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Abstract 

Mapping, cartography, photointerpretation and guidance are some applications that can directly 
and readily benefit from automated aerial scene analysis. We have successfully used perceptual 
organization ideas to analyze aerial scenes and to describe cultural features of interest, such as 
buildings. Perceptual organization refers to the ability of a visual system to quickly capture repre­
sentations of structure and similarity among otherwise random elements, features, and patterns in 
the visual field. We describe some of the systems we have developed and applied to aerial images 
and present several examples. We also give a brief description of our current work, in particular 
the development of the concept of a grouping field to represent salinecy and help define the compu­
tational aspects of grouping operations. This paper is based on the work of many different people 
in our research group with more details of each part found in the referenced papers. 

KEY WORDS: Automatic Mapping and Photointerpretation, Aerial Image Understanding, 
Perceptual Grouping, Computer Vision. 

1 Introduction 
Perceptual organization refers to the ability of a visual system 
to quickly capture visual representations of structure and simi­
larity among otherwise random elements, features, and patterns. 
These representations are the result of grouping operations that 
give the system or individual a sense of the objects in the visual 
field. There has been a great deal of interest and research on 
the phenomena of perceptual organization. Originally, percep­
tual grouping was studied by Gestalt psychologists in the 1920s 
and 30s. Unfortunately, while they provided many useful insights 
into the problem and many compelling demonstrations, they did 
not provide a computational theory. 

Much of the work on a computational theory in the image 
understanding domain has focused on grouping of dots and lines 
[5, 14, 32, 37, 39, 59, 61, 63, 44]. Perceptual organization ideas 
are difficult to formalize and several authors including many in 
our group at USC, are working on the computational aspects 
of perceptual groupings. Informal derivations are hard to imple­
ment in computer vision systems due to the difficulty in detecting 
grouping relationships, due to our lack of understanding of suit­
able representations, and the processes that can make use of the 
established relationships in higher levels of perception [44]. 

One of the poineering efforts on grouping features in real 
scenes was done in our group [44,46, 47J. This system has been 
applied to building detection as well as object level segmentation 
from monocular images of complex indoor scenes. We do not 
claim that this is a computational theory for perceptual group­
ing and are not aware of such theory in the literature. However 
we can claim that the use of perceptual organization principles 
is perhaps almost a must for aerial image analysis, and in partic­
ular, in the detection and description of cultural features. There 
are two main reasons for this. First, perceptual organization 
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makes explicit the geometric relationships among perceived fea­
tures (abstract internal representations of actual features in the 
visual field). Second, it provides focus of attention, that is, a 
collection of techniques designed to draw attention to significant 
structures in the image. Note that these two major visual abili­
ties are applied recursively at all levels of perception. We should 
also point out that at the lower levels of vision we prefer to think 
of groupings for non-purposive perception (geometric structure 
without functional attributes) while at the higher levels we like 
to think of groupings for purposive perception (geometric struc­
ture with functional attributes). 

In this paper we discuss our more recent work on 2-D and 
3-D analysis of aerial images of real scenes. The 2-D work deals 
mostly with shape issues and is applied to monocular images, 
and the 3-D analysis deals with objects descriptions in 3-D using 
either shadows of stereo to obtain 3-D information. Our relevant 
past work, which applies mostly to the detection and description 
of cultural features is given in [26,27, 30,47,44]. 

In the following sections we first give an informal discus­
sion on perceptual organization and describe related work by our 
group and by other researchers. Next we describe our systems, 
and last we give a brief description of our current work. The 
reader is referred to the surveys of Lowe [37] and Palmer [52J for 
further references on perceptual organization, and to the various 
references describing our work. 

2 Perceptual Organization Issues 
Our aerial image understanding work has concentrated on the 
analysis of cultural features. These features represent structures 
that are not random but have specific geometric properties. On 
sunny days and under favorable imaging conditions 3-D struc­
tures cast shadows and exhibit other features that allow inference 
of the 3-D structure from 2-D images. We have used techniques 
of perceptual g'rouping, shadow analysis and shape from contour 
for utilizing these observations. In this section we discuss some 
of the relevant issues of perceptual grouping. Shadow analysis is 
briefly discussed later in connection with our early system to de­
tect building in monocular images. Shape from contour is beyond 
the scope of this paper. 



2.1 Perceptual Grouping 
Humans, when presented with a set of simple features such as 
dots or lines, are able to group them into meaningful structures 
immediately. This process is usually referred to as perceptual 
grouping, and we argue that it is of crucial importance in the 
process of aerial image analysis. This is due to the large amount 
of detail in the images and the complexity of the structures in 
them. Perceptual grouping allows us to separate the meaningful 
features from the others. 

In general terms we can think of the problem of perceptual 
grouping as consisting of three related subproblems. The first is 
to determine how to represent the visual features. The second 
is to determine what kinds of grouping operations to apply to 
obtain meaningful groups. The third is that there are many 
possible groupings and we must be able to choose among them. 

The human process of perceptual grouping is not fully under­
stood but the grouping criteria are believed to include proximity, 
collinearity and symmetry of the features and formation of closed 
figures. We believe these criteria to be helpful for machine pro­
cessing of aerial scenes. However, in this task we are further 
aided by the knowledge of the kinds of structures we are inter­
ested in. For example, for elongated features such as runways, we 
expect to find anti-parallel pairs of lines (itself a simple symmet­
ric grouping); for buildings we expect to find regular geometric 
structures. 

Points and curves are useful representations. Points denote 
position but can have other attributes such as size that denotes 
extent of the feature. Straight curves (Le. line segments) denote 
visual boundaries as well as directionality. They can also denote 
symmetries. 

For selection among various possible groupings, we can use 
multiple criteria. For example, if a curve forms symmetric pairs 
with two other curves, we can choose the one that gives a more 
closed or compact figure. Essentially, we can allow the groupings 
to compete and cooperate depending on whether they are mutu­
ally exclusive or supportive. As we will see below, we have used 
such a scheme in the past to successfully detect groups of line 
segments that might correspond to roofs of buildings in aerial 
images [47] and to segment scenes of complex man-made objects 
without specific knowledge of the objects in the scene [44]. 

Another example of perceptual grouping is in detecting roads, 
runways and taxiways in aerial images. Here, the process of 
grouping starts with finding anti-parallel pairs of lines and group­
ing the pairs that are collinear. Only those groups that are long 
and meet the other criteria are preserved. (For runways, the 
test is to look for specific surface markings). Our previous ex­
perience with perceptual groupings is described more fully in 
[26,27,30,44,47]. 

Most work in the IU community on object recognition uses 
a "model-based" approach. We believe that much of this work 
really should be viewed as solving the pose estimation problem 
rather than the object recognition problem. One deficiency of 
the methods is that they require very specific shape models. For 
example, it is not sufficient to say that the building is a rectan­
gular parallelepiped; we must also supply the relative dimensions 
of the sides. 

