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Abstract 

This paper presents the design and implementation of relational matching for solving the 
correspondence problem. Application such as large scale urban areas or close range scenes 
with large depth range relative to the base/height ratio often pose unsurmountable problems 
to existing matching methods. Relational matching can easier cope with geometrical dis­
tortions and it is less sensitive to the presence of occlusions, foreshortening and breaklines. 
Relational matching is performed by, first, representing epipolar scan lines as trees, and 
then searching for the minimum distance between the two structures. To demonstrate the 
flexibility of the matching scheme two different input signals were used. The first input is 
an gray levels epipolar scan line, used for matching gray level images, and the second input 
involves convolution values, generated by the LoG operator, used for matching, indirectly, 
zero-crossings. The results show that the matching scheme copes successfully with large 
geometric distortions without introducing special constraints or tuning the algorithm. 

1 INTRODUCTION 

Most photogrammetric processes involve two or more pho­
tographs. One of the most fundamental tasks in photogram­
metry is to identify and to measure a feature of the object 
space in all overlapping photographs. In photogrammetry, 
the process of finding conjugate features in two or more im­
ages is commonly referred to as the image matching problem. 
The image matching problem can be described as comparing 
a specific feature with a set of other features and selecting 
the 'best' candidate based on criteria such as shape, intensi­
ty values, etc. In traditional photogrammetry this problem 
is solved by an operator who identifies conjugate points by 
fusing the overlapping photographs to form a stereo mod­
el. The human visual ability to solve the correspondence 
problem is unsurpassed and performed in real-time, without 
conscious effort. Not only does the human visual system for­
m a stereo model but it interprets the 3-D model and stores 
a highly symbolic description which is more useful than the 
original light intensities to draw conclusions and to properly 
act to what one is looking at. 

How the human visual system accomplishes this feat is 
largely unknown. This is particularly true for the higher 
visual processes such as image understanding and object 
recognition. The correspondence problem is considered an 
early visual process. That is, fusing two images to a 3-D 
model (stereopsis) is presumably being performed without 
a priori knowledge about the scene. 
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The most prominent image matching problems are relief 
distortions, occlusions, discontinuities in the surface (break­
lines) and non-linear radiometric differences. Applications 
such as large scale urban areas or close range scenes with a 
large depth range relative to the base/height ratio often pose 
unsurmountable problems to existing matching methods. 

Relational matching is new in photogrammetry. In com­
puter vision it is the preferred method in late vision for 
matching features with a model base (object recognition) 
[4]. Relational matching can cope with geometrical distor­
tions between the features to be compared much easier. It 
is less sensitive to the problems mentioned earlier. Hence it 
should be a more robust method for solving the correspon­
dence problem. This paper focuses on relational matching, 
explores its potential in digital photogrammetry and demon­
strates the usefulness in the surface reconstruction problem. 

2 MATCHING TECHNIQUES 

Detailed reviews of image matching techniques in computer 
vision can be found in Barnard and Fischler [5] covering 
the period from mid-70's until 1981. Dhond and Aggarwal 
[10] review the topic of 'structure from stereo' from 1981 to 
1989. Li [25], Hannah [16], and Doorn et.al. [11] review 
image matching in digital photogrammetry. 

In general, three criteria characterize matching techniques 

(1) The selection offeatures and relationships to be matc­
ed. Features can be in the form of patches extracted 



from the image, including the I-D case of scan lines, 
(segmented) edges, or specific geometric objects. 

(2) The control strategy that specifies how to find a po­
tential match. 

(3) The criteria for determining (selecting) the best match 
from several candidates. The matching criteria are 
measures of similarity between different features. 

2.1 Area-Based Matching 

In area-based matching (ABM) a rectangular area (templet) 
of one image is compared with an area of the same size in 
the other image. Fischler [13] shows that if images differ on­
ly due to horizontal and vertical displacement then 'unnor­
malized' cross-correlation is the optimal matching method. 
Since ABM techniques use image patches they are sensitive 
to perspective distortion (relief distortion), to changes in il­
lumination and contrast, and to occlusions and shadows. Of 
all the positions compared, the one that renders the best 
similarity measure between the templet and the search win­
dow is chosen as the match position. The similarity crite­
rion can be checked by either searching for the maximum 
cross-correlation coefficient, or by minimizing the gray level 
differences using least-squares adjustment (LSM). 

