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Abstract 

Recognition presumes having a model of what to recognize. 
This especially holds true for the recognition of objects in 
digital images. Such a model is usually formulated explic­
itly by humans. With the help of techniques from Machine 
Learning however, it is possible to automatically construct 
models from given examples. 

The paper reviews several learning techniques and focuses 
on the automatic model construction with formal grammars. 
Both the requirements and the potential of such techniques 
are demonstrated with an application in the domain of lan­
duse classification. A model for an agricultural parcel struc­
ture is used as one component in a system to recover land 
use maps from remotely sensed data. 

Keywords: Artificial Intelligence, Machine Learning, Im­
age Interpretation 

1 INTRODUCTION 

In order to derive landuse information from airborne images 
usually multispectral classification is used. But there is more 
than radiometric data in the images: both texture and geom­
etry contain information about different landuse types. Each 
of these information sources needs a model to extract the rel­
evant knowledge. This paper concentrates on the analysis of 
geometric models. 

As shown by Janssen et al. [1991] using maps for classifica­
tion greatly improves the classification result. When however 
no maps are available, a model for the parcel aggregation 
has to be provided. Such a model has to be a very general 
description, since it is impossible to represent any kind of 
possible parcel aggregation. Thus there is a request for a 
so-called generic model, where not only the object param­
eters but also the structure is free to a certain degree. An 
object parameter in the case of the parcel aggregation struc­
ture is e.g. the size of an individual parcel; the structure is 
reflecting the relations among the object parts (the number 
of neighbors of a parcel). "Polygon" is a generic description 
for a parcel, in contrast to a list of n coordinates of the n 
points of the polygon. 

Normally the models are formulated explicitly by humans. 
This is adequate as long as the objects are clearly definable 
and have distinct features. Often a collection of prototype 
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objects is available, but still it is not clear in advance, which 
are the relevant parts of the object and which are its features 
and relations. In the terminology of knowledge representa­
tion the examples denote the extensional description of the 
objects. The task of Machine Learning techniques is to make 
this implicit knowledge explicit, thus end up in an intensional 
description. 

In the paper the special problem of the parcel aggregation 
structure is analyzed and a strategy to extract a parcel model 
from examples is presented. The prerequisites for the auto­
matic model acquisition are briefly sketched: given the exam­
ples, the internal structure of the data has to be extracted. 
The structure is revealed in a clustering process by grouping 
objects which are similar in some sense. The resulting graph 
is represented with the help of formal grammars, where each 
node is coded by a grammar rule. In order to give respect to 
the possible variety of the structure and also to noise effects, 
each node is now considered as the outcome of a random 
experiment. In a subsequent statistical analysis the node 
parameters are estimated, and so the statistic inherent in 
this structure is revealed. 

The theoretical background thus lies on Machine Learn­
ing techniques, Knowledge Representation and Spatial Pro­
cesses. After an overview of the project to which this con­
tribution belongs, a short review of Machine Learning tech­
niques is given, with special focus on model acquisition for 
Computer Vision purposes. The subsequent section is con­
cerned with statistics. Finally an example for the model 
extraction from examples is given and the feasibility of this 
model is demonstrated. 

2 KNOWLEDGE BASED 
LAND USE CLASSIFICATION 

Knowledge based image interpretation is performed by us­
ing any kind of information source available. A program to 
extract landuse information from aerial images can base on 
radiometric information in a traditional multispectral classi­
fication, but also on information about the geometry of ob­
jects. Thus not only mere grayvalues, but furthermore struc­
tural information about the objects is made use of. In order 
to integrate different sources of knowledge, the Minimum De­
scription Length-principle (MDL) can be applied. MDL pri­
marily allows to treat structural and numerical pieces of in­
formation within one compound process. In [Pan and Forst­
ner 1992] a strategy for this task is presented. 