ACRONYM, a model-based system developed in the early 
1980s, attempted to use more generic models of objects such as 
airplanes [6, 7]. However, the descriptive abilities of this system 
were highly limited and the recognition process consisted mostly 
of checking whether certain kinds of "ribbons" were present in 
the image. At USC, we have an on-going effort in description of 
complex shapes modeled as "Generalized Cylinders" f9]. Similar 
research, though using a somewhat different approach, is being 
conducted at Stanford University [57, 56]. 

2.2 Our Approach to Perceptual Grouping 
We believe that the grouping operations that yield organized per­
ception consist mainly of symbolic evaluation of the properties 
of the features that are candidates for grouping. By features we 
mean representations of visual elements; by grouped features or 
feature groupings we mean geometrically and structurally signif­
icant groupings along a hierarchy of recursively formed groups, 
from points to complex objects. By object detection we mean 
two things: the description of the shape of the objects and the 
description of their structure. The shape descriptions should be 
at various scales using features that are invariant to changes in 
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the viewpoint. 
In the following sections we summarize our approach to defin­

ing and constructing meaningful feature groupings. For addi­
tional details see [44]. 

2.2.1 Similarity Issues 
It appears that humans prefer to group elements that have similar 
characteristics such as shape, intensity and color [52,60]. We do 
not explicitly use color or intensity but, as mentioned above, we 
use two primitives, points and curves, to represent position and 
shape, and thus the si~ilarity is among these simple features. 

2.2.2 Structure and Scale Issues 
The relationships among the points and lines convey structure 
and are thus a criteria for grouping. Given the importance of 
structural information in visual processing [61], this has been 
the most studied component of perceptual organization in com­
puter vision and psychology [37,39,46,47,52,54,59,63]. Some 
grouping processes use only structural relationships, and oth­
ers are hierarchical. We can separate the elements into distinct 
groupings even though they do not correspond to any objects we 
recognize. 

Structural groupings can be further subdivided on the basis of 
scale. At small scales the structural relationships form locally, at 
the level of subparts or parts of objects such as in regular textures 
(see [63]). Although the structural grouping process outlined in 
[44] can detect such groupings as well, in the work described here 
we concentrate on groupings at the scale of the objects in a scene 
such as buildings and runways. 

2.3 What to Group? 
The Gestalt psychologists believed in the principle of Pdignanz 
(goodness or simplicity of form) as a fundamental criterion to 
group elements. Recent work has tried to develop computational 
criteria leading to explanations that are primarily geometrical, 
for example in terms of transformational invariances [52], or prob­
ability [37, 61], or in terms of mechanisms such as orientation 
selection [63]. For groupings at the level of objects we have pre­
ferred a more functional explanation based on the significance 
(identification of structures in a image that have high likelihood 
of corresponding to object structures, i.e. focus of attention), rep­
resentation (usefulness to other visual processes) of grouped fea­
tures, and selection among multiple groupings (greater saliency). 

2.3.1 Significance Issues 
Our interest has been in non-natural objects, most of which ex­
hibit a great deal of geometric regularity. The principle of non­
accidentalness [37, 61] states that "regular geometric relation­
ships are so unlikely to arise by accident that when detected, 
they almost certainly reflect some underlying causal relation­
ship." The probability of two lines, which are not parallel in 
3-D, projecting in the image as parallel lines in 2-D (due to an 
accidental alignment), can be considered so small that we can 
with high confidence claim that parallel lines detected in 2-D are 
also parallel lines in 3-D. 

We have designed our systems to favor and be sensitive to the 
shapes and structure of the objects they were designed to detect. 
We detect viewpoint-invariant structural relationships that are 
common in the objects of interest and use the non-accidentalness 
principle to reason that the detected groups were caused by the 
structure of the objects in the scene. We choose groups that 
identify structural arrangements of visual elements that have a 
high probability of corresponding to object of interest. 

2.3.2 Representation Issues 
Grouped elements must encode the geometric and structural cri­
teria that led to its formation. They basically represent higher 
levels of abstraction but must allow recursive recovery down to 
the primitive image elements. The chosen representations for 
groups should clearly allow the system to perform segmentation, 
description, focus of attention and integration of evidence at all 
levels. 

II Segmentation: Relationships among substructures may also 
exist among structures and superstructures. 

II Description: Most object shapes are described in terms of 
component shapes. The hierarchical decompositions should 
be easily identified. 

II Focus of Attention: By encoding appropriate and relevant 



grouping information, the groups should provide guidance 
and contextual cues. 

e Integration: As much as possible groups represent relation­
ships that are invariant to viewpoint, and thus can be used 
to integrate infOTmation from multiple views, site models, 
multiple sensors and multiple media .. In correspondence pro­
cesses such as stereo, motion, and model matching, improved 
performance has been obtained by using more abstract fea­
tures [43,45,36, 18]. This also results in a significant reduc­
tion in the computational expense of matching. Perceptual 
groups are more complex than edges, thus there is much less 
ambiguity in matching higher level features, as we show in 
examples later. 

2.3.3 Selection Issues 
The inherent complexity of aerial scenes in terms of detail and 
in terms of the possible combinations leads to a large number 
of possible groupings. In practical terms a computer vision sys­
tem must include a set of parameters that keep the data bases 
within a reasonable size. On the other hand there is the issue of 
fragmented and incomplete low level information due to image 
content, quality, resolution, etc. 

The systems described by Huertas et al. [26, 27, 30] deal 
with fragmented information and generate minimal groupings at 
the expense of generality. In the systems described by Mohan 
and Nevatia [44, 46, 47], all reasonable groups are formed to deal 
with fragmentation and incompleteness at the expense of requir­
ing a selection mechanism. They decided on the "goodness" of a 
group on the basis of how it compares to its alternatives in terms 
of the support it has from related groups at other levels, and the 
support or contradiction from its component primitive features 
and other related image features. Furthermore a given group 
representing a level of abstraction is supported not only by its 
component subgroups but by the supergroups it is a component 
of. In general terms, groups which are linked by part-of relation­
ships are mutually supportive and those that share component 
subgroups are mutually competitive. 

The problem of selecting the best set of groups in [30, 27] 
is formulated as that of selecting those hypotheses that could 
be verified as a representation of an object of interest: match­
ing shadows for buildings and surface markings for runways. In 
[44] the problem is formulated as that of selecting the best set 
of hypotheses, given relationships of support and conflict among 
them. To choose the best consistent set of hypothesis that maxi­
mize evidence, we wish to assign confidence values to hypotheses 
such that the cumulative value of the support, the conflict and 
the contribution of all the underlying evidence is maximized. Our 
goal is to find the optimal feature groupings consistent with the 
known optical and geometrical constraints [4, 11]. Note that all 
the constraints must be simultaneously satisfied to reach global 
consistency across all levels of the hierarchy. 

One parallel technique to solve this problem is relaxation 
where a cost function associated with the network is minimized. 
We wish to select the best consistentfeature groupings, and reject 
the bad groupings. If we formulate the cost function such that the 
optimal solution corresponds to its global minima, then the prob­
lem of locating the best groupings is reduced to optimizing the 
cost of the network given the constraints between the grouped 
features and the observed image characteristics. Parallel opti­
mization techniques such as simulated annealing [33], Hopfield 
networks [24], Boltzman machines [11, 12, 55], probabilistic solu­
tions [19] and connectionist methods [13, 55], have been proposed 
for such problems. In our system [441 the Hopfield formulation 
was used to implement the constraint satisfaction network. 

