
OBJEC'l' OI{1 11: N'I'F;]) DATA MODII~IIS IN GIS
Gong Jianya Li Deren
Department of Photogrammetry and Remote Sensing
Wuhan Technical University of Surveying and Mapping
Wuhan, P. R. China

Abstract

Currently, experts in Geographic Information S t ' ,
This advanced technique, based upon the defini:isonemot:~ .pr~motlllg ~n obJe~t-o~ient~d approach for GISs.
operations in a modular fashion is charact ' d b IJec ty~es In,comblnatlon wIth the corresponding
p~per discusses object-oriented ~odels for ge~:~~~iC :n~ e~~ ,c~ct;ngd ~hI~h can be e~sily ~ain~ained. This
wIth this concept has been carried out and som h a rdl u e ,a a,In GIS. The InvestIgatIon of a GIS

e approac es an applIcatIons are also described.

Key words: Object,-oriented data model, CI 'f' t' aSSI lca lon, Generalization, Assoiation, Aggregation,
InherItance, Propagation.

1. INTRODUCTION

There are three traditional data models:
hierarchical, network and relational models,
which all try to deal with the same problems with
tabular data. The relational data model is the
most popular DBMS model for GIS. For example,
ARC/INFO uses INFO, System 9 uses EMPRESS,
several GISs use Oracle, some PC-based GISs use
Dbase III. However, the relational model exhibits
some problems such as efficiency, data semantics,
model extension, object identity, and program
interface. It should be pointed out that the
three traditional data models including the
relational model do support these vital features
in various degrees.

2. THE CONCEPTS OF OBJECT-ORIENTED DATA MODEL

Object-oriented approach is a new technology in
software engineering and database. A definition
of object-orientation is that an entity of
whatever complexity and structure can be
represented by exactly one object [Egenhofer and
Frank 1989a], and every object is a single
programming entity that combines data and
procedures or functions that operate on that data
[Shafer 1988]. The object-oriented data model is
built upon the four basic concepts of
abstraction: classification, generalization,
association, and aggregation. The semantic model
is enriched by the concepts of inheritance and
propagation which describe the derivation of
properties in generalization hierarchies and
values in aggregation hierarchies, respectively.

2.1 Object

In an object-oriented approach, all conceptual
entities model objects, for example, a node, an
arc, a river or a province on a map are objects.
The object contains a set of data to describe its
behavior and a set of methods to operate itself.
That is:

Object=(ID, S, M) (l)

Where: IDis an identifier of the object;
M is a set of methods;

S is the behavior of the object, it is
represented by either attributes or identifier of
other objects. That means that an object can
include another object in an object-oriented
approach.

773

2.2 Classification

Classification is the mapping of several objects
(or instances) wi thin a common class (or type)
[Egenhofer and Frank 1989a]. In the object­
oriented approach, every object is an instance of
a class. Each class characterizes the behavior of
its instances by describing the operators that
can manipulate these objects. These operations
are the only means of manipulating objects.
Classification is referred to as the instance of
relationship because the individuals are
instances of the corresponding class.

Thus, we establish an abstraction class by

Class=(CID,CS,CM) (2)

Where: CID is an identifier of the class, Le.
class name;

CS is the behavior of the class;
CM is a set method of the class.

Then

SE CS and M = CM when Object Class

For example, a city GIS includes the classes
building, street, park, phone-line, etc. A single
instance, such as the building with the address
'King street 51', is an object of the class
building. Operations and properties are assigned
to object types, so for instance the class
building may have the properties address, holder
and building date which are specific for all
buildings. The operations like data retrieval and
update are also the same for all buildings.

2.2 Generalization and Inheritance

2.2.1 Generalization Generalization organizes
several classes of the objects with common
properties and operations to form a more general
superclass. There are two classes:

Class1=(CID1,CSA,CSB,CMA,CMB)
Class2=(CID2,CSA,CSC,CMA,CMC)

(3)

Class1 and Class2 have the same subset CSA of
behavior and a subset CMA of method.