Applying MDL presumes knowledge about the probability of 
the influencing factors. Knowing the whole functional chain 



from grayvalues to geometry and structure, the probability 
for a hypothesized interpretation can be stated and evalu­
ated: 

P P(D, I, G, S) 

P(DII, G, S)· P(IIG, S)· P(GIS) . P(S) 

or in terms of selfinformation or description length 
(L = -In P): 

L L(D,I,G,S) 

L(DII, G, S) + L(IIG, S) + L(GIS) + L(S) 

In the formulas, 

(1) 

(2) 

• S denotes the structural model description, the ideal 
geometry 

• G describes the deviation of the real geometry from the 
ideal one 

.. I denotes radiometry and texture of the segmented im­
age 

.. D corresponds to the original image data, describing 
signal, noise and outliers 

Interpretations yielding the highest probability, or the short­
est description length resp., are considered as the best ones. 
Evaluating an interpretation in terms of MDL presumes the 
functional dependencies of all the contributing knowledge 
sources to be modelled. 

Pan and Forstner [1992] give a sketch of the use of the 
MDL principle for the interpretation of different land use 
classes in airborne images: following an information pre­
serving smoothing, in a second step segmentation techniques 
lead to edge and region information. A subsequent group­
ing process which is governed by the hypothesized model, 
namely polygonal areas, leads to a segmentation containing 
only polygonal boundaries. Still this representation is not 
complete and will contain ambiguous or false information. 
Basing on the model of the aggregation structure (S), hy­
potheses may be formulated. The best interpretation, the 
one yielding the shortest description, is found in a search 
process. 

This paper is concerned with the last term of the formulas 
((1) or (2)), namely the structural aspect. A functional and 
probabilistic description of the model structure is derived. 

3 MACHINE LEARNING 
TECHNIQUES 

Machine Learning is a branch of Artificial Intelligence which 
is of increasing interest in the AI community. Especially 
in the domain of knowledge acquisition for expert- or infor­
mation systems there is a great demand for such methods. 
According to Simon [1984]' learning denotes changes in a 
system to do the same task with the same input data more 
efficiently and effectively the next time. Michalski [1984] 
simply defines learning as a transformation of the represen­
tation. The new representation has to be "better" in some 
sense. In order to perform such a learning task, the notion 
of "better" has to be specified. The new representation ... 

• . .. mostly is not generated for its own sake, but is the 
basis for subsequent processes. In order to control and 
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verify the new representation, it is given in a language, 
that is understandable by humans. 

• '" supports and eases the handling of subsequent pro­
cesses, like object classification, recognition, or location. 

.. '" is more compact than the old one: the task of "learn­
ing from examples" starts from a collection of examples 
and ends with a general description of these examples. 
The examples need more storage than the general de­
scription. Learning therefore supports data reduction. 

• ... is explicit in contrast to the old one: knowledge ac­
quisition often has to deal with 'diffuse' expert knowl­
edge. Learning can structure this knowledge . 

• '" is more general than the old one. 

• ... can reveal new facts about the data. 

Learning comprises three major considerations: 

• the representation of the given data (input) and the de­
sired data (output). 

.. a strategy to accomplish the transformation of the data 
from given extensional into the intensional representa­
tion. 

• in order to evaluate the quality of the new representa­
tion and to distinguish different possible hypotheses an 
evaluation measure has to be given. This measure forms 
the basis to decide when the given aim of the learning 
has been reached or when to generate new hypotheses. 

Following an historical sketch of Machine Learning research, 
the main techniques are shortly presented, along with exem­
plary programs from the domain of structural learning for 
Computer Vision purposes. 

In the beginning of Machine Learning research, there was 
the wish for a general purpose learning system which starts 
without any initial structure or task dependent knowledge. 
Many of the early Neural Network approaches date to that 
phase. The limitations of these approaches, however and 
the idea of modelling human behaviour led to the develop­
ment of programs which base on symbolic descriptions of the 
data. Representation schemes like logic, graphs, grammars 
were used to describe both features of the objects and rela­
tions. Since the mid 70 ies it is agreed upon, that learning 
does not start from scratch, but has to be incorporated in 
a broad knowledge framework. Thus task specific programs 
were developed, where the amount of background knowledge 
is manageable. This development reflects the change in data 
representation from numerical to structural. 

