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ABSTRACT: 

This research presents an artificial neural network expert 
system technique for rainfall estimation from satellite 
data. An ANSER-Artificial Neural network expert system 
for Satellite-derived Estimation of Rainfall is being 
developed in the NOAA/NESDIS/ SAL. Using the 
ANSER technique, estimation or computation of rainfall 
amounts will be 10 times faster. The average error of 
rainfall estimates for the total precipitation event will be 
reduced to less than 30%, the currently achievable 
accuracy. This research work will be a big step toward 
creating an rainfall estimation expert system using an 
artificial neural network from the remotely-sensed data. 
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1. INTRODUCTION 

Assessment of global climate change is a very important 
research area for the future of man and his environment. 
Rainfall estimation is a key parameter in this research. 
During the past 20 years, there has been a great increase 
in our understanding of how satellite data can be used to 
estimate rainfall. But, even with the use of interactive 
computer systems, the time needed to prepare estimates 
of rainfall is about a half hour. Verification results show 
that the average error for an event is about 30%. 

Some Artificial Intelligence (AI) systems for weather 
forecasting have been designed to be objective and 
automated (Zhang and Scofield, 1992); others are 
designed to augment human skill. In the Knowledge 
Augmented Severe Storms Predictor (KASSPr) system 
(Bullas, 1990), knowledge was elicited in a series of 
interviews and exchanges of documentation between the 
developer and an expert in severe weather forecasting. 
The Convex system (Weaver, 1987) first uses as automated 
analysis of the Denver morning sounding, combined with 
estimates of expected afternoon temperature and 
dewpoint, to determine the relative instability of the host 
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air mass and its likelihood of initiating convection later in 
the day over the region of interest. The knowledge base 
for the Willard system (Zubrick, 1985) is a structured 
hierarchy of 30 rules. Most of the rules were developed 
using the inductive generalization feature of Rule Master, 
an expert system shell. Several investigators showed that 
estimating rainfall from both geosynchronous and polar­
orbiting satellite was feasible (Woodley, 1972). A 
complete review of rainfall schemes that use visible, 
infrared, or microwave satellite data is presented by 
Barrett and Martin (1981). Most of the important facts 
about rain clouds have been extracted for use in the 
present estimation scheme. Currently, satellite-derived 
precipitation estimates (Scofield, 1987) and 3-hour 
precipitation outlooks for convective systems, Extratropical 
cyclones, and tropical cyclones are computed on the 
NOAA/NESDIS Interactive Flash Flood Analyzer (IFF A) 
system and transmitted to National Weather Service 
Forecast Offices, and River Forecast Centers. However, 
this system permits the computation of rainfall estimates 
for only one convective system at a time. This is due to 
the considerable time needed for image processing, 
interpretation, and the computation involved in the 
estimation of rainfall. If there are several storms 
occurring, an automatic estimation technique would be 
useful in providing rainfall estimates for the entire 
country. Digital satellite data is used in the estimation 
process. Artificial neural network (ANN) techniques are 
explored as a possible improvement to current techniques. 
This research applies ANN techniques to the 
enhancement of knowledge for automatic rainfall 
estimation from satellite data. 

ANN computing is an area that is receiving increased 
research interest. Since ANN s are massively parallel 
systems, ANN computers have tremendous speed and 
nonlinear advantages over traditional digital machines. 
Hopfield developed the first architecture of a ANN, the 
Hopfield network, (Hopfield, 1982). Carpenter (1989) had 
researched adaptive resonance theory (ART) 
architectures. A conventional ANN architecture is the 
Back Propagation (BP) ANN. Matsuoka (1989) 
introduced a new training model, the Integrated Neural 
Network (INN). INN can reduce training time for syllable 
signal processing. Linsker (1988) described a Self­
Organized architecture in a perception network; this 
model can recognize special features of its environment, 
without being told which feature it should analyze. 

In a study by Xie and Scofield (1989), where the 
Scofield/Oliver Technique was used, there were significant 
differences between the rainfall observations and the 
satellite-derived rainfall estimates. In this paper, ANN 
technique will be used for estimates of rainfall. The main 
research efforts developed in this paper are as follows: 

(1) The architecture of the ANSER system for estimates 
of rainfall; 
(2) The parallel and nonlinear reasoning networks for 
estimation of rainfall; 
(3) 1/2 hour training algorithm of a reasoning network for 
estimates of rainfall; 
(4) Several experimental results of estimating rainfall 
using the ANSER system. 