CSAC CS1 and CSACCS2 as well as CMAC CM1 and
CMAC CM2

So, they are abstracted to form a superclass:

(4)

Here SID is the identifier of the superclass.

After defining the Superclass, the Class1 and
Class2 are written:

Class1=(CID1,CSB,CMB)
Class2=(CID2,CSC,CMC)

(5)

Class1 and Class2 are called subclasses of the
Superclass.

Subclass and superclass are related by an is_a
relation. For example, the class building is the
superclass of the class hotel because a hotel is
a building. A subclass may also have a further
classification. The building/hotel generalization
can be extended with the classes inn, guest house
and motel etc. While hotel is a subclass of
building, it can be at the same time a superclass
of guest house.

2.2.2 Inheritance In generalization
hierarchies, some of the properties and methods
of the subclasses depend upon the structures and
properties of the superclass(es). Inheritance is
a tool to define a class in terms of one or more,
other more general classes. Properties and
operations which are common for superclass and
the subclasses are defined only once, and the
properties and operations of the superclass are
inherited by all objects of the subclasses.
Inheritance is the transitive transmission of the
properties from one superclass to all related
subclasses, and to their subclasses, etc. But
subclasses can have additional, specific
properties and operations which are not shared by
the superclass. This concept is very powerful,
because it reduces information redundancy and
maintains integrity.

The inheritance can be single or multiple. Single
inheritance requires that each class has at most
a single immediate superclass. Figure 1 has shown
an instance of single inheritance.

Fig. 1 An instance of single inheritance

In multiple inheritance, one subclass has more
than a single direct superclass, such as the
subclass hotel may have superclass building and
superclass business.

Suppose:

Here CSA' CSBI CMAI CMB' are in common with two
other classes. Therefore two superclasses can be
constructed:

(7)

774

In order to acquire all information and methods,
Class3 must inherit the data and operations from
Superclass1 and Superclass2'

An example from geography shows how multiple
inheritance often combines two distinct
hierachies. One hierarchy is determined by the
separation of artificial and natural
transportation links, whereas the other hierarchy
distinguishes water bodies. Classes with
properties from both hierarchies are channels,
that are artificial transportation links and
water bodies, and navigable rivers, whereas ponds
belong only to one hierachy(Fig. 2)

Fig. 2 An example of multiple inheritance

2.3 Association.Aggregation and Propagation

2.3.1 Association An association relates two or
more independent objects by considering the
relation among objects as a higher level set
object. For example, parcel 1 and parcel 2 all
belong to Mr. Neilbsen, they can be grouped as
Neilbsen's parcel. Parcel 1 and parcel 2 are
called members of Neilbsen's parcel. Suppose:

Object1=(ID1,SA,SB,M)
Object2=(ID2,SA,SC,M)

(8)

A new object contains Objectl and Object2 :
Object3=(ID3,SA,Object1,Object2,M) (9)

In this case, the Objectl and Object2 are writen:

Object1=(ID1,SB,M)
Object2=(ID2,SC,M)

(10)

Here Object1 and Object2 are termed component
objects. Hence, this abstraction is referred to
as the member_of relation.

2.3.2 Aggregation A similar abstraction
mechanism to association is aggregation which
models composed objects. i.e., objects which
consist of several other objects. Several objects
can be combined to form a semantically higher
level of object where each part has its own
functionali ty. The operations and properties of
an aggregate are not compatible with those of
parts. For example, the class building is an
aggregate of all walls, doors, windows and roofs
which are parts_of it.

There are two different component objects:

Object1=(ID1,S1,M1)
Object2=(ID2,S2,M2)

(11)

They are composed to form a new object:
Object3=(ID3,S3,Object1(Su) ,Obj ect2(Sv) ,M3) (12)

2.3.3 Propagation The mechanism to describe
such dependencies and ways to derive values is
called propagation. It supports complex objects
which do not own independent data and is based
upon the concept that values are stored only
once, i.e., for the properties of the components,
and then propagated to the properties of the
composite objects. For example, the number of the
beds in a hotel is the sum of the beds of all
bedrooms. The propagation model guarantees
consistency, because the dependent values of the
aggregate are derived and need not be updated
every time after the components have been
changed.

