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ABSTRACT 

In industrial metrology, when measuring the actual shapes of industrial tools and jigs, it is often impossible to 
define unique measuring points on an object. Straight edges are however, commonly available, In this paper we 
describe the mensuration procedure using these edges instead of well defined object points. We describe the 
method of computation and the mensuration procedure, with the minimum number of lines necessary to calculate 
the problem successfully. 

1. INTRODUCTION 

In an industrial metrology, we have to determine with high 
accuracy the actual shape of tools and to compare it to the 
desired "blueprint" shape. The problem with this quality 
control process is that no unique points are defined on the 
object itself, but linear or circular features abound (Fig. 1). 

In order that a simple mensuration process can be used, 
and to allow online quality control during the manufacturing 
process, the reconstruction of the 3-D object and its quality 
control should preferably be done using only the available 
edges of the object and no auxiliary measuring tools 
defining virtual points. The problem is thus as follows: 

(1) Can we measure, from different measuring stations to 
arbitrary, non-identical points along the well defined edges 
of the object and reconstruct its 3-D shape (relative 
orientation) ? 
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(2) Can we transform the "as is" shape of the object into 
the "blueprint" shape using common edges instead of 
common points (absolute orientation)? 

This paper discusses the minimum number of 
measurements to yield a unique solution to the problem. It Figure 1: A typical tool shape in industrial metrology 
expands on an earlier paper of the author on this topic 
(Kubik, 1991). 

2. ADVANTAGES IN THE MENSURATION PROCESS 

The use of linear features for 3-D reconstruction would 
greatly simplify the mensuration process, as no homologous 
points have to be identified. The reconstruction could take 
place while scanning the image. 

In order to explain this idea, let us assume the use of two 
digital cameras. As each of these cameras scans the 
object scene, it only needs to register the intersections of 
the scan line with the linear features. These intersection 
points are matched in order to find the homologous linear 
features. Here a learning process can be used to fully 
utilise the information derived from the previous scan lines. 

Also, a quality control on the straightness of the object lines 
is possible during this process, as straight object lines 
should map as straight image lines. 
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3. ABSOLUTE ORIENTATION USING EDGES 

Let us start with the absolute orientation problem first, as 
this problem is relatively easy. The formulae for the three 
dimensional orthogonal transformations are: 

Xl) = A. R X}2) + I'lX 

Where: 

X,/) = the blueprint coordinates (E,N,H) of a point A; 
Xl) = the "as is" coordinates; 
the matrices, R,1'lX = the rotations and shifts respectively; 
A. = the scale factor. 

(1) 



We assume a number of points xl) on straight line 
features of the "as is" object being measured. We only 
know the "blueprint" expressions for these straight lines: 

Where: 

EA(2) = [E
o

(2) + SA'COS a.Cos!)l/inep 
NA(2) = [No(2) + SA·Sin a.COS!)]/inep 
HA(2) = [H

o
(2) + SA·Sin !)lunep 

SA = the distance of point A from reference point e; 

(2) 

a and ~ = the azimuth and vertical angles of the straight 
line feature, respectively (Fig. 2). In matrix notation this 
becomes: 

(3) 

Where: 

TRIG ::::: 
[

COS a. COS I3J 
Sin a.Cos 13 
Sin!) 

For every measured point A on a line of the "as is" model, 
three observation equations can be formulated for the 
seven unknowns, A, IV(, R of the transformation (1), and 
the one additional unknown SA, locating the point A on the 
line: 

X (1) -
A - +!1.X 

Where: 

S A. TRIG 

The unknown transformation parameters, and the additional 
point unknown, SAo may be determined from these 
equations by standard least squares adjustment, if sufficient 
measurements are available. 

How many measurements are needed to arrive at a unique 
solution to the Let us assume we measure N 
points in the is" system, this gives 3N observation 
equations for the 7+N unknowns, leading to the inequality: 
3N>7+N. (4) 

At least four points have to be measured in the "as is" 
system in order to arrive at a unique solution for the 
system. These four points obviously need to be positioned 
on at least two linear features in order to avoid singularities. 
We may, for example, measure two points each on two 
linear features. 

H H 

'" denote measured points xA 

Figure 2. Absolute orientation: 
Determination of the transformation parameters from 
one coordinate system to another using straight fine 

features only. 

We may verify our conclusions with the following example: 
We wish to find the transformation parameters between the 
coordinate system of a cube in object space and its blue 
print shape. 
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Figure 3: Exemplification of Absolute orientation Problem 

Measuring only one line A on both cubes, does allow us to 
rotate the object cube into the blue print space, but we 
know neither its position along that line, its orientation with 
respect to the line nor its scaling. Measuring the two 
rectangular lines A and B, the object cube can now be 
positioned and oriented, but we cannot determine the scale 
factor between object and blue print space. Only when 
measuring two non-coplanar lines A and C, can the scale 
factor also be determined and the absolute orientation 
problem completed. 

