** ... * .. *. 
· .............. ** ... * .. * .* .... * 
............ 0.* .. *.* .... * ..... . 
.............. * .. *.* .... * ..... . 
· .............. ** ... *. 0 * . * 0 ... * 
+ ..... + ..... + ..... + .. ** 0 + . * .. *+ 
· .............. ** ... * .. * . * .... * 
· .... ~ ... ** ... * .. * . * .... * ..... . 
........ * .. *.* .... * ........... . 
....... . * .. *.* .... * ........... . 

18 ......... ** ... * .. * . * .... * ..... . 
19 + ..... + ..... + .. **.+.* .. *+* .... * 
20 ......... ** ... * .. * . * .... * ..... . 
21 ... ** .. 0 * .. * . * .... * ........... . 
22 .. * .. *.*. o •• * ........ 0 ........ . 
23 .. * .. * . * .... * ................. . 
24 ... ** ... * .. * . * .... * ........... . 
25 + ..... + .. ** . + . * .. *+* .... * ..... + 
26 ... ** ... * .. * . * .... * ........... . 
27 .. * .. *.* .... * .. 0 .............. . 
28 .*. o •• * ....................... 0 

29 .* .... *0 ...................... . 
30 .. * .. * . * .... * ................. . 
31 + .. ** .+.* .. *+* .... * ..... + ..... + 

Figure 1: A cut subset for SQ 31 LD 6 (automated 
nested dissection). 

In general, all the different policies of dealing with 
the "sorting of unknowns" in photogrammetric blocks 
can be reduced to numbering alternatives of bipartite 
graphs. Conversely, the extremely efficient methods 
devised by photogrammetrists for their blocks over 
the past two decades can be transferred to other 
sparse gaussian elimination problems in other fields 
where bipartite matrix graphs appear. 

5 TROUBLESOME ASPECTS OF 
HYBRID NETWORKS 

Compared to classical networks, hybrid networks 
may be troublesome because their local and regular 
connectivity structure is lost. In order to illustrate 
this statement, an example (Figure 1) will be given 
before generalizing. 

Figure 1 depicts a cut subset generated in the first 
step of a nested dissection graph numbering algorithm 
for arbitrary networks [8]. 4 The elements of the cut 

4The nested dissection algorithm has been selected since it 
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Figure 2: A graph with a 4-distance connected sub­
graph. 

subset are marked with the character *. The graph 
-SQ 31 LD 6-is based on a regular grid graph­
SQ 31- whose vertices are connected to their four N , 
E, S and W neighbors. Thus, SQ 31 is of order 961 
and size 1860. SQ 31 LD 6 is SQ 31 plus a 6-distance 
connected subgraph LD 6 (see Section 6.3 and Fig­
ure 2 with a SQ 13 LD 4 graph); it is of order 961 and 
size 1920. In other words, SQ 31 LD 6 is a simplifica­
tion of a regular graph perturbed with the long edges 
of LD 6. The simplification aims at being represen­
tative of a I?hotogrammetric block which is adjusted 
together with the terrestrial control network or, also, 
of a conventional geodetic network readjustment that 
brings together a main and a densification network. 

The fill-in factor obtained after applying nested dis­
section to SQ 31 is 4.67; for SQ 31 LD 6 is 6.88 
and for a graph of the type SQ 31 LD 6 LD 3 
is 9.66 [3][Chapter 5]. Note that for either cases 
SQ 31 LD 6 and SQ 31 LD 6 LD 3, numberings do 
exist which lead to fill-in factors very close to 4.67! 
The problem behind is the inability of the algorithms 
to produce a clean cut subset in the presence of the 
perturbing subgraphs LD 6 and LD 3 (Figure 1). Of 
course, this depends on the particular numbering al­
gorithm (see [11]); this point is discussed in [3]. 