Area-based matching (ABM) schemes offer these advan­
tages: 

Flexible mathematical model: LSM is the method of 
choice in photogrammetry, because it provides a gener­
al approach to area correlation by offering a tractable 
mathematical model (least square adjustments). It is 
easy to use multiple images whereby all image patch­
es are matched simultaneously. It enables photogram­
metrists to apply familiar mathematical and statistical 
principles [19] 

• Simple matching algorithm: Both, cross-correlation a­
nd LSM are considered simple algorithms with well­
known procedures for fast implementations. 

(\ Small storage resources: Only the templet and the sear­
ch window need be kept in memory resulting in very 
small memory requirements. 

• High accuracy: The accuracy of matched points is high. 
Ackermann reports in [1] accuracies of points (geomet­
ric targets, fiducial marks) with a standard deviation 
of 3.7 pm. 

Area-based matching methods suffer from the following 
problems: 

• Break lines: It is assumed that the template and the 
search window cover a smooth surface area. If this 
assumption does not hold, for example when a break­
line crosses the surface patch, then the matching re­
sults may be wrong. Breaklines possess rich informa­
tion about the surface. Unfortunately, ABM performs 
poorly on these interesting areas. 
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• Matching 'meaningless' points: ABM methods match 
pixels on the basis of gray levels differences. Pixels 
have no explicit information about interesting areas of 
the object space. Therefore, the matching results (3-D 
position of points in object space) are on the same low 
level of abstraction as the original image and have no 
meaning associated. It may be that totally uninterest­
ing areas are matched with a very high accuracy. 

., Photometric differences: ABM methods have difficul­
ties with images of different radiometric properties. 
The radiometric differences between images may result 
from using different cameras, images from different e­
pochs, or from different reflections of bright objects 
such as water bodies, etc.. Rosenholm concludes in 
[32] that the radiometric quality of the images is crit­
ical for gray level matching with the LSM method. 

., Geometric differences: One of the basic assumptions 
of image matching techniques is that the two windows 
(templet and reference window) cover the same area 
in the object space. This is only the case if the surface 
is parallel to the camera base. In real situations the 
two windows cover different areas, hence different gray 
levels, which affects the matching results (see Horn [22] 
for more details). 

., Problematic texture: In areas such as grass, or in areas 
with repetitive patterns, there is a problem to deter­
mine the position of the best match (e.g flat correlation 
surface). 

2.2 Feature-Based Matching 

In feature-based matching (FBM) selected features of each 
image are first determined on the basis of distinctive im­
age values. The features so determined may include points 
(feature points), corners (intersection of feature lines), and 
edges. After the location offeatures is determined a relation­
ship between conjugate features is established (matching). 
This process is usually performed on the basis of similari­
ty of the feature attributes, for example shape, orientation, 
gradient, etc .. 

Some of the advantages of feature-based matching (FB-
M) are summarized below: 

• High reliability: Generally, FBM produces more reli­
able results than ABM because of the distinctive prop­
erties of features. Also, features (particularly edges) 
are derived over a large spatial extent and thus add to 
the robustness. 

., Captures important information: Feature possess mo­
re explicit information about the object space than 
the raw gray levels. Matching zero-crossings, for ex­
ample, renders the 3-D location of potential object 
boundaries. This stems from the relationship between 
discontinuities in the surface and gray level disconti­
nuities (edges). Matched edges are an essential step 
toward image understanding and object recognition. 



• Compact output: Features can be represented as grap­
hs, a more compact representation than raster. 

Feature-based matching schemes have the following prob­
lems: 

• Localization vs. Detection: Being a high-pass filter, 
edge operators enhance not only edges but also noise. 
In order to reduce noise effects, a smoothing operation 
is applied, such as filtering with a Gaussian. This pro­
cess causes the edge to be dislocated. The choice of 
the variance (J2 of the Gaussian influences the degree 
of noise suppression as well as the positional accura­
cy of the edge. This phenomenon is known as the 
localization-detection trade-off. 

• Complex algorithms: From an implementation point 
of view dealing with features requires more complex 
data structures and algorithms. Matching by search­
ing trees or graphs is less straightforward than cross­
correlation. 

• Goodness of match: Unlike LSM no well known sta­
tistical methods exist to analyze the matching results. 