Besides discerning Machine Learning techniques according 
to the knowledge representation into numerical and struc­
tural issues, a second distinction can be made considering 
whether the learning process is supervised or unsupervised. 
In supervised approaches, the training instances are pre­
sented along with a classification ("learning from examples"), 
whereas unsupervised techniques automatically find a clas­
sification based on clustering or grouping processes ("clus­
tering"). Principally, clustering methods can only classify 
patterns, but do not give an explicit description of them. 
The result of a classification is just a distribution of the ex­
amples to different object classes, but not a description ofthe 
features of the classes. A subsequent characterization step 
(e.g. with learning-from-examples techniques) has to give 



a class description. Clustering techniques range from opti­
mization methods with a given number of classes, over hier­
archical issues resulting in binary classification trees called 
dendrograms, to clumping techniques which give clusterings 
in which object classes may overlap. 

All learning systems try to generate possible solutions by 
grouping object features (possibly using additional back­
ground knowledge). This generation of the groupings in gen­
eral is a search process which requests for suitable heuristics. 

3.1 Numericallearning 

This approach is chosen, when the numeric data is given in 
terms of feature- or attribute-vectors. These features span 
an n-dimensional space. The task of a classification pro­
cess is to divide this feature space into several regions, the 
pattern classes [Niemann 1981]. Learning is reduced to an 
estimation of the unknown parameters, which link the ob­
servable features. For this task, a broad range of techniques 
is available. 

In unsupervised numerical approaches (numerical taxon­
omy), grouping of the objects is performed on the basis 
of similarity. This similarity measure is the value of a nu­
meric function applied to two objects (e.g. Euclidian dis­
tance). Thus objects which are most similar are grouped 
together, objects which are least similar are distinguished 
and form different object classes. Similarity measures can 
be both context-free (depending only on the attribute val­
ues) or context-sensitive, where the similarity is depending 
also on the value range of the attributes. 

Neural Networks also deal with numerical data. Basically 
there are input and output patterns which are linked through 
one ore more layers by sets of weights. The learning task is 
to adjust these weights [Rumelhard and McClelland 1986]. 

3.2 Structural approaches 

Conceptual clustering is a extension of numerical taxonomy 
to symbolic data. Conceptual clustering techniques typically 
do not only consider the objects' features and the context, 
but furthermore possible concepts or restrictions on the ob­
jects involved - so-called background knowledge - which may 
be used to describe the objects. Thus the similarity of two 
objects strongly depends on the quality of the concepts that 
describe the objects and their relations and possible limita­
tions. 

A classical concept to acquire models from examples was 
presented by Winston [1975]. His ARCH-program first de­
rives a structural representation of the example objects in 
terms of a semantic network. In the following step the class 
descriptions of the different examples are constructed: the 
first positive example is hypothesized as the model, while 
the following positive and negative examples serve to correct 
or restrict the current model. In contrast to a complete ob­
ject description, a model is generated, which is sufficient to 
distinguish an object from other objects in the knowledge 
base. Winston relies on noise free data; the resulting model 
is also represented in a semantic network. 

A successor of Winstons program was developed by Connell 
and Brady [1985]. Their system is capable to handle real 
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world data, namely real images. Their model generation 
strategy states, that if two objects are the same, then the 
differences between them should be irrelevant and can be 
deleted. The program expects only positive examples for an 
object class. Although handling with noise, it cannot treat 
outliers: these form a new object class. 

Wong and You [1985] present a program starting with ex­
amples in an attributed graph. In an estimation process, 
the relevant attributes and the relevant relations, along with 
the corresponding probabilities are gained. This structure, 
which represents the model, is called a so-called random 
graph. 