2. ANSER TECHNIQUE 

2.1 The Architecture of ANSER 

The architecture of an ANSER for satellite-derived 
estimation of rainfall can be seen in Fig. 1. There are 
three parts of this architecture: ( a) ANSER USER 
SYSTEM; (b) ANSER TRAINING SYSTEM; (c) ANSER 
CENTER SYSTEM. The ANSER USER SYSTEM has 
one or more user subsystem(s) based in the mM PC for 
estimates by users. Each user subsystem consists of a 
training subsystem, weight base and. estimate subsystem. 
The ANSER TRAINING SYSTEM has more than one 
training subsystems operating on the mainframe computer 
NCCF HDS 9000 for training weights of ANSER. Each 
training subsystem has first training, re-training and output 
result functions. ANSER CENTER SYSTEM receives 
satellite data based on the IBM RISC 520 for the experts 
and it has six parts: (a) display subsystem for output of 
rainfall estimates; (b) explanation subsystem that gives 
different classification to different data; (c) a reasoning 
network for rainfall estimation based on the input data 
and rule, model, and knowledge base; (d) rule bases, 
mode bases, and knowledge bases will save rule, model, 
and knowledge provided by the expert; (e) a training 
subsystem for getting suitable weights for the ANSER; (t) 
weight bases for keeping weights of ANSER. ANSER 
USER SYSTEM, ANSER lRAINING SYSTEM and 
ANSER CENTER SYSTEM communicate with each 
other using Ethernet. This architecture will be enhanced 
for application to derive estimation of rainfall from 
satellite data. 

2.2 Architecture of Reasoning Network 

The basic architecture of reasoning network for 1/2 hour 
satellite-derived estimation of rainfall can be seen in Fig. 
2. This is a 3 layer artificial neural network that includes 
7 input linear neurons, 30 hidden nonlinear neurons 
(divided into 2 layers) and 1 output nonlinear neuron. 
There are 345 weights in this network. 

The artificial neuron is a unit that functions similar to the 
real neuron of human (in this paper, neuron means 
artificial neuron). The ANN is a system which consists of 
artificial neurons that are connected to each other by 
weights. The function of each nonlinear neuron is sigmoid 
and is given by: 

N 

Yj=l/(l +exp( -L (Yi* Wij)). 
;,,0 

where: Yj • the output of the j-th artificial neuron. 
Wij - the weight connected the i-th artificial 

neuron with the j-th artificial neuron. 
Yi - the output of the i-th artificial neuron. 

When the ANN was described in this paper, the artificial 
neuron numbers of layer are different. However, three 
layers of structure are always used. Several basic 
structures of ANNs will be connected to each other to 
become reasoning networks and the basic structure of the 
ANSER system. 

3. ANSER PERFORMANCE 

3.1. Input and Output of Reasoning Network 

The input and output of the reasoning network are as 
follows: 

Input: G = (cloud top temperature + cloud growth factor) 
or (cloud top temperature + strong divergence aloft) 

RB = rain burst factor 
OS = overshooting top factor 
M = merger factor 
SE = saturated environment factor 
MC = moisture correction 
S = speed of storm 

Output: 1/2 hour Satellite-derived Estimation of Rainfall. 

3.2 Training Algorithm of the Reasoning Network 

The training algorithm of the reasoning network for 1/2 
hour Satellite-derived Estimates of Rainfall are as follows: 

(1) Set random values to all weights of the reasoning 
neural network. 

(2) A special type or model of rainfall should be 
chosen. It means that the reasoning network will be 
trained for this special type or model of rainfall 
estimation. 

(3) One case of rainfall which has the same type or 
model rainfall mentioned in (2) is chosen to train 
the reasoning network for getting convergence 
weights. 

(4) 
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(a) Using Scofield/Oliver Technique: 
The inputs of reasoning network are 
the 7 factors shown in the beginning 
of this section. The output of the 
reasoning network is: SIO E=[(G or 
RB) + OS + M + SE]*MC*S. 

(b) The reasoning network is trained. 
The convergence weights are the 
weights of the 1/2 hour 
Scofield/Oliver reasoning network. 

The same case of rainfall which has the same type 
or model rainfall mentioned in (2) is chosen again 
to re-train the reasoning network for getting 
convergence weights for this special type or model 
case of rainfall. 