2.4 Related Work on Perceptual Grouping 
Mohan [44] provides a discussion on the relationships and differ­
ences between our approach to perceptual grouping and that of 
others. Here we paraphrase some of his discussion. 

2.4.1 In Psychology 
Lowe [37] presents an excellent survey of the work, both in psy­
chology and computer vision, on perceptual organization tech­
niques. Palmer [52] also provides a detailed survey of work in 
psychology pertaining to perceptual organization. 

To characterize human preference for some shapes and ar­
rangements over others the Gestalt psychologists believed in the 
principle of "simplicity of form." However, they did not formalize 
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this notion in computational terms. The notion of "goodness" or 
simplicity was later quantified by other in terms of information 
theory and coding theory (the simplest form was one encoded in 
the minimum number of bits) [1,23,35]. 

Garner and Clement [16, 17] explained observed goodness 
ratings for simple geometric patterns in terms of their invari­
ance to certain transformations. Palmer [52] develops on their 
work. We follow Palmer's theory, namely that perceptual orga­
nization detects those geometrical relationships that are invariant 
to viewpoint-transformations. 

2.4.2 In Computer Vision 
Marr [40] viewed perceptual organization as grouping processes 
that operate on the "raw primal sketch" (primitive descriptions of 
the image) to build up descriptive primitives. FurthermOTe, these 
descriptors are built in a recursive manner with, at each higher 
level, the primitives referring to increasingly abstract properties 
of the image. In these two basic points, that perceptual OTganiza­
tion is a process to generate descriptors, and that the descriptive 
hierarchy so formed is recursively generated to describe more and 
more abstract properties of the image, Mohan's thesis and Marr's 
are the same. However, there are substantial differences on al­
most all other points: differences in scope and implementation, 
in the choice of relations captured by the grouping, and in the 
causes behind these choices. 

A paper by Witkin and Tenenbaum [61] on the role of struc­
ture in vision includes three broad observations that we believe 
are relevant to the subject of this paper: 

.. Inadequacy of local and intensity based techniques, 

.. The concept of non-accidentalness, and 

.. The use of perceptual groupings as intermediate descriptors, 
and we will discuss them in that order. 

They note that one major trend in computer vision focused 
on recovery oflocal quantitative surface properties, such as depth 
and orientation, and point out that such techniques do not per­
form well. They attribute the poor performance of these tech­
niques to the local, quantitative approach. Further, they present 
various examples where we are easily able to detect structure in 
images, and where the simple models used by these local tech­
niques break down: in complex images where the reflectance 
functions of the surfaces change rapidly and for which we do 
not know the camera parameters or the source of light, in images 
where intensity encodes some. other imaging characteristic such 
as in range images or electron micrographs, in drawings where 
intensity information is missing, and even in images constructed 
such that intensity patterns contradict the structure. Even if ar­
rays of surface properties are recoverable in a reliable manner, 
they note that using them is not a straightforward task. These 
observations suggest that alternative, qualitative, modes of ob­
taining (and representing) structural information, rather than 
the quantitative ones, should be explored. 

Witkin and Tenenbaum state the non-accidental criteria as: 
" ... regular relationships are so unlikely to arise by chance that, 
when such relationships can be consistently postulated, they al­
most certainly reflect some underlying causal relationship and 
therefore should be postulated. We conjecture that as a least­
distortion solution approaches strict identity, the likelihood that 
the relationship is non-accidental increases. The minimization of 
change is therefore a primary basis for discovering causal rela­
tionships at a primitive level." They note a number of specific 
regular relationships, but they provide neither a specific mecha­
nism to detect such relationships nor do they attempt to identify 
structural relationships significant for particular visual tasks or 
domains. In our formulation of perceptual organization, we aug­
ment this non-accidentalness criteria with the conditions that 
the structural relationships considered should be related to the 
geometric properties of the objects in the visual domain, and 
that they should be invariant over the set of relevant viewpoints. 
These conditions not only help us decide on the specific struc­
tural relationships to choose for a visual domain (especially when 
taken in conjunction with the condition of utility, Le. they should 
also be useful for other visual process), but also give weight to ar­
guments of causality as we can say that the relationships are not 
only unlikely to arise by accident but also correspond to objects 
since they are obtained from object geometries. 

The way Mohan's select the significant groupings differs from 
that proposed by Witkin and Tenenbaum. They suggest using 



some measure of distortion along least-variational principles (no 
specific examples are provided) and suggest assigning significance 
to a grouping based on prior probabilities of observing a relation­
ship with the given distortion. However, they accept that there is 
no suitable way of calculating these probabilities for real images. 
Mohan's selection process is also based on a specific measure for 
each grouping (the measure can be interpreted as a quantifica­
tion of distortion) but the selection process is based on com­
parison to alternates, and relationships to supporting groupings, 
rather than a direct assignment of probabilities (followed possi­
bly by some threshold on the probabilities). It seems Witkin and 
Tenenbaum do not consider that there could be various alternate 
groupings for the same features. On the other hand, in our ex­
perience with real images, one basic problem is the multiplicity 
of possible groupings, which we have to restrict to manageable 
numbers by use of both heuristics and selection techniques. 

While Witkin and Tenenbaum do not state explicitly that 
the primary task of perceptual organization is to generate an 
abstract feature hierarchy, it is clear that they view groupings 
as descriptors: edges, coherent regions, groupings, flow patterns, 
parallelism, symmetry etc. These entities, that they call "seman­
tic precursors," are "decomposition of the image into discrete 
chunks each of which reflects some underlying cause or process, 
and therefore must be explained." However, they do not provide 
either specific description hierarchies or "explanation" mecha­
nisms for any of their proposed structures. In Mohan's work 
he has provided specific structures for use as descriptors, and 
by casting them as features, has shown how they are used in 
visual processes such as object segmentation, shape description 
and matching. 

2.4.3 Applications 
U sing the "viewpoint invariance" criterion, which states that in 
general we can assume that the camera viewpoint is independent 
of the object arrangement, Lowe and Binford infer various 3-D re­
lationships given certain 2-D relationships in the image. This 3-D 
from 2- D inference is implemented to detect height (of airplanes) 
by connecting surface boundaries to their shadows [37, 39]. In 
more recent work, Lowe has extended the proposal of Witkin and 
Tenenbaum by computing prior probabilities of accidental and 
non-accidental instances of certain relations (collinearity, proxim­
ity of end-points, and parallelism) and using this to constrain the 
search in model matching. The prior probabilities are computed 
assuming a random distribution of straight lines in the scene. 
The groupings are used primarily to reduce both the number of 
features for matching and the possible transformations (camera 
viewpoint and object orientation) suggested by the match. 