The classification, generalization, association
and aggregation enrich the semantic models so
that the object-oriented approach supports
multiple semantic functions, They are written as
the following table of relations of the
abstractions:

classification
generalization
association
aggregation

instance_of
is-a
member_of
parts_of

Comparisons between inheritance and propagation
are made by the following:

- Inheritance is defined in generalization (is_a)
hierachies, while propogation acts in aggregation
(parts_of) or association (member_of)
hierachies.
- Inheritance is a top-down approach, inheriting
from the more general to the more detailed class;
propogation, on the other hand, acts bottom-up.

Inheritance describes properties and
operations; while propagation derives values of
properties.

Inheritance is implicit, all superclass
properties are inherited from its subclass; while
propagation is explict, i. e. only if specified.
In addition i it must be stated for which
relationship the propagation holds; which
component properties are used; which composite
property is derived and how the result is
obtained.

3 OBJECT-ORIENTED DATA MODEL
IN GEOMETRY

3.1 Introduction

In geometry, there are four types of features:
point-, line-, surface-, and complex features,
which are considered as four superclasses of all
features. Figure 4.3.1 shows the relationships
between the four geometrical superclasses and
various feature classes according to geographical
properties. Therefore, in geometry, we can
abstractly deal with point-, line-, surface-,
complex features, when we define a feature class,
besides defining geographical class, we must
declare its geometric type. For example, when a
building is being defined as a class of building,
it is simultaneously defined as a surface
feature, and it is automatically linked to the

775

data structure of surface features so that it
inherits geometric information and the procedures
to act on the data.

The geographical objects will be identified and
described by their geometric characteristics and
their thematic attribute (non geometric). That
means that two kinds of data need to be stored in
GIS, and an identifier must be required to link
them (see Fig. 3). Here we discuss the object­
oriented model of the geometric data.

Fig. 3 relation between four geometric
superclasses and geographic feature classes

AttributE' data
L:::::~==::::~ __

Fig. 4 Link between geometric and attribute data

3.2 Geometrical Topology, Data Sharing
and Object-oriented Model

Nodes and arcs play a central role in unified
data structure, since they are the only geometric
primitives which have position information
directly associated with them. The terminal
points of an arc share common "coordinate"
information by pointers to their topological
nodes (see figure 5). Line features are not
defined in terms of geographical coordinates by
identifiers to the arcs composing the line, and
surface features are defined by identifiers to
the arcs surrounding the surface. Actually, this
topological data structure is implicitly
represented by sharing the common nodes and arcs.
On the other hand, that is like the aggregation
implement of an object-oriented data model.

ARC ID S-node E-node Middl point iNode ID M, M,

... -..,. ...
I~~i; 10008 432 3725 425

20012
I~~
~ 10020 4285 2266 675

Figure 5 Propagation of a component object

The concepts of object-orientation can be
employed to build th~ geometric data models. ~n
geometry, there are only four types of baSIC
features and several primitive elements such as
node, arc and "leaf node" in 2DRE (see Li & Gong,
1992). A feature consists of one or more
primitive elements, more than one feature may

compose a more complex object. Some underlying
data are propagated from the components to the
composi te object in terms of the identifiers or
the pointers. The data models including the
primi ti ve elements, the simple and the complex
features are shown in the following diagram.

(Complex fedlum)

Fig.6 Data model based on unified data structure

The arrows in the diagram express the identifier
linking or the pointers in the data files, the
ellipses contain the most primitive data in GIS.
The diagram shows that the vector structures and
the raster structures do not have any obvious
distinctions because they use the same primitive
data format--Morton key (see Li & Gong, 1992),
which can guarantee that the unified data
structure serves the two kinds of data and
support object-oriented data model.