(a) The weights of the 1/2 hour 
Scofield/Oliver reasoning network 
will be used firstly. 

(b) The inputs of reasoning network are 
the 7 factors based on the 
Scofield/Oliver Technique. 
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( c) The first output of reasoning network 
is the output of the 1/2 hour 
Scofield/Oliver reasoning network. 

(d) The next output of the reasoning 
network is a function of previous 
outputs of the reasoning network and 
observed data of this case. 

( e) The reasoning network is trained. 
The convergence weights can be used 
as the weights for the 1/2 hour 
reasoning network for this special 
type or model of rainfall. 

(5) Another case of rainfall which has the same type or 
model rainfall mentioned in (2) is chosen to retrain 
the reasoning network for getting convergence 
weights for this special type or model of rainfall. 

(a) The weights of the 1/2 hour 
reasoning network derived previously 
will be used first. 

(b) The inputs of the reasoning network 
are the 7 factors based on the 
Scofield/Oliver Technique. 

(c) The output of the reasoning network 
is a function of previous output of 
the reasoning network and 
observational data for this case. 

(d) This reasoning networks then trained. 
the new convergence weights can be 
used as the new weights of 1/2 hour 
reasoning network for this special 
type or model of rainfall. 

(6) Repeat (5) until all the training samples are used 
for training this special type or model of rainfall 
reasoning network. The final trained result of the 
weights are the weights of 1/2 hour satellite-derived 
reasoning neural network for this special type or 
model of rainfall. 

(7) Using the 1/2 hour satellite-derived reasoning 
neural network for testing the estimation of rainfall. 

(a) A test case which has same type or 
model of rainfall has be chosen. 

(b) The 1/2 Hour Satellite-derived 
Reasoning Network is run using the 
weights from ( 6) to obtain the 
estimation result. 
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( c) If the testing result is not good, the 
error is more than 10%, go back to 
(5) and the testing case will become 
another training case. 

(d) If the testing result is good, error is 
less than or equal to 10%, go to (7) 
and test again. 

RESULTS OF ESTIMATION 

Experimental Results of the 1/2 Hour Mesoscale 
Convective Complex (MCC) reasoning Network 

The experiment results of a 1/2 hour the MCC type 
reasoning network for the estimation of rainfall can be 
seen in Table 1. In this case, on July 19, 1985, a MCC 
located in IOWA (IA), USA The observed rainfall was 
9.5 inches. 

The values of column S/O E are the results from the 
Xie/Scofield study (Xie and Scofield, 1988). The sum of 
the 1/2 hour estimates was 18.64 inches. The error (the 
difference between the observed data and the sum of the 
1/2 hour satellite estimates) was +96.2%. 

The values of column MCC E are the 1/2 hour estimates 
result from the 1/2 hour MCC reasoning network of the 
ANSER system. The sum of the 1/2 hour estimation data 
was 9.43 inches. The error is only -0.74%. In this case, 
after all information had been received, the satellite­
derived estimation of rainfall only required 2 seconds of 
HDS 9000 CPU time to execute. Therefore the weights of 
the 1/2 hour MCC Reasoning Network of ANSER are 
very good for this type of event. 

4.2 Experimental Results of the 1/2 Hour Multi­
Clustered Linear (MCL) reasoning Network 

The experiment results of a 1/2 hour the MCL type 
reasoning network for the estimation of rainfall can be 
seen in Table 2. In this case, on August 12, 1987, a MCL 
located in Kansas (KS), USA The observed rainfall was 
8.7 inches. 

The values of column S/O E are the results from the 
Xie/Scofield study (Xie and Scofield, 1988). The sum of 
the 1/2 hour estimates was 6.038 inches. The error (the 
difference between the observed data and the sum of the 
1/2 hour satellite estimates) was -30.6%. 