In [3], more cases of hybrid troublesome networks 
are analysed. In general, it can be stated that graphs 
of hybrid networks have a dominant structure of the 
classical type plus some perturbing edges; for instance 
in aerial triangulation, edges induced by drift correc­
tion parameters if aerial GPS control is used or edges 
induced by the terrestrial control network which de­
stroy bipartiteness. 

is the algorithm to be used in large problems [11]. If the hybrid 
network is medium sized or small any sequential algorithm, for 
instance the banker's [15], will do the job reasonably well. 



To face those problems, rather than to establish 
brand new numbering algorithms, it seems wiser to 
develope network analysis tools for the detection and 
isolation of the perturbing edges as pursued in the 
following section. Once this is done, appropiate ac­
tion can be taken before the actual numbering al­
gorithms be applied to the unperturbed underlying 
graph. These tools are of interest even for conven­
tional networks since [structural] gross errors, for in­
stance point numbering errors, modify the network 
graph connectivity in a similar way as observations 
between distant parameters do. 

6 SOME DISCRETE ANALYSIS TOOLS 

The concepts developed in this section can be found 
in more detail in [3][Chapter 6]. They are here in­
troduced from less to more difficult, starting with the 
almost trivial task of analysing the connectivity prop­
agation. 

6.1 Superconnectivity 

For any x E V (G) consider the sequence 

where di(X) = #(Li ), i E {O, ... ,r} and,where Lo = 
{x}, L1 = Adj(x) and Li = Adj(Li - 1) - Li - 2 for 
i ~ 2. 

A complete analysis of the sequences do (x) d1 (x) ... 
dr(x) requires too big a computational effort. The 
computation of a restricted number of elements of 
the above sequences -the first elements provide the 
most relevant information-, however, is almost as 
helpful' as the whole computation. This is specially 
true if the very pathological vertices like border ones 
are removed from the graph as soon as they are de­
tected. 

6.2 Nonlocality 

Let G = (V,E) be a graph and e = {a,b} one of 
its edges such that #(E) ~ 3 and (V, E - {e}) is 
connected. The nonlocality of e, r( e) is defined as 

r(e) = d(V,E-{e}) (a, b). 

r( e) + 1 is, obviously, the length of the shortest cy­
cle through the edge e. The concept of nonlocality, 
however, fits the intuitive idea of discrete distance 
between graph -network- vertices better and can 
be further extended by considering d(V,E-F) (a, b) for 
some subset F of edges. 

Nonlocality has some limitations. For instance, for 
any edge e of P in Figure 3 it is r(e) = 6. This allows 
the detection and isolation of P. On the contrary for 
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Figure 3: A graph G with a 6-distance connected 
subgraph P. 

the graph of Figure 2 the detection of the perturbing 
subgraph is not possible through the analysis of non­
locality since r( e) = 3 for any edge. This question is 
dealt with in the next section. 

6.3 Graph filtering 

First, the concept of n-distance connected subgraph 
is introduced. Let n be a positive integer, G = 
(V, E) a graph and P a connected subgraph such that 
#(V(P)) ~ 2 and that dI(u, v) ~ n, Vu, v E Yep) 
where I = (V,E - E(P)). P is then called a n­
distance subgraph of G. 

Figure2 shows a 4-distance sub graph and Figure 3 
a 6-distance subgraph (P). 

A graph filter f is a graph operator; i.e. given a 
graph G, f (G) is a subgraph of G. Throughout the 
section, B will stand for a minimal weight (length) 
cycle basis of G and q for an integer q ~ 3. 

Filter hq. h~(G) is the subgraph of G defined as 

h~(G) = G({v E V(G) : 3cj E B,w(cj) < q, 

v is a vertex of an edge of Cj } ) . 

h~(G) may be nonconnected or the empty set. Based 
on the fact that (C,F) is a matroid on C (Sec­
tion 2.5), it can be proven that h~(G) does not de­
pend on the particular base B. 

Filter l~. In a similar way the Bubgraph l~ (G) 
may be deffued as 

l~(G) = G({v E V(G) : 3cj E B, l(cj) > q, 

v is a vertex of an edge of Cj } ) . 