We believe there are serious shortcomings with the approach 
of computing prior-probabilities for assigning significance to group­
ings. In the scenes used by Lowe in his matching system [37, 38], 
there is either one object in unknown orientation, or a jumbled 
group of identical objects all composed of straight boundaries. 
For these scenes, there may be some basis in assuming the image 
model to be a random collection of straight lines. We agree with 
Witkin and Tenenbaum that there is no suitable way of assigning 
prior probabilities to groupings in general for real scenes. For ex­
ample, in scenes of curved objects, the symmetry relation is not 
as specific as that of parallelism, and it would be difficult to com­
pute prior probabilities of all possible curve relationships which 
can be labelled as symmetries for all possible types of curves. 

There is another potential problem with computing prior prob­
abilities for real scenes. In cases, such as urban areas, inside of­
fice buildings, in factories etc., the scenes consist of an organized 
layout of objects, and the assumption that the objects are ran­
domly oriented breaks down. For the domain of aerial images of 
buildings in urban areas, the assumption of random placement 
is violated in a domain for which we have made successful use of 
perceptual organization. In fact, as we show later in this section, 
perceptual organization has been used to exploit this very fact of 
organized layout of objects in a scene [53, 54J. We believe that 
the approach used in our work, on basing the significance of a 
grouping on its comparison to its alternates and its relationships 
with related groupings in the hierarchy (by part-of relationships), 
is a more reasonable solution. 

Lowe (and others [31] who have employed grouping to con­
strain matching) do not use the groupings to generate a complete 
description framework for the objects in the scene, and thus have 
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not suggested their use to either segment objects or to describe 
them. Lowe proposes that segmentation is one important task 
of perceptual organization but proposes no mechanism for it. He 
states that "A major reason why perceptual organization has 
not been a focus of computer vision research is probably because 
these groupings often do not lead immediately to a single phys­
ical interpretation." In our work we have found that perceptual 
organization gives us useful high level features. Even if we ob­
tain multiple groupings, or even some wrong groupings, from the 
grouping process (in contrast to unique features as in edges or 
regions) it is still simple to perform correspondence and segmen­
tation with the groupings computed in 2-D, or with additional 
information from stereo, to obtain unambiguous segmentation at 
object level. 

2.4.4 Scene based organization 
In contrast to the work described above (and the work presented 
in this paper), some implementations have used structural rela­
tionships at the scene level rather than at the object level. 

Reynolds and Beveridge [54J have studied geometrical organi­
zations in aerial imagery. They detect groupings of parallel lines, 
and proximate orthogonal lines (among other relationships). A 
preponderance of such organization would indicate the presence 
of organization at the scene level. Thus they could potentially 
have been used to differentiate rural areas from urban areas. 
However, the groupings that they detect indicate organization 
at the scene level and do not correspond to individual objects, 
and therefore, these groupings are not useful for segmenting in­
dividual objects such as roads and buildings. 

Quan et al. [53J have successfully used scene level groupings 
to detect and estimate motion. They have chosen the domain of a 
robot moving in a well organized environment (inside a buildings 
which has numerous aligned lines at wall boundaries, doors, win­
dows and cabinets). The match between global organizations in 
different images from a motion sequence becomes a trivial task, 
and retrieving motion parameters from the match is robust due 
to the large number of individual features used in each grouping. 

3 Detection of Cultural Features in 
Aerial Images 

Perceptual grouping has been the basic approach for much of our 
work on detecting buildings and other structures in aerial images. 
While a wide variety of techniques have been applied towards this 
task, a systematic use of perceptual grouping has been lacking. 
Another observation is that while non-natural objects have rich 
geometric structure, little use of this structural information was 
made in the older systems. We grouped contours with some 
structural guidance such as oriented corners (L-junctions) and 
depth from shadows in [28, 29, 30J. We discuss this approach 
further in the next section. 

Fua and Hanson [15] segment the scene into regions, find 
edges lying on region boundaries and then see if there is evidence 
of geometric structure among these edges to classify the region as 
a building or similar object. In the VISIONS system [21], region 
segmentation is the primary technique used and the regions are 
classified by their shape and spectral properties. SPAM [42] is 
a map based system which uses region segmentation of aerial 
imagery. 

Most of these systems work on simple scenes, for example ru­
ral scenes, where the building roof can be simply segmented (and 
even identified) from the background on spectral properties. The 
detected buildings have simple shapes. Only a few systems com­
pute and use depth information. None of the systems generate a 
description of the buildings at the level of shape descriptions of 
the different wings. 

For the systems mentioned above, the generic feature extrac­
tion techniques, namely region segmentation or contour follow­
ing, are not suited for extracting particular shapes or organi­
zations. If the features being detected have simple geometric 
properties, it is more straightforward to use specific detection 
algorithms. The Hough transform [2, 3] is a general mecha­
nism for detecting groupings, but is practical only if the ex­
act shapes (rather than generic descriptions) are known. The 
MOSAIC system [22] uses oriented junctions to complete frag­
mented lines. This system also uses height information obtained 



from stereo and sophisticated geometrical reasoning to hypoth­
esize likely wire frame models of the buildings. The complexity 
of this system, and its limited performance, are due to the use 
of simple features (lines and junctions) to perform the detection, 
stereo matching and reasoning. Recently, application of percep­
tual grouping to locate features indicating structure has been 
explored by Reynolds and Beveridge [54J. This systems also em­
ploys specific routines to detect various geometric organizations 
indicati ve of structure. However, this system has limited use as 
the groupings are sensitive to the layout of the scene rather than 
the object shapes, and consequently can not be used to either 
detect or describe any individual structures (like buildings) in 
the scene. 

4 Monocular Techniques 
Photointerpretation tasks require the detecti~n of a particular set 
of objects in an aerial scene. Some examples are, the detection 
of structures, such as buildings [15, 22, 30, 41], roadways and 
storage tanks [25, 34]' runways [26, 27J and airplanes [7, 58] in 
images of airports, and docks and ships [49J. In these scenes, 
many of the objects have restricted shapes, the viewpoint is often 
restricted, and many of the object shapes can be characterized 
as compositions of small sets of basic shapes. 

Given this set of basic shapes, we can deduce the pertinent 
structural relationships for the domain by decomposing the basic 
shapes into the component structural relationships. As an im­
age is a 2-D projection of a 3-D scene, we need to select those 
structural relationships (to characterize the shapes) that project 
invariantly over various viewpoints. If for a domain, the set of 
viewpoints is restricted, as is the case for most aerial images, we 
need to consider transformation invariance only for the restricted 
set of viewpoints. 

This set of shapes is not specific in the sense of having a 
particular model for each object (e.g. the model of a Boeing-
747 [6]), rather the object shapes are arbitrary compositions of 
known, specific, basic shapes. The methodology presented in 
Mohan's system [44J can, by simple extensions or modifications, 
be applied to any domain where the se.t of specific shapes consists 

of basic shapes. Apart from changes specific to the selected basic 
shapes, no changes to the methodology itself should be required 
to deal with other specific shapes. 

Thus given a set of specific shapes for objects in scenes, our 
system allows us to design a feature hierarchy which encodes 
the structural relationships specific to this set. In [44, 47] we 
have considered the case of object shapes composed of rectangles. 
Lines, parallels, U-contours, and rectangles are identified as the 
pertinent structures these shapes can be decomposed into. 

