
AN OBJECT~ORIENTED MODELLING FRAMEWORK FOR GEOGRAPHIC INFORMATION 

M. Isdale & Y.c. Lee 
Department of Surveying Engineering 

University of New Brunswick 
Fredericton, N.B. Canada 

ISPRS COMMISSION III 

ABSTRACT 

One of the drawbacks of many Geographic Information Systems is in the concepts provided for representing features in the real 
world. These concepts tend to be far removed from those employed by users when they think,about g~ograph~c features. ~s a 
result, these concepts lack the power to represent the higher level, semantic aspects of geographic mformatlOn. ThIs paper descnbes 
the desion and implementation of a framework for the storage of geographic models of the real world. It can oper~te at a level ~loser 
to that ~f GIS users, and supports concepts based on those of Entity/Relationship and Object-C?riented mo~elhn¥. It provIdes a 
number of data types suitable for spatial processing, and they can be e~tended by the user. The ImplementatlOn ot the framework 
was carried out using an object-oriented programming language called Elffel. 

KEY WORDS: Data Base, Object-Orientation, GIS/LIS, System Design. 

1. INTRODUCTION can be used at a number of different levels. They are used in 

The abstract view of the world provided by many of today's 
Geographic Information Systems (GIS) is based heavily on 
the data structures used to represent information. For 
example, the concepts provided by the graph abstraction of 
space - points, lines and polygons - are often given a 
great deal of emphasis. Such emphasis on particular 
structures reflects an over-dependance on them, and leads to 
a lack of flexibility in using others. In addition, the identities 
of the things being represented are often hidden away among 
a great deal of interconnected data. The combination of a 
polygon and identifier, a feature code and a set of relational 
tuples is often the extent of the powers of a GIS when it 
comes to representing a plot of land, for example. 

This paper deals with the design and implementation of a 
framework for the storage of geographic information. In 
this framework, an attempt is made to provide better 
representational powers by supplying structures which 
explicitly represent the existance of the things of interest­
nothing more. These structures can then be linked to others 
which represent information about the things of interest -
names and positions, for example, along with other 
quantitative and qualitative information. 

By elevating the things of interest to a position of greater 
importance, and by supplying the structures to represent 
them, two things are acheived. First, the representation in 
the GIS should correspond more closely to the user's 
perception of the real world. This should make it easier for 
the user to interact with the representation and to get work 
done. Second, with the de-emphasis of the structures used 
to represent information about the things of interest, it is 
anticipated that a more flexible approach to using such 
structures will be possible. It should be noted that although 
the importance of a structure su~h as a line graph may well 
be de-emphasised from an overall point of view, this in no 
way detracts from the fact that it is a powerful structure for 
modelling and analysing networks, and for providing a basis 
for polygonal structures. 

The framework which was developed can be described as 
being object-oriented, both in terms of its implementation 
and the way in which it models the real world. This paper 
first sets out to explain what object-orientation is, and how it 
can be applied. It then goes on to describe the ideas behind 
the design of the framework, and the experiences 
encountered in trying to implement it. 

2. OBJECT·ORIENTATION 

The term 'object-orientation' is one of the biggest computer 
buzzwords of our time. It is one that is often used without 
much understanding of what it implies, and has, for some 
people, become a hi-tech synonym for 'good'. Object­
orientation is based on some fundamental concepts which 

754 

software development, modelling, and as the basis for user 
interfaces. This can lead to some conflict in what people 
perceive as being object-oriented. In this section, the 
concepts behind object-orientation will be outlined, and their 
application in different situations described. These concepts 
need to be covered before a complete explanation of the 
modelling framework can be undertaken. 

2.1 Concepts of Object-Orientation 

The basic idea behind all things object-oriented is that in one 
way or another, a system can be viewed as a collection of 
inter-related objects. An object has a unique identity 
(implying its existance), a state (defining its structural 
characteristics at any point in time), and a behaviour 
(defining its operational characteristics, or what it can do). 
The concept of classification dictates that an object must 
belong to a class of objects, all with the same specifications 
of state and behaviour. A class defmes the nature of the state 
and behaviour, while an object records the identity and state 
of one particular instance of a class. 