3 RELATIONAL MATCHING 

Relational matching plays an important role in computer 
vision and so far it has not been used by researchers in pho­
togrammetry. A thorough introduction to relational match­
ing techniques is given in Ballard [4]. 

The relational matching can be thought of as an exten­
sion to feat ure-based matching. It is particularly important 
in image understanding, where it can be described as a mod­
el fitting. The method is attractive because it can be used in 
all levels ofthe computer vision paradigm. A very importan­
t conceptual difference exists between area-based approach, 
and relational matching approach. The area-based method 
is based on statistical decision theory, while the relational 
matching is formulated as a problem of combinatorial opti­
mization. In order to perform relational matching, features 
need to be represented in a symbolic way, usually by using 
a graph theoretic approach. The solution is then found by 
performing some kind of graph searching. 

Critical step in applying relational matching is the prop­
er representation of the features and their relations. Shapiro 
in [37,38] presents example of useful feature representations. 
Shapiro and Haralick [35] formulate structural description 
as a relational representation of a 2-D or 3-D entity con­
sisting of a set of primitives each having its own attributes 
and named relations. Relational matching is then to com­
pare two relations whereas structural matching establishes 
a correspondence between the primitives of the structural 
descriptions. 

3.1 Examples of Relational Matching Implemen­
tation 

Linear segment matching combined with graph search is 
used by Medioni and Navatia [30], Ayach and Faverjon [3]. 
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Lim and Binford [26] performed junction matching. Here 
the matching begins in the highest level of a hierarchical 
representation. The results are propagated to each succes­
sive lower level in order to guide the matching at that level. 
Features include objects, surface boundaries, junctions and 
edgles. Herman and Kende [20] extend this approach by in­
corporating geometric knowledge. Boyer in [6, 7] shows that 
structural descriptions of the scene may be used in solving 
the correspondence problem. The process starts by com­
puting zero-crossings contours of the two images. The zero­
crossing contours are then used to construct an attributed 
structural graph, from which the structural descriptions are 
built. Now matching is implemented as a tree search on the 
basis of a consistent labeling problem [17, 18]. Horaud and 
Skordas [21] propose a method for matching straight lines, 
and the relation between them. In order to find a map be­
tween the structural descriptions, a correspondence graph is 
being constructed, and the best match is the largest maxi­
mal clique. 

4 SIGNAL MATCHING 

Representation of signals l or linear patterns, such as speech 
signals, electrocardiograms or seismograms by strings, is well 
known. Enrich and Foith [12] extend this representation by 
introducing the concept of relational trees. Such models 
are very useful in pattern recognition. However, the use of 
complex structures raises the question of how to compare 
different structures. Various methods have been developed 
to answer these questions, some depend on the idea of mea­
suring a distance [27, 13, 28] between graphs or trees. Other 
approaches define a tree grammar which then can be used 
in syntactic and inference analysis. Detailed information on 
structural methods in pattern recognition is given in [31] and 
applications of syntactic pattern recognition is described in 
[14]. 

4.1 Examples of Signal Matching Implementa-
tion 

Witkin, Terzopoulos and Kass [43] formulate the problem 
of signal matching as a minimization of an energy measure 
that combines the smoothness term and similarity term as 
constraints. Anderson's Dynamic Wave Matching [2] is a 
generalization of cross correlation that is useful in waveform 
classification, and feature extraction problems. It match­
es signals by shifting and warping the signals relatively one 
to the other until a correspondence features are properly 
aligned. The 'best match', which is in this case translat­
ed to the optimum degree of shift and warp, determined by 
dynamic programming. Dan and Dubuisson [9] propose to 
match zero-crossings using string matching. The method 
is based on global and local matching. In the first step 
(global matching) vertical columns are matcl).ed to form a 
constraint window. Now the local matching takes place by 
matching the zero-crossing of two epipolar lines. The string 

1 In this paper signal, wave, waveform, and scan lines are used 
interchangeably 



is a collection of zero-crossings and the codes (locations and 
orientations of zero-crossings) are the alphabet. The match­
ing is performed by using Wagner and Fisher algorithm [41] 
which determines the matching cost between two strings. 
The string that has the minimum cost is selected as the 
'best match'. Zuxun [45] proposes a method for matching 
epipolar lines using feature points. Each feature consists 
of three points: the zero-crossing and two deflection points. 
The epipolar line is segmented according to the detected fea­
tures which are then used as matching entities. The match­
ing process consists of geometric correction (resampling) and 
similarity assessment (correlation). The method of multi­
point least-squares matching, modified to handle irregular 
distributed points, is then applied to refine the matching 
accuracy. 