The values of column MCL E are the 1/2 hour estimates 
result from the 1/2 hour MCL reasoning network of the 
ANSER system. The sum of the 1/2 hour estimation data 
was 8.53 inches. The error is only + 1.92%. In this case, 
after all information had been received, the satellite­
derived estimation of rainfall only required 2 seconds of 
HDS 9000 CPU time to execute. Therefore the weights of 
the 1/2 hour MCL Reasoning Network of ANSER are 
very good for this type of event. 
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Table 1 
Testing Case Satellite Derived Precipitation Estimates 
No. 17 Data: July 19, 1985 Location: IA Types of MCS: MCC Observation: 9.5 Inch 

TIME cr CG DA G RB OS M SE MC S 

0230 - 0300 f. gray .33 - .66 0.75 1.6 1 

0300 - 0330 f.gray .33 - .66 0.75 1.6 1 

0330 - 0400 f. gray decrease 0.30 1.6 1 

0400 - 0430 f. gray < .33 0.55 0.30 1.6 1 

0430 - 0500 f. gray same 0.40 0.30 1.6 1 

0500 - 0530 f. gray decrease 0.30 0.50 1.6 1 

0530 - 0600 f. gray < .33 0.45 0.50 1.6 1 

0600 - 0630 f. gray < .33 0.45 0.50 1.6 1 

0630 - 0700· r. gray < .33 0.40 0.50 1.6 1 

0700 - 0730 r. gray < .33 0.50 0.50 1.6 1 

0730 - 0800 f. gray < .33 0.55 0.50 0.50 1.6 1 

0800 - 0830 r. gray < .33 0.55 0.50 1.6 1 

0830 -1000 r. gray decrease 0.3*3 1.6 1 

1000 - 1030 black decrease 0.20 1.6 1 

Total (Inch) 

Error (%) 

S/O E: Scofield I Oliver Technique Estimation; SIO NE: Scofield I Oliver Technique Network Estimation 
MCC E: 1/2 Hour Mesoscale Convective Comples Type Reasoning Neural Netwofk Estimation 

SlOE SlONE 

1.20 

1.20 

0.48 

1.36 

1.12 

1.28 

1.52 

1.52 

1.44 

1.60 

2.48 

1.68 

1.44 

0.32 

18.64 

+96.2 

MCCE 

0.756 

0.756 

0.424 

0.645 

0.528 

0.491 

0.601 

0.601 

0.562 

0.642 

1.090 

0.684 

1.272 

0.378 

9.43 

-0.74 
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Table 2 
Testing Case Satellite Derived Precipitation Estimates 
No. 13 Data: Aug 12, 1987 Location: KS Types of MCS: MeL Observation: 8.7 Inch 

TIME cr CG DA G RB OS M SE MC S 

0730 - 0800 1. gray < .33 0.15 1.1 0.5 

0800 - 0830 r. gray < .33 0.35 0.5 1.1 0.75 

0830 - 0900 r. gray < .33 0.35 1.1 0.75 

0900 - 0930 r. gray < .33 0.35 1.1 0.75 

0930 - 1000 white < .33 0.60 1.1 1 

1000 -1030 white < .33 0.60 1.1 1 

1030 - 1100 white < .33 0.60 0.3 1.1 1 

1100 - 1130 r.gray <.33 0.35 0.3 1.1 1 

1130 - 1200 r. gray same 0.35 0.5 1.1 1 

1200 - 1230 r. gray decrease 0.30 1.1 0.75 

1230 - 1300 r.gray decrease 0.30 1.1 0.75 

1300 -1330 black decrease 0.20 1.1 0.75 

1330 - 1400 1. gray decrease 0.10 1.1 0.50 

Total (Inch) 

Error (%) 

S/O E: Scofield I Oliver Technique Estimation; S/O NE: Scofield I Oliver Technique Network Estimation 
MeL E: 1/2 Hour Multi-Clustered Linear Type Reasoning Neural Network Estimation 

SlOE SlONE 

0.083 

0.701 

0.289 

0.289 

0.660 

0.660 

0.990 

0.715 

0.935 

0.248 

0.248 

0.165 

0.055 

6.038 

- 30.60 

MCLE 

0.148 

1.040 

0.382 

0.382 

0.905 

0.905 

1.410 

1.070 

1.290 

0.304 

0.304 

0.277 

0.116 

8.533 

- 1.92 



5. SUMMARY AND OUTLOOK 

The use of ANSER for rainfall estimates is an important 
tool for the enhancement of accuracy for automatic rainfall 
estimation from satellite data. In this paper, the main 
research efforts focused on the development of: 

(1) The architecture for the ANSER system for rainfall 
estimates; 

(2) The parallel and nonlinear reasoning networks for 
the estimation of rainfall; 

(3) A 1/2 hour training algorithm for the reasoning 
network to estimate rainfall; 

(4) Several experimental tests of rainfall estimation 
using the ANSER system. 