The objects dealt with are dictated by the kind of system 
being considered. When looking at a model of a real world 
system, objects such as roads or rivers may be dealt with. 
When concerned with the implementation of a software 
system, objects such as arrays and lists would be important 
- in addition to those representing things in the real world, 
were this the purpose of the software system. Object­
oriented user interfaces use objects such as windows, icons 
& pointers to allow the user to control a computer 
environment. The common idea is that a system - be it the 
code for a computer programme, a model of reality or a 
computer environment - is viewed as a collection of inter­
related, uniquely identifiable objects with a state and 
behaviour. 

As well as the concepts of object and class, object­
orientation also supplies the dual concepts of 
generalisation and specialisation. Together, these 
allow classes to be arranged in a hierarchy. A class which is 
a descendant of another in the hierarchy is said to be a more 
specialised subclass, while the more general class is the 
superclass. A subclass has the characteristics of the 
superclass automatically defined for it. It can also define 
more specialised characteristics of its own, however. 

To make things happen in an object-oriented system, 
messages are passed to objects. This may be done by the 
user or by other objects. An object which has a message 
sent to it will then behave in some way, depending on what 
kind of system is being dealt with. Object-oriented systems 
are therefore dynamic in nature. 

A GIS is a software system concerned with modelling the 
real world. There are three separate systems which can be 



identified. The implementation system is the programme 
itself - a collection of software components which define 
how the GIS works. The environment system is what the 
user sees when the GIS is running, and is defined by the 
user interface. The model system is the representation of the 
real world with which the user interacts - through the 
environment system. Any of these systems can be looked at 
through a pair of object-oriented glasses (0-0) - as a 
collection of objects. 

2.2 Implementation System - 0-0 Programming 

The implementation system (the 'programme') may be built 
using an object-oriented programming language, 
such as Smalltalk or Eiffel. Object-oriented programmers 
develop their software by defining classes. At run-time, the 
software system consists of a collection of interconnected 
objects, generated from the class definitions. 

The state of a software object is the data it stores, and takes 
the form of a collection of attributes. These may consist of 
links to other objects, or direct internal represen~ations (as 
with an integer object, for example). The behaVIOur of an 
object is the set of operations (often called me~hods) 
defined for it by its class. These methods are defmed by 
routines written by the programmer, and are the only means 
of manipulating the data stored in the object. The operations 
which may be defined by a class for linked list objects, for 
example, may include append, insert and delete, for adding 
and removing items to and from a list. From this 
description, it can be seen why objects are said to 
encapsulate data storage capabilities along with the 
functionality to manipulate the data. 

The execution of an object-oriented software system occurs 
through message passing. When a message is received 
by an object, it ~atches it with one of its method~ or 
attributes. An attrIbute would then return a value, whIle a 
method would start executing. Methods can include 
messages to other objects, and execution spreads through the 
system as messages are passed from one object to the next. 
When a method finishes executing, control is returned to the 
object that sent the message. 

In addition to providing the concept of encapsulation, most 
object-oriented programming languages also support 
information hiding. This allows an interface to be 
specified for a class. An interface defines exactly what form 
messages sent to objects of that class should take. All access 
to the state and behaviour of an object must be made through 
its interface. As a result, the interface can control what 
attributes and methods are actually available to other objects. 
The interface is separate from the implementation of state 
and behaviour. It defines what messages an object will 
respond to, the form those messages must take, and what 
results will be yielded. It mentions nothing about how the 
results are obtained - that is left to the implementation. 
Information hiding, then, means that one object can in no 
way be dependant on how another acheives results. 

