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Abstract 

A method for object reconstruction from arbitrary images is presented. Relative orientation of the images is based 
on the 2-D projective transformations. As a result, the normal case of stereophotogrammetry is obtained. The 
images are resampled along the rows in such a way that the new rows coincide with epipolar lines. Therefore 
the digitization of the object is easily performed with matching along the rows. As an experimental example the 
reconstruction of the Cathedral of Helsinki is presented, where the images are parts of digitized old viewgraphs. 
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1. INTRODUCTION 

In conventional stereophotogrammetry object 
reconstruction is usually performed using nonlinear 
relative orientation, based on the coplanarity 
condition. As a final result an object model is obtained 
which can be digitized. Using digital images, this 
procedure has been tried to be automatized, but these 
algorithms have been more or less restricted to certain 
applications. 

In this paper an object reconstruction method is 
presented which uses 2-D projective transformations 
for relative orientation of images. These transform
ations are linear in principle, and in addition, no 
information about the interior orientation of the 
images is needed. As a result of the relative 
orientation, a stereopair of images is obtained which 
satisfies the normal case of stereophotogrammetry. 
After the orientation, the 3-D model coordinates of the 
object can be produced along parallel epipolar lines. 

The measurement stage of this method is a 
combination of manual and computerized measure
ments. In future, more automation is included. The 
method is developed at the Helsinki University of 
Technology. 

The images may be anything between digital aerial 
photographs and postcard views digitized with a grey
scale scanner. Typically, digitized video images of size 
512 x 512 pixels have been used. 

2. RELATIVE ORIENTATION USING 2-D 
PROJECTIVE TRANSFORMATIONS 

The relative orientation method has its base on the 2-
D projective transformations instead of the perspective 
collinearity condition. There is a more precise 
mathematical presentation of the method in the paper 
by Haggren & Niini, 1990. 
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The method has three parts: 1) computation of 
singular correlation between the images, 2) 
computation of projective transformation coefficients 
of both images from the correlation parameters, and 
3) rectification of the digital images on a new plane, 
which corresponds to the plane where the images are 
as in a normal case of stereophotogrammetry. Finally, 
a 3-D object model can be computed using 
conventional parallax equations. 

For convenience, the main parts of the method are 
presented here. Readers who are already familiar with 
the mathematical concepts may continue reading from 
chapter 3. 

2.1 MATHEMATIC CONCEPTS 

The camera model is assumed to be a pinhole camera, 
i.e. no radial distortion exists. The 2-D projective 
transformation equations for the first image are 

Y'i=-----
glX'i+ h1y'i+ 1 

and for the second image 

CIa) 

(lb) 

(2a) 

(2b) 

where X'i' Y'i and Xlfi' Y"j are the new image 
coordinates of the first and second image at any 
arbitrary plane. The X'iS'i and x"i,y"i are the original 
image coordinates. Index i is the number of the point 
(i=1..,n). 



The condition of relative orientation is that the new 
Y-coordinates are equal (Y'j= Y"J Thus: 

(3) 

The original images will be projected on the same 
plane, and the epipolar rays become parallel with each 
other. 

2.2 SINGULAR CORRELATION 

From equation (3) a bilinear equation is obtained 

(d1g2-g1d2)x'jx"j + (d1h2-g1e2)x'iY"j + 
(d1-gi2)x'j + (e1g2-h1d2)y'jx"j + 
(e1h2-h1e2)y'jy"j + (ec h1f2)y'j + 
(f1g2-d2)x"j + (f1h 2-e2)y"j + 
(f1-f2) = 0. 