4.1 Detection of Buildings 
Our first attempt to group visual features at the level of buildings 
in aerial scenes is described in [29, 30]. In this system, L- and 
T-junctions formed by line segments that approximate the inten­
sity edges in the scene provide the focus of attention; they are 
the starting point for a process that follows and groups the ob­
ject boundaries according to simple geometric constraints. These 
constraints limit the extracted shapes to rectangles and compo­
sitions of rectangles. 

The process is aided by initial interpretations given to the 
L-junctions as possible object and matching shadow corners. As 
many object boundaries are expected to be fragmented and dis­
torted, nearby partial boundaries are grouped if they have certain 
geometric configurations and poses with respect to each other. 

The shadows cast are the cue to 3-D objects (as opposed to 
parking lots, swimming pools, and other rectangular structures) 
and help in estimating the height of buildings. Figure 1a and 1b 
show an image (from LA International Airport) containing sim­
ple rectangular buildings and the line segments extracted from 
it using our LINEAR feature extraction software [48]. The fo­
cus of attention is provided by the line segments forming near 
90° L-junctions and T-junctions shown in figure 1c. We make an 
explicit record of these, and call them "corners". In figures 1d 
we show the segments grouped into "rectangles", including the 
missing and hypothesized sides. In figure Ie we show a 3-D ren­
dered representation of the scene including those rectangles for 
which corroborating shadow information was found. The model 
of the scene is generated from an arbitrary viewpoint. 

A more general illustration of the use of perceptual orga-

(a) LAX intensity image (b) Line segments ( c) Focus of attention 

( d) Rectangles detected ( e) 3D model of scene 

Figure 1: Building detection by boundary grouping and shadow processing 
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nization for the detection of specific shapes is the task of de­
tecting and describing more complex buildings in aerial images. 
Our method initially detects all reasonable feature groupings. A 
constraz'nt satisfaction network (CSN) is then used to model the 
complex interactions between the grouped features and select the 
promising ones. 

The buildings are modeled as compositions of rectangular 
blocks. The roofs of the buildings are thus objects whose shapes 
are compositions of rectangles. For many overhead viewpoints, 
the imaging plane is parallel to the ground plane and the roofs. 
Thus, this real world domain meets both the requirement that 
the object shapes are composed of rectangles, and the viewpoint 
is restricted. We believe that our system has allowed us to obtain 
better results on more complex scenes than the previous systems 
that employed intensity based features. 

We will illustrate the task of detecting and describing com­
plex buildings in natural scenes by an example. Figure 2a shows 
the left view in a stereo pair of images of a building in a sub­
urban environment. The building is easy for humans to see and 
describe, even without stereo, but it is difficult for computer vi­
sion systems. Figure 2b shows the line segments detected in the 
image using LINEAR, the "Nevatia-Babu line finder" [48]. We 
are still able to see the roof structures of the. buildings readily 
and easily, but the complexity of the task now becomes more 
apparent. The building boundary is fragmented, there are many 
gaps and missing segments. There are also many extraneous 
boundaries caused by other structures in the scene. While local 
techniques, such as "contour-following" have proved useful for 
simpler instances of such tasks [30], they are likely to fail for the 
scene of the complexity shown here. 

This task is difficult for several reasons. The contrast between 
the roof of a building and surrounding structures such as curbs, 
parking lots, and walkways can be low. The contrast between the 
roofs of various wings, typically made of the same material, may 
be even lower. Low contrast alone is likely to cause low-level seg­
mentation to be fragmented. In addition, small structures on the 
roof and objects, such as cars and trees, adjacent to the building 
will cause further fragmentation and give rise to "extraneous" 
boundaries. Roofs may also have markings on them caused by 

dirt or variations in material. Shadows and other surface mark­
ings on the roof cause $i~ilar problems. 

There are other characteristics of these images which may 
specifically cause problems for contour following type systems 
[28, 29, 30]. Roofs have raised borders which sometimes cast 
shadows on the roof. This results in multiple close parallel edges 
along the roof boundaries and often these edges are brQ~en and 
disjoint. At roof corners and at junctions of two roofs, multiple 
lines meet leading to a number of corners making it difficult to 
choose a corner for tracking. A roof cast a shadow along its side 
and often there are objects on the ground such as grass, trees, 
trucks, pavement, etc., which lead to changes in the contrast 
along the roof sides. Thus while tracking one can face reversal 
in edge direction. Often some structures both on the roof and 
on the ground are so near the ro,of that the border edges get 
merged with the edges of these objects, leading contour trackers 
off the roof onto the ground or inside the roof area. At junctions 
it is difficult to decide which path to take. Searching all paths 
at junctions leads to a combinatorial explosion of paths. It may 
be difficult to decide on the correct contours since contours may 
not close because of missing edge information, or more than one 
closed contour may be generated. Contours may merge roofs or 
roofs and parts of the ground. Figure 2b illustrates some of these 
problems. Figure 2c shows the lines obtained from grouping the 
segments in figure 2b. 

Structures in urban scenes like building, roads and parking 
lots are often organized in regular grid-like patterns. These struc­
tures are all composed of parallel sides. As a consequence, for 
each significant line-structure detected in the scene, there is not 
one but many lines parallel to it. For each line, we find lines 
that are parallel and satisfy a number of reasonable constraints. 
These are shown in figure 2d. Figure 2e shows the U-contours 
and the rectangles formed from the U-contoUl's in this image. 

We use a constraint satisfaction network (CSN) to select the 
few best lines, parallels, U -structures, and rectangles. To in­
sure the selection of perceptually significant feature groupings in 
the scene" the choice of network weights reflects the perceptual 
importance placed on the optical and geometric constraints be­
tween the various grouped features. The perceptual significance 

(a) Left view image (b) line segments ( c) Linear structures and junctions 

(d) Parallel relationships (e) Rectangular structures (f) Rectangles selected by CSN 

Figure 2: Rectangle detection by perceptual grouping 
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of a grouped feature lies in its indication of actual object struc­
ture in the scene. For example, while any grouping of parallel 
lines [54] is indicative of some order in the scene, we are more 
interested in parallels that actually correspond to individual ob­
jects. Therefore, the parallels that have supporting structural 
evidence such as rectangles are more significant than those that 
do not. 

While feature groupings at all levels of complexity get se­
lected simultaneously, only the rectangles so selected have been 
displayed in figure 2f. In our implementation, the weights on the 
links are not symmetric, so the convergence results for Hopfield 
networks can not be used. However there is support for that 
assumption that the networks can converge with non-symmetric 
weights [8]. We have found that our networks to converge on all 
selection of weights within ten iterations. 

4.2 Airport Analysis 
We have pursued the detection of runways, taxiways, the con­
nections among them and aircraft in airports scenes [26, 27] as 
part of our project to automatically map complex cultural ar­
eas. Our long-term goal has been to map all of the interesting 
objects in the scene and also to devise integrated descriptions 
that include the functional relationships of the objects in the 
scene. Runways are complex objects, containing visible signs 
of heavy use, such as tire tread marks, oil spots, and exhaust 
fume smears. Runways may be extended or patched using differ­
ent materials. Runways have a variety of markings (centerlines, 
sidestripes, threshold markings, distance markings, touchdown 
marks, etc.) that identify them as such. 