Object-oriented progran;ming. languages . incorp<?r~te a 
mechanism known as mhentance WhICh faCIlItates 
specialisation and generalisation. One class. can be m~de to 
inherit the state and behaviour of another, without havmg to 
define them itself. The subclass can then modify inherited 
attributes and methods, and add new ones of its own. Most 
inheritance mechanisms do not support specialisation and 
generalisation, because they do not enforce ~y co?straints 
on the interfaces of classes. A subclass may mhent from a 
superclass, but it need not appear anything like it throug.h its 
interface. The messages that it responds to may be entIrely 
different, meaning that it can't be treated in the same way. 

755 

In some situations, it is important for the interface t~ be 
inherited rather than (or as well as) the implementatIon. 
Some programming languages address this problem, while 
others do not. The difference between inheritance and 
generalisation/specialisation leads to some conflict bet~een 
the ideas behind object-oriented programming and obJect­
oriented modelling. 

2.3 Model System - 0-0 Modelling 

A GIS allows a model of a real world system to be stored 
and analysed. The model represents the real world by 
storing information about it .. The struc!ure .of the m?del 
system dictates how users mteract with It to retrIeve 
information or perfonn analyses. 

A wide variety of schemes exists for structuring information 
about the real world. Structures based on line graphs are 
commonly used for representing positional information, 
while for textual infonnation, table or record structures are 
common. Knowing the organisation of the tables and/or 
graphs, a user can retrieve the information required, and use 
that to perform analyses. Interacting with a model structured 
in this way is not particularly intuitive for a humaD; - a 
translation must be made between the human conceptIOn of 
the real world system and the table/graph structured 
conception of the model system. The problem here, for the 
users, is that too much emphasis is given to the stox:age of 
information about things, and not enough to representmg the 
things themselves. 

To be more useful to users, model systems and the real 
world systems they represent should correspond more 
directly. Acheiving this has been referred to as "closing the 
semantic gap", and object-oriented modelling of the real 
world is one way of making this possible. Taking such an 
approach allows users to. conceiv~ of the model syste!ll in 
terms of objects, each wIth a defmed st~te and beh~vlour. 
Some of these objects may correspond directly to ~hmgs of 
interest in the real world, while others may be dedIcated to 
storing certain kinds of information. 

Object-oriented models allow a kiD;d o~ inform~tion hiding. 
Although object structures fo~ stonng mformatIOn (su.ch as 
line graphs and tables) may stIll be used, th~y can be ~ldden 
from users to a certain degree. If users can mteract with the 
model through the objects directly representing things in ~he 
real world and if such interaction can be performed usmg 
real world'terminology, then the underlying representations 
and processes can be largely concealed - and users can 
obtain results without knowing too much about the 
underlying structures. 

An object-oriented model of a rea~ world sys~em ne~d not 
necessarily be implemented usmg an ob~ect-onented 
programming language - as long ~s the requITed con<:epts 
are visible to users. This overloading of the term 'obJect­
oriented' tends to cause some confusion. Programmers 
often think of it as being 'their' term, and that other people 
should therefore refrain from using it. Its use in such a 
manner can be justified, however, if we think of object­
orientation as supplying some basic concepts. We can then 
apply those concepts to different systems - programmes, 
models and environments. 

2.4 Environment System - 0-0 User Interfaces 

Computers create and present us with an environment within 
which to work. In a GIS, we find a model of a real world 
system located within this ~nv~ronment. The way we 
interact with the model system IS dictated by the nature of the 
environment and the way users can interact with it. 



Modern user interfaces employ object-oriented concepts. 
The "point & click" paradigm of today's graphical user 
interfaces is basically object-oriented in nature -
corresponding directly to the object & message concept. 
Metaphorical objects (such as windows, icons, menus, 
buttons, pointers and dialogue boxes) are given a physical 
presence on a screen. Users can send messages to the 
object~ ?y moving a pointing device and clicking buttons, 
and thIS IS how users communicate with the computer. 