4. RELATIVE ORIENTATION USING EDGES 

We start from the well known projective relationships 
(American Society of Photogrammetry, 1980) relating the 
object space to the image space: 

(5) 

Where: 

== vector of image coordinates (x,y) of point A in image 

XA = vector of model coordinates (E,N,H) of point A; 
Y(1) = vector of 6 parameters of image (1); being the tilts, <1>, 

W, K and projection centre coordinates (E,N,H); 
P :::: projective relationship. 

In relative orientation using edges we assume that points 
on linear features are measured monoscopically both in the 
left and right image. Non homologous points are observed, 
that is, points on the linear feature. measured in the left 
image differ from those in the right image. This will usually 
be the case in automatic industrial metrology, and no online 
image correlation is required. 

The following observation equations can be formulated for 
two points A and B measured on one and the same linear 
feature of the object: 

Left image: 
xl) == P(XA ; Y(1)= 0) 
XA= Xo + SA" TRIG 

Right image: 
Xa(2)= P (Xa ; Y(2)) 
Xa == Xo + Sa' TRIG 

(6) 

(7) 

The image parameters of the left image are set to zero. 
Five parameters of the right image are unknown after 
choosing a suitable model base. 

In addition, for every linear feature in model space, there 
are five unknowns: the three coordinate values Xo of one 
reference point on the line, and two directions a, ~ (Fig. 4). 
Also, for every measured point, the distance S from the 
reference point Xo is unknown. (For the first point 
measured on a new line, say point A, we choose S to be 
zero.) 
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Figure 4. Relative orientation using non homologous points 
on straight line features. 

The unknown parameters may be determined from above 
equations by standard least squares adjustment, if sufficient 
measurements are available. How many measurements 
are needed to make the problem uniquely determined? Let 
us assume we measure N points in both images for each of 
the M lines. This gives: 

(1) Number of observation equations -
4N.M. 

(2) Number of unknowns -
5 orientation unknowns: 
(3 + 2) M unknowns per linear feature; 
M(N-1) unknown distances S for pOints measured in 
left image; 
M N unknown distances S for points measured in right 
image. 

(3) Inequality condition -
(4 N M) equations <!: 5 + M (5 + 2N - 1) unknowns; or 

5 
2N - 4 

(8) 

As two points measurements per line should suffice (N=2) 
the required number of lines M follows to be infinite. Thus, 
the relative orientation problem appears to be non-solvable 
as stated above. 

In a variation to the above formulation, we may assume, 
that pairs of parallel lines are measured. We then ask, how 
many of such pairs of parallel lines are required for relative 
orientation. This variation of our argument follows from the 
reqUirements of many constructions in projective geometry 
to know the vanishing points of bundles of parallel lines 
(Wylie, 1970). Also, in most industrial tools, parallel edges 
are readily available and recognisable as such. 

We now assume measurements of N points made in both 
images for each of M pairs of parallel lines. 

This gives: 

(1) Number of observation equations -
8N,M. 

(2) Number of unknowns -
5 orientation unknowns; 
(6 + 2)M unknowns per pair of parallel lines; 
2M(N-1) unknown distances S for points measured in 
left image; 
2M N unknown distances S for points measured in 
right image. 
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(3) Inequality condition -
(8 <!:N M) equations <!: 5 + M(8 + 4N - 2) unknowns; or 

M'2 5 
4N - 6 

(9) 

For N equal to 2, it results M <!: 2,5; that means we need 
three or more pairs of parallel lines in object space to 
complete relative orientation. 

Again, the above can be verified by a geometric argument. 
Envisage a cube imaged from two stations. 

Figure 5. Exemplification of Relative Orientation Process 

The attitudes of the left image can be determined from the 
shape of the triangle formed by the vanishing points, while 
its relative position can be determined by the position of the 
focal point with respect to the vanishing points (H. Wylie, 
1970). It may however, be difficult to find three pairs of 
parallel edges in an object. This condition can probably be 
relaxed and further research is required on suitable minimal 
measuring arrangements for relative orientation. 



5. RESTITUTION 

Once relative and absolute orientation is completed, 
restitution of the 3-D object lines follows. We measure 
points on a selected linear feature monoscopically both in 
the left and right image. The observation equations for the 
3-D restitution of the linear feature are given in equations 
(7) and (8), with the image parameters known from the 
orientation process. Following an argument similar to that 
of Chapter 4, we find that two points have to be measured 
monoscopically in both images of the line for its 3-D 
restitution. Thus, in an automated system, the 3-D 
restitution of lines can take place as outlined in Chapter 2 
of this paper. 

6. CONCLUSION 

This paper gives some initial results on the topic of 
photogrammetric mensuration using homologous lines. 
This is of very great practical importance in automatic 
mensuration, as it allows the use of monoscopic 
measurements with no image correlation required. 
However, considerable research is still required in this field 
in order to convert this idea into a proven production 
method. 
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