3.3 ¥ncapsulation Approach

An outstanding characteristic is that the data
and operation of an object are encapsulated in an
entity, which is helpful for large software
design and database protection. It is also
required in GIS. Our system is designed with an
object-oriented program language C++, which
support encapsulation of data and functions,
besides the operations for creating, deleting,
modifying, displaying, it may contain various
spatial queries and analysis operations. If all
operations are encapsulated with data, it is not
efficient. A new strategy presented here is that
the operations acting on geometric data are
divided into basic ones such as
creating,deleting, modifying, displaying objects,
which are encapsulated in a class, and appendant
ones including query and analysis, which are set
outside the class. Program construction is
written by Turbo ctt in figure 7

Class: name
{
values of type
public:
basic operations
}

(a) Definition of
a class construction

Appendant operations
main()
{
common values
call basic operations
call appendant operation
}

(b) main program

Fig.7 program construction and
definition of a class

4 OBJECT-ORIENTED MODELS
FOR ATTRIBUTE DATA MANAGEMENT

776

4.1 Relational Approach and
Object-oriented Data Model

Relational database management system are often
used to manage attribute data in GIS. There are
many similarities between the relational approach
and the object-oriented model. The relational
model has to a certain extent semantic mechanisms
of classification, generalization, and
aggregation. In a loose sense, a table such as
Relation 1 represents a class of parcels. The
tuples in this table such as that for parcel I,
are objects of this class. Generalization can be
used when there is a need to store properties
common to several classes. For example, the
classes of parcels and highways can be
generalized by the superclass of spatial features
in Relation 6. An aggregation can model composite
objects from their components, Relation 2 implies
an aggregation relationship between a parcel and
its boundaries. A map composed of different kinds
of spatial features is also an aggregation.

However, the fact that they share common behavior
can not be deduced from the relational data
model, which is lack of inheritance implement. A
strategy proposed here is to integrate a object­
oriented language such as HyperTalk with a RDBMS
like Oracle, which manages attribute data in GIS.

4.2 Object-oriented Programming in HyperTalk

Object-Oriented Programming (OOP) is different
from the traditional approach like Pascal,
Fortran. In OOP, data and procedures that operate
on the data are together, packaged in something
called an object. There are five central ideas in
OOP: object, message, method, class, and
inheritance.

HyperTalk is a programming language for Apple
Computers. In HyperTalk, some key ideas are very
close to OOP. HyperTalk uses some of the same
terminology, adopts some of the same methods and
adapts others, and in many ways looks and "feels"
like OOP. But it is not a real object-oriented
programming language, so it is called Object­
Like Programming language.

4.2.1 Object As mentioned above an object is an
enti ty that includes data and procedures that
operate on that data. Viewed from a programming
standpoint, objects are the elements of an OOP
system that send and receive messages. In
HyperTalk, there are five types of objects:
stacks, backgrounds, cards, buttons and fields,
and they can be considered as the operations
"icon" or data "container". Like OOP objects,
each of these can send and receive messages. Each
type of object can also be associated with a
script that contains handlers, which correspond
to methods (as will be seen in a moment).

4.2.2 Message A message in an OOP world
corresponds to a procedure or function called in
a procedural language like Pascal. Everything in
OOP is accomplished in only one way: one object
sends a message to another object and the
receiving object reacts. In HyperTalk, the
messages can be held by five types of objects.
Each type of message can be addressed to one or
more of the types of objects encompassed by
HyperTalk. The objects In HyperTalk can also
receive the messages that are sent by using other
language like SQL.

4.2.3 Method A method corresponds to a
function or a procedure. A method is the code in
an object that tells the object how to react when
it receives a message with the same name as the
method. In HyperTalk, the handlers correspond
closely to OOP method. A Handler is associated
with each type of message the object can receive.
But a message is different from a method, besides
the handler descriptions, the message also
includes other scripts, such as card name, card
fields, etc.

4.2.4 Class The concept of class is the same
as classification in object-oriented data models.
The most important thing objects in class have in
common is the way they react to one or more
messages. When we define a class, each object we
create as a member of that class is contained.
That means that it is not necessary to send the
messages to each single object. In HyperTalk,
there is no strong analogue to OOp's concept of
classes. For example, there is no class called a
button class to which all buttons belong and
which has individual instances of buttons. The
concept of card backgrounds however, comes close
to emulating an OOP class. All cards in a stack
with the same backgrounds have many common
characteristics.