Segen [1988J developed a program to learn descriptions for 
2D-objects from examples. In contrast to most other learn­
ing techniques, his program is not based on a fixed set of 
attributes and relations, but is able to generate its own de­
scriptors. The program starts with the objects (given as ob­
ject contours) and calculates points with curvature maxima, 
which are denoted descriptors of the first level. Then it gen­
erates new descriptors by successively grouping the features 
of the previous level. The resulting hierarchical graph is an­
alyzed statistically. The system can treat noisy data. The 
drawback is that the resulting representation bases on the 
descriptors chosen, which are not interpretable by humans. 

Also Stier [1991] starts from the idea, that object represen­
tations relying on a predefined set of descriptors can only be 
as expressive as the descriptors are. Therefore he argues for 
a system that is capable of deriving its own appropriate de­
scriptors. He presents a learning technique which starts from 
elementary, general knowledge about objects, represented in 
logical assertions. In the evaluation phase, a general object 
is hypothesized and the rules from the knowledge base are 
applied to it. The examples serve to verify (accepted or re­
jected) these hypothesized new rules. The evaluation is per­
formed in an exhaustive search manner, where the matching 
criterion is the exact fit with the examples. He demonstrates 
his strategy on simple examples. Starting with elementary 
knowledge about polygons (parallelity, straightness, ... ) he 
learns the concepts of special types of polygons (triangles, 
squares, rectangles). 

All structural learning techniques presented have in common, 
that they rely on a hierarchical representation of the objects. 
In a first step, the structural description of the examples is 
derived. Then this description is generalized to a model. For 
both steps various strategies may be used. These however 
depend strongly on the data and the task, and no general 
technique is available up to now. 

4 DATA REPRESENTATION 
WITH FORMAL 

GRAMMARS 

Thinking of patterns in terms of sentences makes it possible 
to apply techniques from formal language theory to pattern 
recognition [Fu 1982]. With the help of Formal Grammars 
the knowledge about the structure of observations is repre­
sented in symbolic form. A grammar consists of the tuple 



where S denotes a Startsymbol, VT and VN the Terminal and 
Nonterminal vocabulary (symbols), and P aset of rules (pro­
duction rules) describing, which symbols may be replaced by 
other symbols. Given a startsymbol, any structure can be 
derived within the domain of the grammar, simply by replac­
ing the nonterminal symbols with the help of the production 
rules. This procedure stops, i.e. a structure is generated, 
when only terminal symbols (which cannot be replaced) oc­
cur in the sentence. 

In general, formal grammars allow both for generation of 
new structures and for deciding, if an unknown structure is 
explainable with the given grammar [Cohen and Feigenbaum 
1982]. 

Formal grammars rely on noise and error-free data. However, 
when real physical processes are involved, the grammar has 
to cope with non perfect data. To this end the concept of 
formal languages is extended to a stochastic grammar, where 
each production rule is assigned a probability of occurrence. 

With an attributed grammar, functional dependencies of the 
nonterminal symbols of the rules can be coded in a compact 
way. 

5 SPATIAL PROCESSES 

Spatial data processing deals with the analysis of spatially 
distributed patterns. The task is to find regularities among 
the data or to make assumptions on the underlying mecha­
nism that generated the pattern [Ripley 1981]. 

A frequently applied model are stochastic processes, espe­
cially Poisson processes. In the scope of this paper, so-called 
Renewal Processes are of importance. Primal assumption of 
Renewal Processes is that a random experiment is repeated 
with the same assumptions and probabilities as the first ex­
periment. Thus with the repetition the process really starts 
from anew. The model of a Renewal Process is usually ap­
plied in the analysis of defects of machine parts. Such parts 
may break down now and then. A break-down at one time 
instance does not affect the next defect, a feature denoted as 
the "lack of memory"-property. The probability of a defect 
itself is distributed with certain parameters (usually Poisson: 
A). The probability of an event at time instance j is given 
by the following formula: 

Ai 
P(X = j) = -=t exp-A ; E(X) = A (3) 

J. 

Instead of discrete time instances, also discrete spatial pa­
rameters can be modelled with this process. 