Our system first extracts line segments (linear approximation 
oflinked intensity edges). Airport runways are linear features and 
thus, well characterized by anti-parallel (apars) pairs of segments 
(having opposing contrast). For an image of a portion of Boston 
Logan Airport, the line segments and the apars are shown in 
figures 3a, 3b and 3c. The apars are shown as a line denoting 
the overlap and the axis of symmetry of the two parallel line 
segments. 

The apars represent low level groupings on parallelism, where 
the distance between the parallels is a function of the image res­
olution. All such parallel relationships are computed. The focus 
of attention is provided by the dominant orientation of the apars 

(a) LOGAN airport intensity image 

(e) Grouped features 

and by the apars that contribute to it. The focus of attention 
mechanism results in over 95% reduction in the search space, 
and leads to the extraction of the apars representing potential 
runway fragments (shown as rectangles in figure 3d). Next we 
proceed to apply continuity and collinearity grouping operations 
that yield runway hypotheses (figure 3e). Hypotheses are verified 
by detecting evidence of the markings that we expect runways to 
have (figure 3f). 

A second example is shown in figure 4. The image in fig­
ure 4a shows that the runways not necessarily appear as uniform 
intensity elongated linear structures. Region based approaches 
may have difficulty in these cases. The perception of linearity 
however is strong in spite of the irregular shapes of the repair 
work patches. Runways are extended using different material as 
the original, they intersect, have different widths, and so on. The 
line segments extracted from the image are shown in figure 4b. 
As with the logan example above, and using the same parameters 
throughout, the dominant orientation of the apars is computed 
(the peaks in the length weighted histogram of the apar orien­
tations) and used to extract potential runway fragments. These 
are represented by apars having the dominant orientation and a 
width consistent with runway design parameters). 

The detection of straight portions of taxiways and roadways 
can be carried out following a similar procedure. For a discus­
sion on taxiways and junctions see [26]. Basically taxiways are 
much more complex objects than runways, since they have a 
wider range of geometrical parameters. However, besides generic 
knowledge we make use of the context provided by the runways 
to help detect the taxiways. We verify taxiway hypotheses by 
looking for evidence of markings as well. 

4.3 Detection of Pier Areas 
We have developed a technique to detect the pier areas in harbor 
scenes as part of an effort to derive a taxonomy of perceptual 
grouping operations on primitive visual features like points, lines 
and junctions. This task is part of our current work to classify 
grouping operations, and to develop a representation that cap­
tures the saliency of a percept in terms of the attributes of a 
set of features that lead to perceptual grouping. We call this 
representation a grouping field and give examples later. 

(b) Line segments 

(d) Focus of attention 

I 
(f) Runways and markings 

Figure 3: Runway detection by collinearity grouping 
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( a) JFK airport intensity image (b) Line segments 

(c) Focus of attention (d) Runways and markings 

Figure 4: JFK Runways detected by collinearity grouping 

5 Stereo Techniques 
The key problem with general stereo systems is the ambiguity 
in matching necessitating a mechanism to choose among many 
competing matches for each match primitive. For our system 
we have found the constraints imposed by the structure of the 
grouped features (rectangles) sufficient to select unique matches 
for the primitives. In the rare case of a rectangle having more 
than one match, we choose the match with the least number 
of disparity differences between the sides, which is equivalent to 
preferring the least occluded interpretation. In the following we 
summarize from the work of Mohan and Nevatia. Full details 
can be found in [44, 47]. 
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The rectangles detected monocularly as described in the pre­
vious section are used in this system for stereo matching, object 
segmentation and shape description. Stereo matching is per­
formed on the rectangles to obtain height information. Struc­
tural reasoning is performed on the matched rectangles, based 
on monocular information and 3-D information obtained from 
stereo, to segment building roofs. The object segmentation au­
tomatically provides a shape description of the roof in terms of 
the component rectangles. The segmented roof area and their 
heights are used to generate 3-D models of the buildings. 



Matching rectangles results in less ambiguity than edges as 
there are fewer possible alternatives and more information to 
judge a match. Also there are usually many fewer grouped struc­
tures, at any given representation level than edges. The most 
probable role of grouped features, and one that we employ here, 
is that correspondence of grouped features provides a rough cor­
respondence for their component primitive features, which can 
then be matched with less ambiguity. In a similar vein, recent 
stereo systems have shown improved performance by using more 
structure than individual edges [10, 36, 43, 45, 51] 

For photointerpretation tasks, edge and segment based stereo 
matching algorithms displayed poor performances. The follow­
ing factors indicate why stereo systems based on simple image 
features may not perform well in this domain: 

III Organized nature of the scene. The are numerous par­
allel lines since the buildings, roads, parking lots, etc. are 
all parallel. This leads to the same type of problems as with 
monocular analysis. 

I» Absence of texture. The buildings sides mark regions 
with high disparity differences and there are insufficient mark­
ings on the roofs to support match-disparities at roof level 
while matches giving low disparities get favored due to the 
preponderance of features on the ground. 

The choice of rectangle as the match primitive restricts the 
possible matches. Like other stereo matching systems we allow 
only matches falling within a disparity range reasonable for the 
stereo\ pair. To avoid mistaking rectangles corresponding to ten­
nis courts, parking lots and the like, the legal disparity range 
should start just above ground level. The other end of the inter­
val should be high enough to encompass the tallest buildings in 
the scene. This estimate need not be exact, as wrong matches 
between rectangles usually result in disproportionate disparities. 
For our test cases we chose an ad hoc value which was more than 
twice the disparity of the tallest building in any of the test scenes. 

Stereo serves as an important visual clue in selecting those 
grouped features which have a very good chance of corresponding 
to actual object structures, in this case the roof~. Selection of 
the proper grouped features is crucial for this domain as many 
other objects in the scene such as road segments, parking lots 
and sidewalks have rectangular structures. Furthermore, these 
objects are arranged in a regular grid like manner, and some 
grouped features formed reflect the structure in the layout of the 
scene rather than that of specific objects. The rectangles selected 
by out system are shown in figure 5a and 5b. 

Although our system currently represents the state-of-the-art, 
the present version has the drawback of using stereo to select 
among the existing rectangles but of not using it to check for 
missed rectangles. Also there is a loss of accuracy in the deter­
mination of the disparities as a result of the robustness in the 
detection of the matched primitives. The rectangles are grouped 
features, and are thus primarily structural representations with 
low positional accuracy. The component lines of the rectangle 
only represent the structure among the underlying edges, not 
their exact positions. For obtaining accurate disparity, matching 
of more precisely located features, namely the edges, is required, 
using a system like the one described in [10]. 

Many steps can be taken however to improve the results. One 
way is to use more sensitive edge detectors on magnified portions 
of the image in small windows around the lines for precise detec­
tion and location of edges. We can also consider weaker edges 
near the noise level of the image, since we have an idea of the 
direction of the edges, their geometry (straight lines) and an ap­
proximate idea of their location. 