4.2.5 Inheritance In a true object-oriented
world, objects inherit behavior from their
ancestors in an ever-expanding and descending
chain of heredity. That implies that an object of
a subclass reacts to the messages not only from
the same class but also from its ancestors. There
is also no true inheritance in HyperTalk. An
obj ect does not inher i t behav ior from its
ancestors. But like the class in HyperTalk, we
can copy new cards with the same backgrounds
which can react to the same operations or have
the same properties. When we define some
backgrounds for a class in a stack, all objects
in this class and its subclasses have the same
backgrounds. However, this is not inheritance
because the new cards of the same backgrounds are
not the descendants of the original; both are on
the same level of the hierarchy. According to
inheritance in object-oriented programming, the
operations defined specifically for a subclass
are not applicable for objects of the
superclasses. But in HyperTalk, if a background
is modified or added in the card of the subclass,
the cards of its superclasses in the same stack
will be affected.

4.3 Object-oriented Models in attribute database

Geographical information systems are employed to
store and describe the complex information and
phenomena in the real world. The object-oriented
data model can serve as a conceptual model. The
classification, generalization, association and
aggregation are used to define the classes of
objects, to describe the relationship of the
classes and to compose the complex obj ects. The
object-oriented language such as HyperTalk
provides an environment to encapsulate data and
operation in a modular, and the mechanism of
inheritance and propagation. In technique, it has
provided a seamless combination between Oracle
and HyperTalk.

4.3.1 Classification in GIS The features in
GIS can be classified according to the
classification criteria of GIS. Some ideas of the
classification in object-oriented models are
proposed here. A class corresponds to a table in
the relational database and uses a card in

777

HyperTalk. The card includes some operation
'icons' like select, insert, delete, etc., some
property 'containers' and some classification
'icons'. A column in a table corresponds to a
container in a card. A row in a ,table represents
an object (an instance). The features in GIS can
be classified as road, building, park, water­
system, vegetation, phone-line and so on. Fig. 8
shows the classifications of the features. Every
subclass in the card GIS can be classified
further. For example, the class building can be
classified into residence, hotel, supermarket,
factory, bank and so on (see Fig.9).
Sequentially, for instance, the hotel can be
decomposed into the classes of employer and
room&bed are not the subclasses of the class
hotel, and the relationship between the employees
or room_bed and the hotel is the part_of
relation. So the properties and the operations of
the class hotel and class building do not inherit
them. However, the class hotel can derive the
values from the tables of employees and room&bed.
Fig. 10 shows the classifications of the features
and their relationship.

4.3.2 Generalization in GIS Several classes of
objects with common properties and operations are
organized to form a more general superclass. For
example, factories, farms, supermarkets, hotels
and restaurants have the common properties income
and tax. They are formed into a higher level
class business, and use a table which has the
columns business name, income and tax.

4.3.3 Inheritance and Propagation in GIS The
mechanisms of inheritance and propagation are
important in GIS. Some simple tables are
established in an attribute database. But the
user sometimes needs to query the detailed
information of an object such as a hotel. A table
of the hotel only includes the fields identifier,
hotel name, manager name and phone number.
However, the user needs its more detailed
information like its address, income, employees,
beds and so on. Therefore, the user must
manipulate several tables. The Oracle system has
the function of querying multiple tables. In card
hotel, the properties of its superclass building
and business are inherited to it, and several
fields that represent the properties in the hotel
table are built singly. Sequentially, a field
employees and two fields rooms and beds are used
for propagation which aggregate the values in the
table employee and room&bed. The button select
holds the handlers of querying multiple tables
and adding sum. When the user uses the command
select, the select "icon" receives the message
and sends it into the handler, and then
manipulates the tables building, business, hotel,
employee and room&bed. The information is put
into the corresponding fields (see Fig.
11).Actually, the query is divided into two
steps. The first, querying multiple tables hotel,
building and business gets the information of
hotel and its superclass building and business.
The second, according to the name of the hotel
shown in the field, querying the tables employee
and room&bed of this hotel, gets the sums of the
corresponding columns. If HyperTalk were not used
we could not do the second step. Here HyperTalk
send a message name, which is obtained from the
first step, to the field of hotel name, then
query the tables corresponding to this hotel name
because each hotel use an employee table and a
room_bed table. This is an advantage of
HyperTalk, because an object or "icon" can hold
several handlers.