Generalisation/Specialisation can be found among interface 
objects. There are many different kinds of window, for 
example, but many have common features. Most have a 
'close' button, for example, and many have scroll-bars. A 
~indow class hierarchy can be formed with the most general 
kind at the top, and application specific ones at the bottom (a 
text editor window being one example). 

2.5 A Final Remark on Object-Orientation 

The view of object-orientation presented here is perhaps 
more general than those presented elsewhere. Many views 
are restricted only to the application of object-orientation to 
software construction. There can be little argument about the 
impact of the approach on this field. In fact, the concepts 
~ehind object.-orientation largely grew out of developments 
m programmmg languages. The concepts have, however, 
fo~md application in other fields, and this is why object­
onel!-tatlon has been presented here simply as a way of 
lookmg at systems. 

3. FRAMEWORK DESIGN 

The framework which has been developed is for building 
and storing models of the real world. Ideally, the user's 
vie~ of a mode~ system should correspond as closely as 
pOSSIble to the VIew of the real world system it represents. 
This should make manipulation and analysis of the model as 
~ntuitive as possible. The things that users perceive as being 
lmportant m the real world, therefore, should be easily 
perceived in the model. This means that users should be 
able to view the model as being formed of components 
which directly correspond the things we are interested in. 

In GIS, the interest is in storing information about entities 
(such as roads or rivers) - including their locations and 
spatial distributions. The relationships between these entities 
also tend to be of some importance, and therefore need to be 
modelled. Modelling the spatial variation of phenomena 
such ~~ temperature or population is another important 
capabIlIty. A framework for storing geographic information 
should therefore allow models to be built from components 
which explicitly represent these items of interest. 

The framework which has been developed may be described 
as the core of a fledgling database management system. 
Using database tenninology, the framework is based on the 
Entity/Relationship (ER) Data Model. It allows entity types, 
relationship types and attribute value types to be defined. 
These types are then used to create actual entities, 
relationships and attribute values. These can in turn be 
put together to build a model. Note that the concept of 
classification is involved in the relationship between entities, 
for example, and entity types. 

Each entity in a model represents the existence of something 
of interest, such as a rive r or a fore st. Entities can be 
associated with one another by relationships. A 
flows_into relationship might associate a ri ver entity 
with a lake entity. Both entities and relationships may 

756 

have attri?utes which describe them in some way by linking 
to an attnbute value. A rive r entity might have three 
attributes - name, position and length. An attribute 
must have a declared type which states what kind of value 
can be attached to it. The attribute name, for example, may 
have the type string declared forit. 

The generalisation/specialisation of entities is added to the 
basic concepts supplied by the ER Data Model. This is 
acheived by allowing a hierarchy of entity types to be 
defined, rooted at the most general type, en tit y. A more 
specialised type may first be defined, called water-body. 
This might specify the attributes name, pos it ion and 
permanance. A river type may then be defined as a 
descendant of wa t e r - bod y, so it would have all the 
at~butes of that type. In addition, however, it may have the 
attnbute length. A lake type may also be defined as a 
descendant of water-body, and have the attribute area 
added. 

A hierarchy of entities is useful in several respects. It can be 
useful in the selection of features for further investigation. 
Rather than having to say "select all rivers and lakes", for 
example, the more concise "select all water-bodies" 
would suffice. Relationships can be used more effectively 
too. A r i ve r, for example, may flow into a 1 a k e or 
another river. By making the flows into relationship 
associate a river entity with any water-body entity 
(rather than being more specific and allowing it only to relate 
a r i v e r to a 1 a k e), the real world situation can be 
modelled more flexibly. 

A similar hierarchy of relationships can be defined, rooted at 
the most general type, relationship. 