Because the ANSER is a massive parallel processing 
system, it makes estimating rainfall 10 times faster. In 
these cases, after all the information was received, the 
satellite-derived estimation of rainfall required about from 
2 to 10 seconds of HDS 9000 CPU time to execute. 

Because the ANSER is a nonlinear reasoning system, the 
average error of rainfall estimates is reduced to less than 
30%, the currently achievable accuracy. In this work, the 
average errors of the rainfall estimates were always less 
than 10.0%. 

Decision trees are series process techniques and run step 
by step and node by node. So decision tree techniques 
require more running time than that of parallel techniques. 
Decision trees are not able to use all rules models 
knowledge and factors that are stored in the' different 
nodes at the same time. This is especially true when the 
rules, models, knowledge and factors are very complicated 
and nonlinear. So decision tree techniques always give 
"rough" results. 

ANN techniques have demonstrated superior performance 
relative to classical methods for predicting the future 
behavior of a pseudo-random time series. There are many 
practical applications where, rainfall estimation and 
forecasting, can be of great value. Forecasting natural 
phenomena is a great area for using artificial neural 
network expert system techniques. 

This study only considered rainfall estimation using the 
ANSER technique for some special cases. Further studies 
will consider the satellite signatures that comprise the 
convective rainfall estimation algorithm using ANN 
techniques. 

ACKNOWLEDGEMENTS 

The authors thank Donald B. Miller, Frances Holt, Joanna 
L. Newby, Tim Bellerby of Satellite Application 
Laboratory of NESDISINOAA for their constructive 
criticism, Juying Xie for providing satellite-derived input 
data and Dick Pritchard of Planning Research Corporation 
for providing satellite pictures, Paige Bridges for 
propagation of the illustrations, and Lori Paschal for typing 
the manuscript. 

792 

REFERENCES 

Barrett, B.c., and D. W. Martin, 1981. The use of satellite 
data in rainfall monitoring. Academic Press, New York, pp. 
0-340. 

Bullas, J., J.c. McLeod and B. de Lorenzis, 1990. 
Knowledge Augmented Severe Storms Predictor(KASSPr)­
An operational test. In: 16th Conference on Severe Local 
Storms, Boston, Amer. Meteor. Soc., pp.106-111. 

Carpenter, Gail A., and Stephen Grossberg, 1989. Search 
mechanisms for adaptive resonance theory (ART) 
architectures. In: Proceedings of International Joint 
Conference on Neural Networks, Washington D.C., Vol. 1, 
pp.201-205. 

Hopfield, J. J.,1982. Neural network and physical system 
with emergent collective computational abilities. In: 
Proceedings of National Academy of Sciences, USA, 
Vol.79, pp.2554-2558. 

Linsker, Ralph, 1988. Self organization in perceptual 
network. Computer, 21:105-117. 

Matsuoka, Tatsuo, Hiroshi Hamada, and Ryohei Nakatsu, 
1989. Syllable recognition using integrated neural networks. 
In: Proceedings of International Joint Conference on 
Neural Networks, Washington D.C. Vol.l, pp.251-258. 

Scofield, R.A, 1987. The NESDIS Operational Convective 
Precipitation Estimation Technique. Monthly Weather 
Review, 115(8):1773-1792. 

Weaver, J.F., and R.S. Phillips, 1987. Mesoscale 
Thunderstorm forecasting using RAOB data,surface 
mesonet observations, and an expert system shell. In: 
Symposium Mesoscale Analysis and Forecasting 
Incorporating "Nowcasting." Boston, Amer. Meteor. Soc., 
pp. 327-331. 

Woodley, W. L., 1972. Rainfall estimation from satellite 
cloud photographs. NOAA Tech. Memo. ERL OD-11, 43 
pp. 

Xie, Juying, and R. A Scofield, 1989. Satellite-derived 
rainfall estimates and propagation characteristics 
associated with Mesoscale Convective Systems(MCSs). 
NOAA Technical Memorandum NESDIS 25, 49 pp. 

Zhang, Ming, and R. A Scofield, 1992. Satellite-Derived 
Estimation of Rainfall in Forward-Backward Thunderstorm 
Propagation Model Using Neural Network Expert System 
Techniques. In: Proceedings of 1992 llCNN, Baltimore, 
MD, USA 

Zubrick, S.M., and C.E. Riese, 1985. An Expert System to 
aid in severe thunderstorm forecasting. In: 14th 
Conference on Severe Local Storms, Boston, Amer. 
Meteor. Soc., pp. 117-122. 