Fig. 8 The classification of features in GIS

Fig. 9 Building Card

Operalions
Building
Proper1ias

Properties:

HOlelname
manager
phone number

business
properties

Fig.10 Relationship of various
feature classes in GIS

Employees
propGrties:

Employe. No.
.. ' name

position
salary
Hired on
Depl.No.

Room&bed
properties:

Item
..... rooms

beds
room price
left bods

778

Fig. 11 Hotel Card

4.3.4 Comment The object-oriented model
emphasizes the entity concept. A card in
HyperTalk is used to represent a complete object
including its attributes, operations and the
relationship between it and other objects. From
user view. the semantics of model is explicit and
clear. Here it has been investigated how the
Oracle system and HyperTalk programming can serve
as sui table tools for object-oriented models in
GIS. Though Oracle and HyperTalk are not real
object-oriented DBMS the integration of them can
realize the object-oriented database management
in GIS. Of course, some problems, such as the
lack of real class and inheritance in HyperTalk,
need to be overcome. Recently, research in non­
standard database environments promoted an
object-oriented model which looks promising to
overcome some problems that make conventional
database management systems unsuitable [Frank
1989b]. However, the realization of the real
object-oriented database management depends on
the powerful database management system and
object-oriented programming language. At present,
only a few languages support object-orientation
sufficiently [Frank 1989], and the OODBMS is
being studied.

REFERENCE

[1] Fritsch, D., 1989: "Acquisition, topology and
structuring of spatial data" 42 Photogrammetric
Week at Stutgart University.
[2] Egenhofer,Max J., Andrew U. Frank, 1989a:
"Object-oriented software engineering
considerations for future GIS". Second
International Geographic Informatio Systems
(IGIS) Symposium, Baltimore, MD .
[3] Egenhofer,Max J., Andrew U. Frank, 1989b:
"Object-orient modeling in GIS: Inheritance and
Propagation". AUTO-CARTO 9, Ninth International
Symposium on Computer-Assisted Cartographic,
Baltimore, MD.
[4] Egenhofer,Max J., Andrew U. Frand, 1989c:
"Inheritance vs. propagation". University of
Maine, USA.
[5] Frank,Andrew U., 1989: "Multiple inheritance
and genericity for the integration of a database
management system in an object-oriented
approach". The second International Symposium on
Object-oriented database, Bad Stein am Ebernberg,
Germany. September 27-29. 1988.

[6] Ehlors,Manfred, Geoffrey Edwards, Yuan
Bedard, 1989: "Integration of remote sensing with
geographic information system: a necessary
evolution". PE&RS No.11.
[7] Dan, Shafer, 1988 "HyperTalk Programming".
Indianapolis, Indiana 46268, USA.
[8] Gong Jianya, Li Deren, 1991. "An Integrated
Data Structure and object-oriented data model in
GIS." Proceedingsi of fig PC'91 Meeting and
international Symposium , Beijing, 1991 .
• [9] Lee,Y.C., 1990, itA comparison of Relational
and Object-oriented Models for Spatial Data."
Manuscripts for Tutorial, Comm. III, ISPRS,
Wuhan, China.
[10] Sa Saxen, 1989, "The Database Technique
faced new applications," computer science, 1989.
No.2.
[11] Li Deren & Gong Jianya, 1992, itA Unified
Data Structure Based on Linear Quadtree", «
Archives of 17th ISPRS Congress, Comm. III»,
Washington.

779