6 AUTOMATIC ACQUISITION 
OF PARCEL STRUCTURE 

The visible regularities in the agricultural parcel structure 
are due to fact that the subdivision was ruled by certain cri­
teria: the parcels are of a reasonable size and of a simple 
form (e.g. rectangles with one "long" side), in order to be 
manageable with machines. Possible other aspects like his­
tory, sociology or aesthetics will not be considered in this 
context, as only observable features are taken into account. 
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In spite of the underlying planning, the aggregation struc­
ture is not unique, a model is not easy to determine. At a 
first glimpse, a simple model could be a collection of parcels, 
each of which is represented by a polygonal boundary. This 
representation however contains no information about the re­
lations of the parcels. Without specifying relations, a parcel 
structure would just be a random parcel puzzle, neglecting 
the neighborhood relations which are quite obvious: most 
parcels are connected to at least one other parcel of similar 
form and size, sharing one common border completely. Thus 
a more elaborate model is required, taking the structure of 
the object into account. 
In maps or images there is a lot of exemplary data avail­
able, thus the idea is to use structural and statistical learn­
ing techniques to automatically derive a parcel model from 
examples. 

The task is to turn specific knowledge (examples) into gen­
eral one (model). In the spirit of Winston's approach, first a 
structural description of the examples is generated, then this 
structure is generalized to a model. The resulting model de­
scription should intuitively fit the description humans have. 
This can be verified by using the model to generate new 
objects, i.e. simulate the generation process and compare 
the outcome with real data. In the following, the automatic 
acquisition of a generic parcel model is sketched. 

The program starts with the observable information: an ex­
ample of a parcel aggregation represented as line segments 
(see Figure 1). 

Figure 1: Input data: digitized line segments 

The structure, namely the individual parcels and the rela­
tions between them, has to be extracted with the help of 
a learning strategy. A clustering process is applied, which 
is grouping parcels which are similar in the sense of neigh­
borhood. A iterative grouping leads to a graph, where the 
leaves represent the individual parcels, while the nodes stand 
for groups of neighbored parcels. The top node finally is the 



"father"-area, all the others were derived from. This graph -
which in this case is reduced to a tree - mirrors the generation 
process. The nodes in the tree form the structure elements 
of the model. Each node has certain attributes (like form 
and size) and certain relations to other nodes (the fields it 
is divided into). Thus the node information states, how a 
parcel with certain attributes is divided into smaller ones. 

The nodes are considered as an outcome of a random exper­
iment. An estimation procedure is applied in order to gain 
the structuring parameters (i.e. the parameters of the par­
celling) and their probabilities. In that way the variability 
of the structure is evaluated with the help of a statistical 
analysis. Since the parcelling is relating spatial entities, the 
evaluation makes use of statistical spatial processes: the sub­
division of a bigger parcel into smaller ones is modelled with 
a Renewal Process, i.e. the partitions are distributed with a 
common parameter of the Poisson distribution A and the in­
dividual cuts are independent of each other. This modelling 
is motivated by the fact, that the size of an individual parcel 
is determined by factors that cannot be estimated from by 
visual knowledge alone, but mainly depends on legal aspects, 
namely the claims of its owner. In that way the sizes of the 
parcels can be considered independent. 

Thus the generation tree reveals that parcelling is a recur­
sive process: new parcels originate by dividing a big par­
cel into smaller ones. This recursive structure favours the 
representation scheme of formal grammars, where the model 
information is coded with an attributed stochastic grammar. 

6.1 Structural analysis 

The clustering process is a mixture between structural and 
parametric approaches. First the structure of the data is 
gained, then numerical values expressing the relations be­
tween the object parts are calculated in order to guide the 
clustering process. 

Starting with line segments, in a first step the individual 
parcels are extracted by looking for a trace of segments 
forming closed contours. To this end the list of lines is cy­
cled twice: the points are traversed clockwise for the outer­
boundary of a region and counter-clockwise for an inner 
boundary. 