6 Shape Description and Object 
Extraction 

The detected groups usually correspond to parts of objects in the 
scene. We have to combine the grouped features into structures 
corresponding to the objects. The combination process automat­
ically generates a shape description of the object in terms of the 
primitive shapes of the combined groups. In the case of simple 
buildings [30], the description of the shape is given by the lines 
(segments) along the outline of the objects. Some of these may 
be hypothesized to give partial descriptions of objects. In addi­
tion, the estimated height is given, computed from the width of 
the shadow. For runways [27] we give a description of the posi­
tion, extent and orientation of the landing surface, together with 
a description of the evidence of markings. 

In a more general manner our system for complex buildings 
identifies strong rectangle groupings which meet the height re­
quirements of buildings in the scene. However, each rectangle 
grouping may not correspond to a separate roof since a roof shape 
could be a combination of rectangles. To extract an individual 
roof in the scene (object extraction), we consider possible com­
binations of the rectangles into structures which correspond to 
roofs. As the shape of a roof is described as a combination of 
rectangles, this process, in addition to segmentation also provides 
shape description. 

The combination of the rectangle groupings is guided by rea­
soning based on the available 2-D and 3-D information. The vi­
sual reasoning carried out currently is primarily monocular, aug­
mented by stereo as needed. The 2-D information is the geomet­
rical relationships between the rectangles and the actual edges 
in the rectangle groupings. The 3-D information is obtained by 
stereo. The combination process is rule-based; the set of rules 
governing the combination of the ~tangles (and the resultant 
structures) is defined on the 2-D and 3-D relationships among 
the rectangles. 

In contrast to previous uses of monocular analysis, we work 
with more organized structures than lines and junctions. Also T­
junctions, which are a key element in monocular analysis, can not 
be utilized for this application domain because of the presence 
offalse T-jullctions due to accidental alignments. The organized 
nature of the primitives used for processing brings more informa­
tion to the monocular analysis than is available with just edge 
and junction information. The structural relationships consid­
ered in Mohan's work [44J are those of subsumption or inclusion, 
merger-compatibility, occlusion and incompatibility. 

The geometrical relationships among the rectangles and their 
combinations form a graph which is a structural description of the 
objects in the scene in terms of the primitive rectangles. Struc-

( a) Left view (b) Right view ( c) 3D model of building 

Figure 5: Rectangles selected by stereo and model of building 
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tures in the graph which are not marked as subsumed, merged 
or incompatible are selected as the top level descriptions of the 
objects or object parts visible in the scene (the roofs in our exam­
ple). The final structures are assigned heights from the disparity 
information obtained by stereo. The buildings are modeled by 
drawing walls straight down from the sides of the roofs to the 
plane below, be it another roof or the ground. The resulting 
model is displayed in figure 5c. 

7 Integration of Information from 
Multiple Viewpoints 

In the scenes analyzed by the systems mentioned above, many 
of the objects have restricted shapes and often the viewpoint is 
restricted. For some applications, it is necessary to integrate 
information extracted from images of a scene acquired from var­
ious viewpoints or acquired through various types of sensors. At 
the present time we are not aware of complete systems that pro­
vide information integration for photointerpretation tasks, and 
the existing techniques would have to be reviewed to determine 
the feasibility of relaxing viewpoint restrictions. 

In our systems for instance, we detect two types of corners 
between the lines, L- and T-junctions. We currently do not in­
vestigate orthogonal trihedral vertices (OTV s) as few walls are 
visible, and those that are appear highly foreshortened and have 
shadows etc. near them making the OTV s difficult to detect 
accurately. 

Also, T-junctions for traditional overhead urban aerial im­
agery do not have the usual interpretations of occlusion, as some 
of them would for oblique views. When the image plane is nearly 
parallel to the ground plane, the buildings may have wings and 
nearby objects like roads, etc. that are aligned to the building 
sides. In a top view, the sides of two different structures can 
create T-junctions in which the top line belongs to two different 
objects and is not occluding the stem. Therefore, the T-junctions 
are used to break the line belonging to the top of the T into sec­
tions. 

If we continue to assume that we restrict the shape of the 
objects to rectangles, the most significant change is that right 
angles in the real world no longer necessarily project onto right 
angles in the image. The following changes to our systems, as 
suggested in [44], would have to be incorporated: 

1& Land T junctions will no longer be considered only for lines 
meeting at right angles. The lines may meet at any angle. 

• Orthogonal Trihedral Vertices or OTV s will now be detected 
as for many views both the roofs and the walls will be visible. 

• U-contours will be replace by skewed U-contours. The angle 
between the base and the parallel sides will no longer be 
restricted to right angles. However, since parallel lines still 
map to parallels, the sum of the angles between the base and 
the sides of a skewed-U will be constrained to lie near 1800

• 

• Rectangles will be replaced by parallelograms. Note that the 
parallelogram is composed of skewed-Us, parallels and lines 
in a fashion essentially the same as for rectangles. 

• One possible new grouping to be considered is that of a 
"hinge." A hinge would correspond to two parallelograms 
which share a side. This creates two OTV s at the ends of the 
shared line. Given one parallelogram that is the projection of 
a side of a solid rectangular object, there is high probability 
that another side ofthe object, sharing a boundary, is visible. 
However, there could be cases where no hinge is present 
with a parallelogram due to occlusion. Therefore, a hinge 
would be a useful but not necessary grouping for detecting 
buildings. 

The detection process for the grouped features, would essen­
tially be the same as in our current system. However, due to the 
removal of some structural regularity (namely, right angles) the 
use of some geometric constraints may not apply. 

The constraint satisfaction network will be similar .to that 
in our current system with skewed-Us replacing U -Contours and 
parallelograms replacing rectangles. However, some new group­
ings like OTV s and Hinges will have to be incorporated. One 
possible source of complications is the presence of structures such 
as windows, textures, and ledges along walls (the roofs were rel­
atively smooth). To add to this complication, some walls are 
reflective and reflect nearby objects. 
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8 Current Grouping Work 
In the absence of computational theories of perceptual grouping 
we expect to see many approaches and techniques developed for 
specific applications. Invariably we can get bogged down in con­
sidering everything possible at all scales, and build complex and 
massive data structures. However, this is often unreasoriable for 
mapping and photointerpretation tasks where the image content 
and typical resolutions quickly make some approaches unfeasi­
ble. Part of our current works thus, tries to contribute to the 
development of the computational aspects of perceptual organi­
zation. Specifically, we are working on developing a taxonomy of 
grouping operations and on the representation and computation 
of saliency. 

8.1 Grouping Fields 
When a person states preference for one grouping over another, 
we believe they are expressing greater sensitivity to the saliency 
of a given attribute (or set of attributes). What makes a feature, 
a relationship, an attribute, salient? What makes one feature 
more salient than another? The answer is that it can be grouped 
with another, or others, with the influence of each contributing 
to the strength of the percept. There are several related prob­
lems that must be solved to help understand the construction 
of a percept and its strength. We have discussed above our ap­
proach to perceptual grouping giving emphasis to structure and 
significance. The following notions continue this approach. 