Again l~(G) may be nonconnected or even the empty 
set but in this case l~ (G) is clearly dependent on B. 
In spite of this dependency, under certain conditions, 
some edges of G belong to l~ (G) no matter which 
particular minimal basis is chosen. This property is 
useful in practice and formalized as follows: if P is a 
q-distance connected subgraph, for any minimal cycle 
basis B, it holds that P C l~(G). 
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Figure 4: Detection and isolation of a 4-distance connected subgraph. 

An example of detection/isolation of a 4-distance 
connected subgraph with the composed filter h5 

0 l4 
is given in Figure 4. 

6.4 On algorithms for minimal weight bases 

A major drawback of the discrete filters proposed 
in the former section is the lack of fast algorithms 
for finding cycle bases of minimal length. In 1987, 
J.D . Horton published the first algorithm for con­
structing minimal weight cycle bases [10]. Although it 
is a very expensive algorithm -it takes time O( m3n), 
for a graph of order n and size m- it has the bene­
fit of showing that the problem of finding a minimal 
cycle basis is not NP -com plete. 

As Horton writes in his paper, there is considerable 
room for improvement on this problem. In particular, 
it remains an open question whether a faster algo­
rithm for [sparse] graphs do exists. 

7 HINTS FOR NUMBERING 
ALGORITHMS 

A practical way to deal with the numbering of com­
plex graph structures is to build up the numbering 
map p : V(G) --? N in n steps, which is equivalent 
to build q where 

q: V(G) --? Nx . r:. xN, (2) 

and then identify the natural order in N with the 
lexicographic order in Nn. 

If q( v) = (q1 (v), ... , qn (v», the sets Ii, Ii = 
{qi(V)}vEV(G) are computed succesively for i = 
1, ... ,n according to different criteria set for each 
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step. An example for such criteria sequence could 
be as follows. 

1. Compute the connected components C1 , ... , Cm 

of G; ql (v) = k if v is a vertex of the connected 
component Ck . 

2. For each i E II consider the sub graph 

G({v: ql(V) = i}); 

set q2(V) = 2 if v is a border vertex (Section 2.1) 
or almost (a vertex with too many adjacent ver­
tices according to some relative threshold). 

3. Consider the family of subgraphs 

for all i E II and j E I2. Thy to apply some of the 
techniques described; for instance, check for bi­
partiteness, look for high nonlocality values, etc. 

4. Consider the family of subgraphs 

for all i E h, j E 12 and k E 13 , Apply to each 
subgraph nested disection or any algorithm you 
might prefer. 

5. . .. 

Note that the former sequence is just an example for 
the sake of illustrating the idea, and that it can be 
further refined if one has the algorithmic tools to do 
it. A possibility is to devote some step m to assign 
values to {qm(V)}vEV(G) according to a priori known 
information on the network which might come from 
a previous adjustment, from approximate algorithms 



or directly from the human being in charge of the 
computation. 

If the complexity of the situation so requires or if 
one is trying to detect structural gross errors, the 
above procedure could be done even interactively. 

8 CONCLUSIONS AND OUTLOOK 

From Section 3, Section 4 and from [3] it seems pos­
sible to set up a discrete model for the classical [least 
squares) adjustment of general networks. All the in­
formation required for the model is contained in the 
hypergraph associated to the functional model design 
hypermatrix (block matrix). In particular, operations 
like formation of reduced normal equations, formation 
of nested dissection blocks and partial elimination of 
unknown groups can be formulated as pure [general­
ized] numbering/elimination operations on graphs. 

It is quite clear that for some of the concepts 
and the results presented here to become practica­
ble (recall Section 6.4) key problems are still to be 
solved; considerable research is still to be done both 
in the theoretical and applied sides. This is, there­
fore, just an intermediate paper though some of its 
ideas have been already applied at the Institut Car­
tografic de Catalunya in the development of the Geo­
TeX system [4]. (More details, practical motivation 
and proofs to all statements made here can be found 
in [3].) 

Last but not least, it will be more than enough if 
the paper contributes to the growing feeling that tech­
niques from discrete mathematics can be of help for 
a new generation of photogrammetric / geodetic proce­
dures and software, even in the almost old-fashioned 
field of network adjustment. 
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