In many database management systems, the capabilities for 
handling different types of attribute value are rather limited. 
A ~ew basic types are allowed, such as integer, character, 
strmg and real. The support for handling more complex 
types is often restricted to the ability to group together two or 
more attribut~ values, each of basic types. For example, a 
real and a stnng taken together may represent a distance (a 
magnitude and a unit). This framework is more flexible, in 
that new types can be designed and 'plugged in', allowing 
different kinds of attribute value to be stored. A distance 
type may be designed, a value of which would include a 
~agnitude and a unit. Functionality would also be 
mc~~~rate?, however. SOJ?e operations may be for setting 
the mitIal dIstance, convertmg the distance from one unit to 
another, or for adding two distances, regardless of whether 
they are h~ve the same units or not. An addition operation 
would obVIously have to include a conversion process if the 
units were different. 

The ability to put storage capabilities and functionality 
together in a type like this is obviously the same idea as the 
concept of encapsulation which was mentioned earlier. In 
fact, attribute value types are not the only ones which can 
have. ope~ations specified for them. Entity types and 
relatIonshIp types can too. Some basic functionality is 
included in the definitions for the general types entity and 
relationship - the functionality to allow an entity to 
have an attribute value attached to it, for example, or for an 
entity to enter into a relationship with another. Further 
operations can be added for more specialised entities and 
relationships, but more will be said about this later. 

The concept of generalisation/specialisation can also be 
applied to attribute values and this would appear to hold 



some potential for the integration of data from different 
sources. 

Sticking with the hydrological example, a river may have 
an attribute called pos it ion. We know that the position of 
a rive r is linear in nature, but if we are dealing with data 
from a variety of sources, the actual representation of the 
position may take a variety of forms. Small rive r s may 
have their positions defined by single lines of co-ordinates, 
while larger ones may have theirs defined by very long, thin 
polygons. Another possibility is that a rive r 's position 
may have been determined by remote sensing techniques, 
and be defined by a long, thin block of pixels. This raises a 
problem when it comes to declaring the type of po sit ion 
in the river entity type definition 

Each of the representations described above is fundamentally 
different, and yet because of the linearity of what they are 
representing, they have some common conceptual qualities. 
The concept of length, for example, is often important for 
linear features, as is the ability to identify segments along the 
length of a feature. A general attribute value type called 
1 inear c.ould be defined as a descendant of the general 
type, attribute_value. It would specify a common 
state and set of behaviours for all linear positions. Any 
attribute value with linear as an ancestor would then have 
the state and behaviour enabling it to be treated as we would 
expect to be able to treat a linear position. Three useful 
descendants of 1 in ear could be defined - e.g. 
vector_line, polygonal_line and raster_line. 

The implementation of functions to compute the lengths of 
these different representations of position would, of course, 
be very different. The functionality would be there, 
however, and would work for any descendant of linear. 
More will be said about this during the discussion of the 
implementation of the framework. For now, it is sufficient 
to note that if the type for po sit ion is declared as 
linear, then it is quite allowable for an attribute value of 
any of the more specialised types to be associated with that 
attribute. 

Another important modelling concept which the framework 
supports is that of aggregation - the ability to handle 
complex entities. Some entities can be seen as collections 
of other entities. A road system, for example can be 
seen as a collection of roads and junctions. Complex 
entities could be handled by using i spa r t 0 f 
relationships. The framework, however, supports the 
representation of complex entities directly, without requiring 
the use of relationships. In the same way that entities can 
have attributes, complex entities can have components as 
well. A component has a type declared for it which defines 
what kind of entity (or, indeed, complex entity) can be taken 
as a value. A complex entity may be composed of single 
components or groups of components. A land_parcel, 
for example, may consist of one plot, and zero or more 
buildings. 

It should be clear from what has been said, that, at least in 
terms of the kind of model that can be built, the framework 
which has been developed can be described as object­
oriented. The general types - entity, relationship and 
attribute_value - can be seen as classes which specify state 
and behaviour and which can be specialised. More 
specialised descendant types allow uniquely identifiable 
components to be generated (which can be seen as objects­
instances of classes), and these allow useful models of the 
real world to be built. Some of these components 
correspond directly to items of interest in the real world 

757 

(entities and relationships), while others are dedicated to 
storing information about them (attribute values). At the 
moment, no attempt has been made to incorporate 
components in the model which represent phenomena (such 
as elevation) in any way. It is hoped that future 
developments will address this deficiency. 