In order to cluster the parcels a measure of similarity or 
connectedness has to be given. In this case the measure is 
defined by the adjacency of the parcels. Only parcels which 
are neighbored can be grouped together. Furthermore, the 
more complete the common border between two parcels is, 
the more "similar" the parcels are, the closer they are to­
gether. In a region-adjacency graph the neighbored parcels 
(see Figure 2) are shown, where the degree of similarity is 
visualized by the thickness of the connecting lines. 

This graph structure is subjected to a clustering procedure 
where similar regions (in sense just defined) are merged. A 
simple hierarchical clustering method is successively group­
ing parcels which share one common border. In that way 
a dendrogram is produced with the single parcels as leaves 
and the "father"-parcel at the top. Nodes in between form 
subparcels, which are further divided (see Figure 3). This 
tree reflects the generation process of the individual parcels: 
starting from a big area and dividing it successively. 
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Figure 2: Region-Adjacency Graph: thick lines denote close 
relation 

2 11 5 8 9 4 7 6 3 10 12 

Figure 3: Dendrogram of grouped parcels 

The information contained in these nodes (the nodes' at­
tributes) are the size and the form of the parcel, the direc­
tion of the partition, the number of its successors and the 
number of previous partitions. This information is analyzed 
statistically in the next step. 

6.2 Statistical analysis 

Up to now the analysis produced a production rule for each 
individual parcel. The desired information is a set of stochas­
tic production rules which state, how individual parcels are 



divided. This division is dependent on the parcels size, form, 
and the number of partitions this parcel was subjected to 
already. With a statistical analysis an estimation of these 
dependencies and parameters, accompanied with an estima­
tion of the probability of each rule is gained. 
Global parameters like maximal and minimal parcel size, 
maximal and minimal ratio of shorter side of a rectangle to 
larger side, and maximal hierarchy level can be estimated in 
a first step. These parameters determine when a subdivision 
stops. 

The dependency of the partition on the parcel attributes is 
modelled in terms of a Renewal Process. 

In this paper, only the outline of the estimation process is 
given. In order to reliably estimate the model parameters, a 
big sample of exemplary data has to be evaluated. Further­
more, the functional dependencies of the different parameters 
have to be examined carefully. For simplicity in the follow­
ing example dependencies on the size and form of the parcel 
and on the direction of the partition are neglected, and the 
following simplification is made: 

It Parcels are divided along their longer side. 

• The partition of a parcel only depends on the hierarchy 
level, namely the number of previous partitions. This is 
a fact that is easily verified with visual inspection of the 
data: the first cuts of a parcel try to generate a few big 
parcels, while the following split these parcels into the 
final individual fields, by higher number of cuts. The 
parameter A in equation 3 corresponds to the number 
of successors n. Different parameters A are estimated 
depending on the hierarchy level. 

The result of the estimation are both the functional depen­
dencies and the corresponding probabilities. These values 
for the relation between hierarchy level level and number of 
cuts n for the above example (see Figure 3) are given in the 
following table: 

level 1 2 
n 351 2 
P( nllevel) 1.0 0.67 I 0.33 

These values are gained by simply counting the possible num­
bers of successors of a level. On level 2 e.g. there are 3 par­
cel to divide. Two of them are cut into 5, one is cut into 2 
parcels. Thus result the probabilities of 2/3 and 1/3 resp .. 

In order to rate an existing aggregation structure, the prob­
abilities of the individual steps of its generation have to be 
evaluated in common. To this end the whole chain of depen­
dencies has to be formulated. The probability of partition 
P{part) of a parcel Nl with parcel sides Wo and ho into n 
subparcels depends on: 

W2 

ho 

Wo 

• P{Nl): the probability of "father"-parcel Nl 

.. P{nllevel): the probability of n cuts given hierarchy 
level level 
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• the probability of dividing parcel Nl into n cuts with 
widths Wi 

P{Wl,W2,···,wnIN1,n) = P{wIIN1,n)· 

,P{w2Iwl, N I, n)··· . 