By renaming the coefficients we obtain 

m1X'jX"j+m2X'jy"j+m3X'j+m4y'iX"j+ 
m5Y'iY"i+IllsY'j+m7x"i+mSy"j+~ = 0, 

which is in matrix form 

ffi1 IDz ~ x" 

[Xl yl 1] ffi4 Ins ~ y" =0, 

~ffig~ 1 

where 

m} = d1g2-g1d2 

m2 = d1h2-g1e2 
m3 = d1-g1f2 

m4 = e1g2-h1d2 

m5 = e1h 2-h1e2 

ms = e1-h i2 
m7 = f1g2-d2 

ms = f 1h 2-e2 

~ = f1-f2• 

(4) 

(5) 

(6) 

(7) 

Equation (6) is also known as a correlation equation 
(Thompson, 1968). This correlation is singular, so the 
determinant of the correlation matrix M must be zero. 
According to (Jordan et.al., 1972) the determinant of 
the correlation matrix in the case of central 
perspectivity is always zero. However, the elements of 
the matrix M should be solved using det(M)=O as a 
constraint to ensure correct solution. Conventional 
least squares solution is used. 

2.3 EPIPOLE COORDINATES 

From the matrix M the epipole coordinates of both 
images can be obtained using the following equations: 

I 
ffi1 ffi4 ~ Xc 0 

IDzInsffig I 0 Yc (8a) 

~~IDg I 0 
Ze 
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(8b) 

where x'e,y'e,z'e and x"e,y"e,z"e are homogeneous epipole 
coordinates of the images. Their rectangular 
coordinates are x'=x'jz'e' y'=y'jz'e and x"=x"jz"e' 
y"=y"jz"e' An approximate kappa angle of an image 
can be computed from the relative position of the 
epipole and the center of the image, assuming that the 
principal point is approximately at the center of the 
image. This property has been used later when 
computing the projective transformation parameters. 

The projective transformation parameters for both 
images can be solved from the correlation matrix M, 
if the determinant of M is zero. There is an infinite 
number of solutions for the projective transformation 
parameters, which all lead to the same correlation 
matrix. Anyone of the solutions can be chosen and 
used in further computations, but some of them may 
seem to be impractical. 

The relations d/e1 and h/g1 can be fixed to a chosen 
value which is approximately the same as the tangent 
of K1 (the kappa rotation along the original z-axis of 
image one). Then a practical solution is obtained. The 
above mentioned ratios are found from the comparison 
of the collinearity and projective transformation 
equations. 

Any two of the elements m3, ms, m7 and ms are always 
nonzero, these being usually Ills and ms when the 
situation is near the normal case of photo gramme try. 
If I msl > I m71 and I msl > I m31 , we obtain t=-y' jx'e' 
where t=tanK1' and y'e' x'e are the coordinates of the 
epipole point of image one. These can be directly 
computed from the correlation matrix Musing 
equations (8). 

Choosing f1=0, the rest ofthe projective transformation 
parameters can be solved using equations (7), and 
equalities d/e1=t and h/g1=-t. When f1 gets the value 
of zero, it corresponds to the situation where the 
omega rotation of the first image is zero in the 
conventional collinearity equations, thus preventing 
the arbitrary projection plane to rotate around the eye 
base. 

If I msl > I m71 and I msl > I m31 (the most probable 
case), the following expressions for the projective 
parameters have been derived: 

d2 = -m7 
e2 = -ms 
f2 = -mg 
e1 = (m6+tm3)/(t2+1) 
gl = (m2-tm5)/(ms(e+1» 
d1 = tel 
hI = -tg1 
g2 = -(m4+g1tm7)/ms 
h2 = -(m5+g1tms)lms 

(9) 



Parameter t = tan KI . The projective parameters ofY
equations are then known, but the parameters of X
equations are still unknown. They might be freely 
chosen, but to avoid getting into troubles (getting a 
left-handed coordinate system), these must be 
computed analytically. 