It was mentioned that all the types - entity, relationship and 
attribute value - specify state and behaviour. Attribute 
values were described as having specialised operations 
defined for them (recall the distance type). It was also stated 
that entities could have specialised operations defined, as 
well as the most basic ones used for setting attributes and so 
on. As a demonstration of this, consider the following 
example: 

A road system is a complex entity with road and 
j un ct ion entities for components. All three entity 
types have an attribute, position, specified for them. 
For the road_system type, the type for position is 
declared as network. For the road type, it is declared 
as linear, and for the junction type, it is nodal. 

In a particular model, a r 0 ads y s t em entity is 
associated with a bunch of r 0 ad and j un c t ion 
entities. The position attributess of the roads are of 
type vector line, while those of the junctions 
are of type vector point. These attribute value 
types are descendants of 1 in ear and nod a 1 
respectively. 

The positions of the roads and junctions are also 
tied together into an attribute value of a more complex 
type - a vector network, which is a descendant of 
net w 0 r k . ThiS attribute value is taken by the 
road_system as the value forits position attribute. 

Attribute values of type net work (and its descendants) 
have the functionality to compute the shortest path 
between two nod a 1 s which are part of it. If an 
appropriate querying mechanism is in place on top of the 
framework, it should therefore be possible to establish 
what the shortest route between two junctions in the 
road_system is. 

By selecting two junctions, the vector points 
which represent their positions can be found. These can 
then be used as input to the shortest path function 
of the ve c tor net w 0 r k associated with the 
road system. -This function should return a list of 
ve c t -; r 1 in e s, and by comparing these to those 
defining the positions of the r 0 ads, it should be 
possible to determine the shortest route between the 
chosen junctions in terms of the roads that must be 
followed. This route may then be saved as an entity of 
type route. 

This method of finding the shortest route depends a lot 
on the knowledge of users, and it should be possible to 
specify ash 0 r t est r 0 ute operation in the 
road system type. Such an operation would accept 
two j~nct ions as its input, and return a list of road 
entities, or even a route entity, as its result. It would 
automatically perform the selections and comparisons 
outlined above, hiding the processes and the 
representations from the users. 

Specifying the kind of information hiding behaviour that has 
been outlined for the road_system entity type is possible 



within this modelling framework. This allows models to be 
built whic~ can be manipulated and analysed in an intuitive 
manner, usmg terms with which users are familiar. 

This concludes the description of the design of the 
framework. The remainder of the paper will describe how it 
has been implemented. 

4. FRAMEWORK IMPLEMENTATION 

The in:plem~ntation of the fra~ework was carried out using 
the obJect-onented programrmng language, Eiffel. To write 
programmes in Eiffel, classes are defined and compiled to 
produce executable systems. At run-time, objects are 
generated from these classes, and execution occurs as 
messages are passed among the objects. 

The framework itself is not executable. Instead it consists of 
a library of classes which provide the capabilities to build, 
query a!1d analy.se models of the real world. Tools (or 
applIcatIons) whlch need to make use of these capabilities 
can be built on top of the framework. Tool classes can be 
written and compiled, along with the framework classes, to 
produce executable systems. When such a system is 
executed, tool objects provide a user interface. This allows 
users to access the framework objects and make use of its 
model handling capabilities. 

The framework classes can be broken down into three 
groups. The first consists of those classes which define 
entity and relationship types. Two root classes - en tit y 
and relationship - define the state and behaviours 
which are common to all such types. The class 
complex_entity is defined as a specialised subclass of 
en tit y. It adds the state and behaviour for handling 
components. 