·P{WnIWl' W2,"', Wn-l, N I, n) 

Due to the "lack of memory"-property of the Renewal 
Process, the probabilities of the individual cuts Wi can 
be considered independent from each other, i.e. depend­
ing only on the "father"-parcel and the number of pre­
vious partitions n, resulting in 

P{Wl,W2,'" ,wnIN1,n) = P{wIIN1,n)· 

,P{w2INI, n)··· P(wnIN1, n) 

• the probability of the width Wi of a parcel given the 
number of partitions n is computed with equation 3: 

The probability of partition P{part) is then: 

P{part) = P{N1)· P{ nllevel) . 

,P(wIIN1, n). P{w21Nl, n)··· P{wnINI, n) 

All the other dependencies have to be considered correspond­
ingly. 

6.3 Representation in 
stochastic grammar 

attributed 

After estimating the model parameters, the stochastic gram­
mar can be set up. 

• Vocabulary: 

VN 

VT 

relation 

PARCELA 
parcelA' relation 

1,-

• Startsymbol S = PARCELA 

.. Production rules P: 

PARCELA 
P(part) 
~ PARCELArelationPARCELA 

P(stop) 
PARCELA ~ parcelA 

Nonterminal symbols (denoted in uppercase letters) stand 
for intermediate parcels; terminal symbols (lowercase letters) 
give the final parcels or the spatial relations between the 
parcels resp. (I = left-right; - = top-bottom connection). 
Each parcel has corresponding attributes A. 
This grammar represents a compact model description. It 
can be used in an algorithmic way to produce new objects, 
i.e. new parcel aggregations. Given a start parcel, new par­
cel are generated by applying the rules of the grammar. An 
example is given in the next subsection. On the other hand, 
the grammar can be used to object recognition: if an un­
known object can be explained by the grammar, then it is 
recognized. 



6.4 Parcel generation with model 

In order to evaluate the model visually, new parcels are gen­
erated with the help of the model. Given a bigger parcel, it is 
divided into smaller ones with rules of the grammar. Start­
ing at hierarchy level 1, the number of subparcels is taken 
from the functional relation table: n = n( level = 1) = 3; the 
associated probability is P(311) = 1.0. Thus the parcel is cut 
into three subparcels. Formally this results in a structure: 

PARCEL P~t) PARCEL-PARCEL-PARCEL 

The production rules are now applied to the subparcels cor­
respondingly. Being in level 2 now, the number of successors 
is either 5 (with probability 0.67) or 2 (with lower probability 
0.33). In the example, the color indicates the probability of 
the partition: bright parcels have high, dark ones low prob­
ability. The first partition (Figure 4) - which shows clear 
similarities to the example (see Figure 1), is more probable 
than the second one (Figure 5). 

Figure 4: Aggregation structure generated by model - high 
probability 

7 FINAL REMARKS 

A prerequisite for any interpretation of images is to have 
adequate model descriptions for the expected objects in the 
images. As these are normally quite complex, there is a 
need for automatic extraction or generation of such models. 
In general, although examples for an object can be identified 
and enumerated, they can not be described in a compact 
form. Learning techniques are a means to solve this problem: 
they allow for making a interior structure (hidden in the 
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examples) explicit. Which technique to chose, however, is 
dependent on the type of object. 

The approach to automatic model acquisition from examples 
given in the paper basically is a general one, since it generates 
a structural representation of the data. Such descriptions, 
specifying an object in terms of parts and relationships are 
useful for high level image interpretation tasks, dealing with 
complex real world data. 

The result of the modelling is not only a description of the 
object, but the model also reflects the statistic in it. This 
opens the way to a compound analysis of data of different 
knowledge sources basing on the MDL principle. 

The paper showed that it is possible to extract a representa­
tion for parcel structures from examples. The new represen­
tation gained from the original line representation is more 
compact, of generic type and thus more suitable for subse­
quent object location or recognition tasks. 
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Figure 5: Aggregation structure generated by model - low 
probability 