According to (Schmid, 1954) it is possible to use two 
constraints to get the reference coordinate system (in 
the new plane) centered in Xo=O, Yo=O, and Ho=H (H 
is freely chosen). The modified constraints for the first 
image are 

(10) 

The second image obtains similar equations. Using 
these constraints, parameters aI' bI, a2, b2 can be com
puted. Unfortunately, it leads to ambiguous signs, 
which have to be determined separately. In the most 
probable case, as mentioned before, a l has the same 
sign as eI, and a2 the same sign as e2• Signs of bI and 
b2 will then be automatically correct. The remaining 
two parameters, CI and C2 can be solved for example 
in this way: 

(11) 

Equations (11) are derived from the properties of an 
orthogonal matrix (Schwidefsky et.al., 1976). 
Equations with the bigger denominators are used. 

2.4 MODEL RECONSTRUCTION 

After the final rectified image coordinates have been 
computed and an arbitrary base length Bx has been 
given, the model can be reconstructed using well 
known parallax equations: 

(y'j+ Y")Bx -HBx 
Yj = , Z.---

2Pi 1 Pi 
(12) 

where the X-parallax is 

The 3-D coordinates are linearly deformed, because 
the inner orientation was not treated as an orthogonal 
reference. A 15-parameter projective transformation 
can be used in absolute orientation to transform the 
model to a cartesian ground system. Also knowledge 
oflinear object features, e.g. parallel lines, can be used 
to obtain orthogonal references. 

3. MAIN ALGORITHM 

The object reconstruction algorithm is performed in 
two steps: 1) rectification and 2) model digitizing. 
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The main idea of the method is to project the images 
to a plane where their epipolar lines become parallel. 
U sing at least nine homolog points, 2-D projective 
transformations between the original images and this 
plane, where the rows coincide with epipolar lines, is 
obtained. The images are then digitally resampled on 
that new plane using bilinear interpolation method. 
As a result, a normal case of stereophotogrammetry 
is obtained, where the digitizing is easily performed 
along the parallel epipolar rows. 

3.1 RECTIFICATION 

At first, the images are displayed on the graphical 
display instrument. Because the scale and resolution 
of the homolog points at different images may not be 
equal, the identification of the homolog points is not 
necessarily easy. In this case, the first rectification is 
only an approximate one, and new observations can be 
identified from these once rectified images to obtain 
a new rectification. Mostly only one rectification is 
enough. The observations for the possibly needed 
second rectification may be selected completely 
independent on the first step. 

Normally, the operator uses a mouse or cursor to show 
at least 9 homolog points from both images, 15-30 is 
recommended. The observation can be determined 
with the cursor alone, or showing a suitable sized 
window, whose gradient weighted center is the actual 
observation. This method suits best for points and 
corners, whose identification is probably the easiest. 

Measurement accuracy of this step depends on the 
orientation of the images and the measurement 
method. If there is a large convergency angle between 
the images, identification of objects is not easy, and 
the accuracy may be some pixels, therefore a new 
rectification may be necessary. If the images are near 
the normal case, i.e. the convergence angle is less than 
20-30 gons, the measurement accuracy may be up to 
half a pixel, provided that the cursor measurement is 
used. If the method of gradient weighted center is 
used, a subpixel accuracy is possible. 

The images are resampled using bilinear interpolation 
method. Only the stereo overlap area is needed to be 
resampled. If two rectifications are needed, the 
resampling is still performed using the original 
images, not the once rectified images. The final 
rectification parameters (Rf ) can be computed simply 
by multiplying the first parameters (RI) by the second 
parameters (R2), i.e. Rf = R2RI. These are all 3 x 3 
nonsingular matrices. In this way, an unnecessary 
weakening of image quality is avoided. The operator 
can control the result of the rectification visually from 
the display instrument. 



3.2 MODEL DIGITIZING 

The measurements are made pointwise by measuring 
the left image point first, and then searching the 
corresponding homolog point from the right image 
along the current epipolar line. The left image is 
always measured by the user either by showing a 
suitable sized window, or just by showing a cursor 
position. The searching of the right homolog point is 
made automatically or by the operator, depending on 
the user's choice. 

