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ABSTRACT 

The paper considers the method of segmentation and analysis of one class of 
multidimensional speckled images; the specific feature of these images is 
the presence of some statistical dependence between the value of one component 
and the validity of value assessment of the other. The proposed method 
provides a common approach to segmentation procedure irrespective of physical 
processes featt~e of imae.e generation tmder stated conditions. For normal 
para'TIeter assessment distributlon based on a maximum a· posteriori probability 
criterion. Each region being segmented is assigned an index. At the same tL'TIe 
algorithm allows to carry out analysis of the reference scene, since its output 
is not only a se~ented image but also characteristics of each of regions being 
extracted (looatlon and parameter veotor). 

KEY lORDS: Algorithm, Image Analysis, Image Processing, Remote Sensing Application 

INTRODUCTION 

In the automatic analysis of scenes, the 
main problem is the conversion of 
information, the image of a scene 
represented as a two-dimensional 
function, into some description of this 
image. This description can be stored in 
a memory section which is thousands times 
smaller than that required for storing 
the image. At the same time, the 
informatlon contained in the original 
image and essential for the above 
analysis is retained and converted into a 
processable form (Duda,1973). 

An indispensable stage of im~~e 
processir~g aimed at preparing luS 
description is segmentation which 
consists in fragmenting the image into 
regions which are coherent by some 
attribute. Segmentation can be aimed at 
discern~ scene objects and suppres­
sing inslgnificant details (EopHceHKo, 
1987) . 

We shall have a look at one of numerous 
image types - a class of 4-dimensional 
images which featt~e some statistical 
correlation between the observed value of 
one component and the degree of cel,tainty 
of the estimated value of another compo­
nent. This correlation is characteristic 
of multidimensional speckle images 
generated by remote sensing facilities, 
such as radars, radio-optical ranging and 
detection systems and laser radars. In 
the COl~se of the generation of these 
images, each pixel (x,y) is assi&ned a 
detector-outputted signal/noise ratio and 
some parameter of the reflected signal is 
estimated. The fourth, estimated 
component of the image can be represented 
by such parameters as the velocity, 
range, radiation polarization factor, 
etc, or their combination, for which the 
degree of estimate certainty lS 
probabilistically related to the 
signal/noise ratio. 

by m~a1}s 
81)ecl.f1.o 

of coherent 
effect. The 
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reflected signal whioh is received lS a 
superposition of functions of scattering 
by a set of elementary reflecting 
surfaoes, characterized by different 
phases and amplitudes. Interference 
results in that in each pixel the 
intensity of the refleoted signal t&{es 
random, Weibull-distributed value, which 
generates the so-called speckle 
structt~e. The speckle structt~e of the 
image has a considerable effect on the 
acouracy of estimates of the component 
being evaluated, which, in the first 
approximation, is specified by the ratio 
(Dansac, 1985 ) : 

a IV (1 ) 

/A / As 

where A is the intensity of the signal 
received, A is the power of internal s 
noises. Therefore values of different 
elements of the speckle image component 
being estimated can have essentially 
different estimate variances resulting 
from occasional fluctuations. 

For the above class of images, (Lisitsyn, 
1990; JillCm.1,l;tH, 1990) proposes an 
iterative algorithm for segmenting 
Doppler laser radar images. This 
algorithm formed a binary lmage whose 
pixels belonging to patterns which 
represented moving objects had a value of 
"1" and the remainine. pixels had a value 
of "0". Drawbacks of"" the algorithm are 
instable operation when patterns 
representing different objects touched 
each other or scene objects partially 
shade each other. Moreover, that the 
segmented image is binary makes it 
difficult to resolve disoerned patterns. 

The algorithm which will be proposed 
below can be considered as a 
generalization of the algorit~'TI for 
binary segmentation of Doppler laser 
radar images, to the oase of nonbinary 
segmentatlon and its extension to other 
types of images belonging to the same 



olass. 

For definiteness sake, let a Doppler 
frequency generated by remote sensing a 
surface with a heterodyne-reoeption 
infrared coherent laser radar be the 
parameter to be estimated. Segmentation 
will be considered to be aimed at 
discerning patterns of moving objects of 
the scene. 