5 TREE MATCHING 

Representing data as trees allows the construction of struc­
tural information either explicitly using geometrical prop­
erties or abstractly in the form of hierarchical relations be­
tween primitive elements. Such models are very useful in 
pattern recognition, however, the use of complex structures 
raises the question on how structures can be compared. Var­
ious methods have been developed, some depending on the 
idea of measuring a distance between trees [27, 13, 28], oth­
ers by defining a tree grammar which then can be used in 
syntactic inference analysis [15,24]. Detailed information on 
structural methods in pattern recognition is given in [31], 
and applications of syntactic pattern recognition are pre­
sented in [14]. 

6 THE IMAGE MATCHING SCHEME 

Figure 1 shows an overview of the implementation of the 
matching scheme which include the following steps: 

(1) Design a data structure that represents the signal (see 
section 6.2. The data structure incorporates the fol­
lowing information: 

amplitude using the quantization level. 

duration as a real interval. 

peak detection and peak tree representation. 

(2) Design features, as part of the node description, to be 
used in the matching process (see section 6.3.2. 

(3) Reduce the search space by 

setting the matching tables dynamically. 

incorporating a hierarchical approach for parti­
tioning scan lines. 

(4) Produce node-to-node matching to support the feature­
points matching phase 

(5) Produce feature-points matching to support the pixel­
to-pixel matching phase (see section 6.3.2. 
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Figure 1: The general matching scheme 

(6) Densify the results (pixel-to-pixel matching) by using 
string matching scheme (see section 6.4. 

The following sections comment on the main components 
of the matching scheme (see Figure 1). 

6.1 Assumptions 

The matching scheme is based on the following assumptions: 

(1) Epipolar geometry: The stereopair must be regis­
tered in epipolar geometry. A detailed description of 
how to generate epipolar images is given in Schenk 
[33]. 

(2) Correlated features: The signals (gray levels or con­
volution values) of the two corresponding scan lines 
must be correlated. The matching method fails in 
case of random images (so does LSM, but not cross­
correlation methods). 

6.2 Representation of Signals by Trees 

Representation of linear patterns, such as speech signal­
s, electrocardiograms or seismograms, by strings has been 
widely used. An extension to more sophisticated represen­
tation has been first introduced by Enrich and Foith [12]. 
The authors have introduced the concept of relational trees 
which is a two dimensional representation of a function that 



describes the wave as a unique ordered sequence of nest­
ed peaks. Its application to waveforms provides not only 
a linear description of a succession of peaks and valleys on 
a waveform, but also a description of the self-embedding 
structure of a waveform. 

Cheng and Lu [8] introduce two new tree structures for 
the representation of waveforms, the skeletal and the com­
plete trees. The skeletal tree captures amplitude information 
and the complete tree also includes duration information. 

6.2.1 Skeletal Trees 

In order to construct a skeletal tree, the wave is first quan­
tized. A node is an interval created by the intersection of 
the wave and the quantization level. The tree is generat­
ed in a recursive fashion starting from the first quantization 
level, which represent the entire wave, and ending with the 
highest quantization level. The depth of the tree is equal 
to the number of quantization levels, and the leaves of the 
tree are a linear description of the peaks in the wave (see 
figure 2.A). 

6.2.2 Complete Trees 

After generating a skeletal tree, which basically depicts am­
plitude information, one can add more information to the 
representation by sampling the wave in the duration direc­
tion. The intersections between sampling intervals and the 
wave generate nodes which are inserted to the tree in the 
proper position (see figure 2.B). 

6.2.3 Peak Trees 

The skeletal and the complete tree cannot capture peaks 
which are smaller than the quantization interval. One solu­
tion is to select smaller quantization and sampling intervals, 
however this might unduly increase the size of the tree. The 
author suggests to detect the peaks in a pre-process and to 
assign a node for each peak. The peak detection is done by 
representing the wave in a syntactic form. The string can 
be parsed by a deterministic finite state automaton [23] (see 
figure 2.C). 