Eiffel's inheritance mechanism is used to implement the 
general.isation/spe.cialisation modelling concept. When a 
model IS to be bUIlt, the user must first of all decide what 
entities and relationships need to be represented. New 
classes must then be defined which inherit from the 
appropriate root classes. These new classes add definitions 
of the attributes (and components) of the specialised types. 
They also define any specialised behaviours, such as the one 
for finding the shortest route through a r 0 ads y s t em. 
Once these ~lasses ~ave ~een defined, an executable system 
can be complIed which WIll allow a model to be built. 

With hindsight, it seems that this use of the inheritance 
m~chanism is not the best way to implement the object­
onented modelling concept of generalisation/specialisation 
- at least for entities and relationships. Future 
de~elopments s~ould. allow the definition of specialised 
entlty and relationshIp types to be done at run-time -
before, during and after the building of a model. Such 
definitions should not require recompilation, as is the case at 
present. A simple to understand, application language could 
be developed to allow users to write 'scripts' defining 
functions and attributes for entities and relationships. 

The second group of framework classes implement attribute 
value types. Instances of them are attribute values, and store 
different kinds of information. A class is defined for each 
available attribute value type in the modelling framework. 
So~e simple, vector based spatial attribute types have been 
deSIgned and implemented, along with some simple textual 
~ttribut~ types. The ability to plug new attribute value types 
mto a hIerarchy as they are developed, and without affecting 
existing models is an attractive benefit of the framework. It 
comes about because of the de-emphasis of structures for 

758 

storing information, and the increased emphasis on the 
things being represented. 

The third group of classes is concerned with the management 
of a model. It allows the creation of the model, and its 
analysis through a querying mechanism which has access to 
the analytical functions contained within it. The querying 
mechanism is, at the moment, rather rudimentary, the 
emphasis to date having been on the building of models. A 
simple selection capability is in place, however, and allows 
access to the states and behaviours of model components. 

Some very simple tools have been developed which make 
use of the capabilities supplied by the framework. The 
BUILD tool ~nterprets a simple text files written in a simple 
language WhICh enables models to be built. It allows entities 
to be created and associated with one another through 
relationships. Attribute values can also be set and attached to 
the entities and relationships. The INFO tool allows a model 
to be examined - textual attributes can be displayed as text, 
while positions can be displayed graphically. The 
SH_P A TH tool is a special tool for displaying a road 
system, and for allowing the user to pick junctions and 
determine shortest paths between then. Both INFO and 
SH_PA TH are rather specific in their applicability, and work 
needs to be done in developing more general purpose tools. 

5. SUMMARY 

A framework for storing geographic information has been 
designed and implemented at the University of New 
Brunswick. It employs object-oriented concepts both in its 
modelling capabilities and in its implementation. It allows 
users to build models which bear more resemblance to the 
real world, and is very flexible in its handling of structures 
for storing information. 

The development of this framework has provided a great 
deal of insight into the potential of object-orientation in 
modelling and programming. Continued work should result 
in an improved and extended framework, as well as more 
useful tools making use of its capabilities. 

ACKNOWLEDGEMENTS 

This reserch was partially funded by an NSERC operating 
grant and two EMR research agreements. 

SELECTED BIBLIOGRAPHY 

Feuchtwanger, M., 1989. An Object-oriented Semantic 
Association Model for GIS. In: Proceedings of the 1989 
National Conference on GIS, Ottawa, Canada, pp. 689-703. 

Kemp, Z., 1990. An Object-Oriented Model for Spatial 
Data. In: Proceedings of the 4th International Symposium 
on Spatial Data Handling, Zurich, Switzerland, pp.659-668. 

Khoshafian, S. and R. Abnous, 1990. Object Orientation: 
Concepts, Languages, Databases, User Interfaces. John 
Wiley & Sons, Inc., New York. 

Meyer, B., 1988. Object-oriented Software Construction. 
Prentice Hall International (UK) Ltd., U.K. 

Morehouse, S., 1990. The Role of Semantics in Geographic 
Data Modelling. In: Proceedings of the 4th International 
Symposium on Spatial Data Handling, Zurich, Switzerland, 
pp.689-698. 