PROBLEM FORMALIZATION 

Given: the Doppler image speoified in the 
form of a M~N frequency matrix F={fxy }' a 
similar intensity matrix A={a } and xy 
image segment types numbered from 0 to 
R-1. Asst~e that each pixel (x,y) can 
take an arbitrary state Sxy' 

corresponding to one of the segment type 
Nos. Segmentation is aimed at generating 
the image Q consisting of the subset Q

i 

U Qi = Q and Qi n QJ = ¢ at V i 1= J, (2) 

where Qi={(X,y):sxy= Li},L i N(O, •.• ,R-1). 

The segmentation is implemented aocording 
to a posteriori probability maximum 
criterion 

(3 ) 
p(F1Q 1 ,···,Qk)P(Q1 ,···,Qk) 

P(Q ,. .. ,Q IF) .... max, 
1 k p(F) 

where P(Q1, .•. ,QkIF) - is the probability 
of Q1' .... 'Qk regions presenoe in image on 
oondition that F image is observed; 
p(F1Q1, ••• ,Qk) is joint probability 
density of all pixels Doppler frequencies 
on oondition that image is partitioned 
into regions Q1" •• ,Qk;vp (Q1'··· ,01) - is 
a probability of Q1, ... ,Qk regions 
presence h'1 image; p (F ) is 
unconditional joint probability density 
of all pixels Doppler frequencies. 

Oonsider the oofaotor P(Q" ••• ,Qk) in 
(3) • To desoribe laser radar images, use 
can be made of Markovian random-field 
models (Kelly,1988; Besag,1974; Derin. 
1986; Hanson, 1982; Therrien, 1986) where 
eaoh region is desoribed by its own 
stationary random process and the 
transition from one image region to 
another is modeled by a Markovian 
process. 

Let us use Sexy) to designate a set of 
states of ei~~t pixels adjaoent to (x,y) 
and O(XY) to symbolize a set of states of 
all the pixels without (~r,y). Now the 
Markovian model satisfies 

P(01, ... ,Q~)= P(s ,O( ))= (4) 
.t(, XiJ XiJ 

=P(s 10 . )P(O . )=Pfs IS. )P(O ) xy ( xy ) . . ( xy ) \ XiJ l xy ) . ( xy 1 

where P(SxyISexy)) - is 
s state probability on 

the (x,y) pixels 
condition that 
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neighbourir~ pixels 
oorresponding to 
partitioning. 

have SeXY) states, 
specified image 

I t is mown tha t the Markovian model 
satisfies the Gibbs distribution (Derin, 
1986), which oan be written as 

P(Q" •.. ,Qk)= __ 1 __ exp { __ 1 __ ~ Vc(Q)} (5) 
Bo T cfa 

where C is the pixel set termed the 
olique whioh consists either of 
individual pixels or of their groups, 
satisfying the oondition that if (i,J)EC 
and (k,7.)EC for (i,.1)rf(k,7.), then (i,.1) 
and (k,l) are adjaoent pixels. C is the 
set of oliques belonging to different 
types. VC(Q1, ••• ,Qk) is the function 
depending only on pixels of type Ite" 
oliques, intended for the speoified 
fragmentation of the image and termed the 
potential funotion. T is the oonstant. Bo 
is the normalization faotor. 

To solve the above 
expedient to determine 
aocordance with Fig.1. 

problems, it 
olique types 

is 
in 

I I I 
It x.y I B D 
II iii I type a type b type 0 

type d type e 
Fig.1 a Olique Types for 8-0mmeotion 

Neighbourhood of Pixel (X.,y). 

A potential ftmction for the Type -" 
clique eonsisting of two pixels (I tY,) 
and (X2Y2) oan be speoified in the form 

'T ({ , ,_ -" X Y1 X. y. 
{ 

~ ,if s = s 
i/7",x 1Y 1)'(x,:,y . .,))- _A p.IC'p' 1 , 2 2 

Lr J:,... '- lwi l '.,.J WOJ 

(6) 
where ~1 is the parameter correspondir~ 

to the Type -" olique. For 
individual-pixel oliques, the potential 
function oan be defined as 

V-,,(x,y) = aI' if Sxy=l (7 ) 

where ct.
I 

is the parameter associated with 
the Type 7. clique. Then the potential 
f1.llotion for the type "e" clique, V c (Q) , 

speoified allover the image Q will be a 
s~~ of potential functions (6) or (7) for 
the entire image. 