6.3 Description of The Matching process 

6.3.1 Node-to-Node Matching 

The matching process begins with representing the scan lines 
as two quantized trees (see figure 3. Starting on the coarse 
level, the only available information comes from the orien­
tation procedure. The system can use the parallax approxi­
mation, or perform a peak-tree matching with no constraint. 
In this phase the node-to-node matching table is generated 
where each node represents a subsection of the wave bound­
ed by the quantization interval. 

6.3.2 Feature Point Matching 

From the node-to-node table, a vector of sparse pixel-to­
pixel matching results can be constructed. Because of quan­
tization and noise, the matching table cannot be directly 
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Figure 3: The scan lines and their tree structure 



used to identify conjugate pixels. For example, a single pix­
el node can be matched against a node which represents a 
ramp. In order to improve this situation, a feature point 
matching procedure is introduced. Matched points are clas­
sified according to their position with respect to the feature 
definition. Class 1 are points which represent maxima in 
the feature interval, class 2 are points which represent fea­
ture boundaries and class 3 are the node boundaries (see 
Figure 4). 

1 

Quantization level 

Figure 4: Description of feature points classes 1,2,3 

The feature point matching begins with a consistency 
check followed by matching points according to their class. 
The type of consistency check depends on the type of the 
input signal. The following explains the consistency check 
for gray levels and zero-crossing matching. 

Matching Gray Levels When matching gray levels of s­
can lines, the consistency check includes testing shape and 
parallax. The shape test is applied in order to avoid match­
ing small regions against large regions, a problem which may 
occur because of quantization. The length of the regions 
covered by the node and by its fathers are compared with 
the length of the matched region. The selected match is 
the node which generates the minimum difference in length. 
In the parallax test, the parallax between two points from 
classes 2 or 3 is computed. If it is within a tolerance then 
the match is accepted. General feature point (class 1 and 2) 
are less sensitive then class 3. 

Matching Zero-Crossings In case of matching convolu­
tion values generated by the LoG operator, the translation 
from the node-to-node table to the sparse pixel-to-pixel vec­
tor is only performed on nodes with quantization index O. 
The matching is accepted only in the case that the matched 
region represents quantization level O. However, due to sig­
nal deformation the matched region can be positive or neg­
ative. There are three possible cases: 

(1) Matching to a positive region 

(2) Matching to a negative region 

(3) Matching to a zero region 

In the first case, the matcher searches for the first node 
with index 0 in the direction of the root (positive to negative 
direction). In the second case the matcher searches towards 
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the terminals (negative to positive direction). The last case 
is straightforward (zero index matches zero index). 

6.4 Densification of the Matching Results 

After performing the feature matching, the system uses the 
output information as the input for densifying the match­
ing results. This step can be viewed as local matching in 
contrast to the global node-to-node matching. It is inde­
pendently performed on each feature section. The goal is 
to find a match between individual pixels within a pair of 
matched features. There are different solutions to this prob­
lem. The method of matching character subsequences is 
described in Wang and Pavilidis [42] which define an Op­
timal Character Subsequences (OCS) which can be viewed 
as a problem of string matching whereby amplitudes of the 
signal, for example the gray levels of a scan lines, form the 
alphabet. 

7 EXPERIMENTS AND RESULTS 

The following sections describe the following experiments 
(For a detailed discussion of the experiments the reader is 
referred to [46]). The first experiment demonstrates scale­
space matching of scan lines from the 'Campus' model s­
tarting at resolution 128 X 128 pixels down to 2048 X 2048 
pixels resolution. In this case the input signal consists of 
gray levels. The second experiment deals with matching a 
sub-image from the 'Campus' model. Again, a scale-space 
approach is used starting at a resolution of 512 X 512 pixels 
down to 4096 X 4096 pixels. In the finest resolution, the 
sub-image covers the Ohio State University main library; 
it includes large amounts of occlusions, foreshortening and 
abrupt surface changes. The input signal is a scan line with 
convolution values generated by the LoG' operator. This 
experiment addresses the interesting problem of matching 
zero-crossings in an indirect way. 

7.1 The Image Pair Used for Testing 

The stereopair used in the second and third experiment con­
sists of two aerial photographs (193,195) taken over the cam­
pus of the Ohio State University (as part of an ongoing map­
ping project). The photo scale is approximately 1:4000. The 
diapositives were scanned at a resolution of 30j.tm pixel size 
by the Intergraph Corporation using the PhotoScan system. 
In the image pyramid the finst resolution was only 60j.tm, 
however, yielding a 4096 X 4096 pixel image. The relative 
orientation, the resampling to the epipolar geometry, and 
the image pyramid was computed on the Intergraph Work­
station 3050 according to the procedures described in Schenk 
et. at. [34]; Stefanidis et. at. [39]; Zong et. at. [44]. 