Consider the dots of radius r in figure 6a. If we are to decide 
whether to group them on proximity, we would consider how far 
they appear to be from one another. Suppose we are willing 
to allow a distance of up to three times their radii: It appears 
that these points are too far apart as their area of influence or 
grouping "attraction" in figure 6b indicates. Consider now the 
points at the same locations but having a radius of 3r, shown in 
figure 6c: The points now appear closer and more likely to belong 
to a proximity group as their overlapping "influence", shown in 
figure 6d suggest. We call the of influence of a visual feature 
its grouping field with respect to a grouping operation, in this 
case proximity. The shape, extent and strength of the fields are 
defined as a function of the properties of the visual features (or 
objects), such as size, shape, color, and geometric complexity, 
much like the gravity field in Nature is a function of mass and 
distance. Note that we would judge then the distance among 
cars in a parking lot by the distances among the location of the 
cars' center of mass, and the extent of their proximity grouping 
fields to be a function of their size. Note also that a string of cars 
would not result in a single group but in many alternate colinear 
groups. If we restrict one car per group we would obtain a string 
of groups. 

The most elementary proximity grouping operation, called 
PxOD, is then defined as a function of the distance between the 
center of mass of the elements to be grouped. In figure 6e the 
group results from combining overlapping fields. Each newly ad­
mitted element, shifts the center of mass of the group to a new 
location. Note that the resulting group can in turn be repre­
sented by a dot (located at the center of mass of the group). 
In this example the fields have the elementary interpretation of 
representing whether or not a feature is being influenced or not 
(within the field of) by a nearby feature. As we incorporate 
more feature (or group) attributes, the degrees of freedom or di­
mensionality of the operations increase, and are denoted PxlD, 
Px2D, and so on. 

The most elementary collinear grouping operation, called CoOD, 
takes into account only the orientation of the features. In this 
example we apply ColD to the lines shown in figure 7a (orienta­
tion and lateral tolerance to allow for distortions and inaccura­
cies). Lines falling within the area of influence of another line are 
grouped together. The collinearity groups are then represented 
by abstract ribbons having length, width and orientation derived 
from weighted contributions of the elements in the group (see 
figure 7b). The resulting group can be represented by a line (as 
in figure 7 and participate in other CoOD grouping operation at 
a higher level of the hierarchy, or we can use its orientation and 
width (the lateral tolerance used) in a C02D grouping operation. 
This is equivalent to the grouping process that helped detect the 
runways [26] shown earlier in figures 3 and 4. 



(a) Ten dots (b) Ten dots and fields 

(c) Big dots (d) Big dots and fields 

(e) Proximity influence 

Figure 6: Proximity grouping 

8.2 An Example 
Consider analyzing a harbor or port complex. We wish to de­
scribe the buildings in the port facility, the transportation net­
work around the facilities, and of course the pier areas and the 
ships in the area. We already discussed detection of buildings 
and transportation networks. What do we need to know about 
port and harbor facilities to detect the piers and describe the 
ships? That the planning and design of port and harbor facili­
ties is strongly dependent on the characteristics of the ships to 
be served, and the type of cargo to be handled [62J. To eventu­
ally describe the scene completely we would have to know a lot 
of things about the ships: Main dimensions (length, beam, draft), 
cargo-carrying capacity, cargo-handling gear, types of cargo units, 
shape, hull strength and motion characteristics, mooring equip­
ment, maneuverability, and so on. To detect only the pier areas 
(where later we would look for ships) we only need the upper 
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bounds on ship dimensions and the approximate image resolu­
tion. These parameters are easily available a priori and chiefly 
determine the extent and strength of the grouping fields associ­
ated with the features that we will use. 

Figure 8a shows an image of a portion of the U.S. Navy facil­
ities in San Diego. We know that we should expect to see mostly 
military ships that may require long term docking, thus allowing 
for double or triple docking. We know the image resolution and 
the approximate ship dimensions, thus we know the minimum 
size of the piers. The following steps are applied: 

Locate Boundary between Land and Water: We de­
tect the boundary between land and water regions automatically 
using our implementation of [50J. In this example we arbitrarily 
selected the largest region to represent the water region. Next we 
approximate these boundary by piecewise linear segments, shown 
in figure 8b using LINEAR, our implementation of [48J. 

Locate "land" Structures in Water: Contrary to many 
natural structures on shore, cultural structures appear highly 
geometric. We expect that most piers will appear as linear struc­
tures attached to the shore, and in the water. Their linearity 
indicates that the piers or portions of piers should be character­
ized by apars (parallel groupings). Ships are typically docked 
parallel and adjacent to the piers. We then expect that most of 
the line segments corresponding to sides of piers, sides of ships, 
shadows, and so on in the neighborhood of the piers would result 
in many local parallel groupings (apars). The limit on parallel 
groupings is a function of image resolution and ship dimensions. 
The apars in our example are shown as thin lines in figure 8b. 

Detect Pier Areas: The apars are easily classified into 
"land" or "water" apar with respect to the water region. Sub­
sequent processing operates on the land apars only. Next, we 
apply PxOD grouping to the land apars. The extent of the fields 
is task-dependent however it need to be only approximate. At 
the resolution in our example, the radii of the fields are roughly 
equivalent to the pier width plus the width of three destroyers on 
both sides of the piers, or about 16 pixels. Each apar (its center 
of mass) contributes a field. Subsequent contributions shift the 
center of mass of the group. We then select the groups so that 
apar membership is exclusive by extracting the possible groups in 
order of decreasing mass (number of apars). The resulting groups 
represent potential pier fragments (groups in figure 8b and arrows 
in figure 8c.) The representation of the resulting groups is the 
same as that of apars. 

Next we apply ColD to the pier area fragments. The longest 
piers are about three times the length of a destroyer thus we 
allow the extent of the elliptic fields (see figure 8b) to be up to 
three times the length of the apars. The width is equivalent to 
the apar width (or group radius, 16 pixels in this example). 

The result of the grouping, shown in figure 8d, is then repre­
sented, again, by apars and denote potential pier areas. 

8.3 Saliency-ehancing operators 
The second effort deals with saliency-enhancing operators ca­
pable of highlighting features which are considered perceptually 
relevant. These are introduced in [20J. They are able to extract 
salient curves and junctions and generate a description ranking 
these features by their likelihood of coming from the original 

I 

( a) Collinear lines (b) Collinear influence ( c) Resulting groups 

Figure 7: Colinearity grouping 
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(a) Image with piers (b) Proximity grouping 

(c) Collinearity grouping (d) Pier areas 

Figure 8: Low Resolution Harbor Scene 

scene. They suggest the global extension field as means of de­
scribing the behavior of a curve segment, in terms of its con­
tinuation. They also show that a directional convolution of an 
edge image with the above field can produce useful descriptions. 
In this technique all operations are parameter-free, non-iterative 
and the processing is linear in the number of edges in the in­
put image. As an example of this technique consider the small 
image containing a building in figure 9a. The intensity edges ex­
tracted from the image are shown in figure 9b. The saliency map 
constructed from these edges if shown in figure 9c. 
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(a) Image 
building • of (b) Intensity 

edges 
(c) Saliency map 

Figure 9: Computation of saliency 
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