If automatic searching is selected, then a small 
window is shown on the left image, and the position 
of a point inside the window is computed using the 
method of gradient weighted center. The same window 
is then searched from the right image moving the 
window along the X-direction, and possibly some pixels 
in the Y-direction, depending on the rest Y-parallax of 
the rectification step. If this is less than 0.5 pixels no 
movement in the Y-direction is necessary. The quick 
search is based on a simplified cross-correlation, and 
as a result the location of the right image window is 
found with an accuracy of at least one pixel. Finally, 
the actual right image observation is computed using 
the gradient weighted center of that window. 

As the automatic search easily fails, the manual 
digitizing is kept as an alternative. This is made by 
pointing the object on the left image by cursor, then 
the current epipolar line is drawn on the right image, 
where it is now easy to show the same point with 
cursor. In this case, only the X-parallax is measured 
and Y-coordinate is kept the same on both images. 

The 3-D coordinates of the object model are directly 
obtained from the homolog observations using parallax 
equations (12), a freely chosen base length (B), and the 
previously chosen camera constant (H). 

3.3 DISCUSSION 

For the moment, the implementation of the measure
ment stage is based on the searching of the homolog 
points along epipolar lines. The measurement stage 
can be developed so that a stereoscopic view is possible 
to use, but this requires also a moving measuring 
mark on both images and a special display 
instrument. 

The measurement stage is mainly manual, but this is 
anyway the most reliable method to obtain observa
tions of the most important object points, especially 
when there is a wide convergency angle between the 
images, and an automatical object recognition is not 
guaranteed to work reliably enough. Making the 
observational step more automatic needs further 
investigations. E.g. least squares image matching can 
be implemented, but it requires certain conditions, 
which cannot always be valid when using images 
which have large convergency angle. Also the 
possibility of adding more images to the system will 
be investigated, as well as the implementation of 
additional parameters for compensating nonlinear 
image deformation. 
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4. EXPERIMENTS 

The object reconstruction program has been used in 
relative orientation of two digitized postcard images 
of the Cathedral of Helsinki. 

The postcards were digitized using a resolution of 200 
pixels/inch, and 256 grey values. Only an area of 512 
x 512 pixels were used out of the original postcards. 
The size of a pixel was approximately 10 cm in the 
object space. The extracted images are shown in 
figures 1a and lb. 

The arbitrarily chosen camera constant was put to 
2000 pixels, and the left lower corner of the image was 
treated as an origin. The images after the final 
rectification are shown in figures 2a and 2b. 
Stereoscopic viewing of these images is possible if the 
direction of sights are crossed. 29 points were used in 
the computation of this final rectification, which had 
a standard deviation of 0.96 pixels. Measurements 
were made using both the cursor positioning and the 
gradient weighted center of a shown window. 

The 3-D model was then digitized from the rectified 
stereo images, but it was linearly deformed. This 
model was compared to a cartesian model that was 
digitized using an analytical stereo plotter and a pair 
of previously photographed metric images. The 
geometry of the metric model was quite good 
Cbase/distance-ratio was about 112), and the root mean 
square error (RMSE) of the digitized model 
coordinates was less than 2 centimeters. 

A 15-parameter transformation between the deformed 
model and the cartesian model using 14 points gave 
RMSE-values of 21 cm in X, 32 cm in Y and 22 cm in 
Z, where Y was the depth direction. Also the actual 
base of the postcard model proved out to be only 6.7 
m with an object distance of approximately 70 m, 
which gave a base/distance value of 0.09. 

It has to be noted here that the inner orientation was 
completely unknown and the possibly radial distortion 
was still affecting in the images, which may explain 
the high RMSE-values. 

The aim of this experiment was not to produce any 
precise 3-D model, but to show that the relative 
orientation method described in previous chapters 
works, and it really produces stereo images that can 
be used in measurements. 



Figure 1a. Right image. 

Figure 2a. Rectified right image. 
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Figure lb. Left 

Figure 2b. Rectified left 
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