7.2 Image Matching Using Intensity Values 

This section discusses the application of relational match­
ing to gray levels of the original images using a hierarchi­
cal approach. The scan lines of level k of the image pyra­
mid are partitioned into sections which are then individually 



matched. The partitioning is based on the matching results 
obtained in the previous level k - 1. For example, the first 
scan line of the top level of the image pyramid (resolution 
128 X 128 pixels) is row 88. This corresponds to row 172 of 
the second level (256 X 256 pixel resolution). Partitioning 
odd numbered rows (which do not exist on level k - 1) is 
done by using the partitions from the two neighboring even 
numbered scan lines. 

7.3 Matching Zero-Crossings 

In this application the input signal is a scan line with con­
volution values as the amplitudes. The input signal is a 
profile along the scan line through the convolution surface 
obtained by convolving an image with the LoG operator. 
Zero-crossings are defined as the transition from positive to 
negative values or vice versa. Therefore, zero-crossings are 
found between a peak of a positive convolution value and a 
valley with negative values. 

7.4 Analysis of the Matching Results 

In relational matching the quality of the matching results 
cannot be statistically described. The matching cost which 
reflects the distance between the two trees cannot be trans­
lated into a quality measure such as the variance-covariance 
matrix in LSM. 

The discussion presents problems, explanations and pos­
sible solutions. In order to assess the accuracy of the results, 
the matched points were transformed to the object space and 
plotted as depth profiles against the 'true' profile. The true 
profile was obtained by measuring the same points manually 
on a high resolution display screen. 

The following general comments can be made: 

• Matching gray levels with the relational matching sche­
me produces a large number of correctly matched points 
(note that model 'Library' is a difficult model). 

• Occlusions are better dealt with by matching zero­
crossings rather than matching gray levels. 

• Combining the results from matching zero-crossings 
with those from gray levels offers the possibility to de­
tect errors. Also it increases the confidence of matched 
points. 

• Apart from matched points the matching scheme ren­
ders additional attribute information suitable for per­
forming consistency checks. 

• The method is robust in that it copes with extreme 
distortions, and if it fails then it does it locally. 

Figure 5 shows matching results of scan line 256 super­
imposed on the gray-level image. Figure 5.A shows the ef­
fect of the border problem while in Figure 5.B this effect is 
removed by increasing the length of the scan lines. For a 
detailed discussion of the border effect the reader is referred 
to [46]. 

Note the error caused by matching part of the occluded 
left side of the building (the sixth match from left) and on 
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Figure 5: Matching results of 256 superimposed on the in­
tensity images 

the right side (the eighth match from right). This error is 
only local, the system recovered immediately and matched 
the rest of the scan line correctly; a clear demonstration of 
the power of global matching. 

7.5 Comparison of Matching Results with 'True' 
Matches 

The accuracy and reliability of the relational matching scheme 
is evaluated with results that were obtained manually, and 
thus are considered 'true'. 

The accuracy of the manually established matched points 
is ±1 pixel (mean square error) corresponding to ±3 feet in 
object space. In Figure 6 the matching results of scan line 
256 are superimposed on the true profile. The discrepancy 
on the left side as well as the mismatch on the right side 
are caused by occlusions. All other points are within the 
excepted tolerances. 

8 CONCLUSIONS 

In this research, relational matching in the form of tree 
matching was used to solve the image matching problem 
for surface reconstruction. As shown, relational matching 
is a flexible scheme capable of handling different types of 
input signals. Two different input signals were used in the 
experiments. In the first case a scan line of a gray level 
image is the signal. The other type is a scan line of the 
convolution surface obtained by convolving the image with 
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Figure 6: Scan line 256 ('library'): zero-crossing vs. 'true' 
matching 

the LoG operator. Special attention was given to match­
ing scan lines corrupted by foreshortening and occluded sec­
tions. The results confirm the theoretical expectations that 
relational matching successfully copes with large geometric 
distortions without introducing special constraints or tuning 
the algorithm. This means a more robust solution. 
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