The normalization factor B shall be a 
seleoted on the basis of the eondition 



where n is the nLunber of 
segmentations of the image. 

possible 

Now we shall make speoifio the potential 
funotion type for the above olique types. 
In aooordanoe with (6) and using the 
function sign(x), whioh takes the values 

{ 
1, if X > 0 s1gn(x) = 
0, if X = 0 , 

we can write 

Here k is the nLunber of image area types, 
Vk are potential fLillotions for individual 
-pixel oliques (type "a") and for 
different area types, Vk + 1 to Vk .f.4 are 
potential funotions for oliques of types 
"b","c", "d","e". 

In accoordance with (4), the probability 
of the speoified segmentation oan be 
split into two parts 

1 { ~ Vi (S,.. .)} P (Q 1 ,. •• ,Q ) = - exp} l X • 1,1 , :>! 

n D ~ T 
o i=1 

6 

{ 
\"' VJ (Q\3 " .)} 

x exp ~. ~(x.1,I) 

3=1 ..I. 

(10) 

Then, in view of (9), we have 

exp{~Vi (S(x'Y~}=exp{~ [2-S1gnlk-S 1_ 
~ T 1'~ x+1.y 
t=1 

-s1gnlk-s I] + ~ [2-s1gnlk-s 1-x-1.y 2 x.y+1 

-s1gnlk-s n. 11] + ~,:![2-S1gnlk-S 1 •• 1 1-x.~- w X-I .~+ 

-s1gnlk-s +~ 11]+~4[2-S1gnlk-S. 1 11-x I,y- x- .y-

-sign Ik-SX+1 • y+1 1]+ Uk [1-SignISxy -k l]} 

(11 ) 
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Provided oertain assLunptions are made, 
(11) oan be fL~ther simplified. 

SY1~HESIS OF SEGMEtTTATION ALGORITHM 

The sliding-window image prooessing 
(Therrien, 1986; Pratt, 1978) is an 
aooeptable teohnique whioh oan be 
employed for solvi~g the problem. 

Let some initial Doppler image 
partitioning is ~iven and all pixels are 
assi~ed speoiflo state values. The 
initlal segmentation procedure will be 
disoussed below. 

After that we ohoose an arbitrary (x,y) 
pixel and superpose the wL~dow oenter on 
it. Then we vary the oentral pixel state 
without other pixels state ohange &~d 
oaloulate the oorrespondi~ values of a 
posteriori probability ( wlth an aoouracy 
of up to 1/p(F) 

p (F I Q)P (Q) =p (F I s =1,3 ( JP (s =1,O( .)) . . "" xy xy ). . xy X1,l " 

Note that 
p (F I s =1 S ) =p (f I~ s =1 S ) = xy '(xy)· "xy ""{xy)' xy , (xy)· 

= p (F (xy ) I s xy =1 \I S (xy )) • 

where FeXY) is the image F without the 
pixel (x,y). The seoond cofaotor in the 
right-hand side of the relation does not 
depend on S ,so accoLillt can be taken 

xy 
only of p(f IFe ),8 =1,3; ). xy xy xy \xy 

In view of the remarks made and of (3) 
the search for the maximum value of a 
posteriori probability at pixel (x,y) 
state variation is reduoed to maximizing 
the expression 

p(f IF ,s =1,S )P(s =11S )~ max 
" xy (xy) xy (xy")' xy (xy") varL 

and the assignment of a new state to a 
(X,Y) pixel. It is neoessaI'y to apply the 
given rule for all pixels to get a more 
preoise image partitioning and then to 
iterate all the procedLtre. As a result we 
get a following rule of Doppler image 
segmentation 

n n+1 n (12) 
P (f IF ')P(s =113 .)--:i' max 
L" xy (xy)· . xy (xy)· '!.Jar' .L 

where sn+1_ is a state of a (X,y) pixel 
xy 

for a ourrent iteration step; S{.n) are 
.xy 

states of the window neighboL~ing pixels 
at the previous iteration step; 
PL(f IF(n ))- a oonditional probability 

xy .xY' 
density of (X,y) pixel on condition that 
(x,y) pixel has Sxy= 1, and the window 
neighbouring pixels whioh were assigned 
s= L at tHe previous step, have frequenoy 
values F (L ). 

.xy. 

Now oonsider the cofactor P (F I Q1 ' ••• ,Q];) 
of (3). Since all F'L are independent, 



Doppler frequency measurement errors can 
be tal{en to be normally distributed, 
meani:r:g that actual Doppler signals are 
descrlbed by narrow-band normal random 
prooesses (Pap1Jrt, 198'1 ), oharaoterized by 
an asymptotically normal instantaneous­
frequenoy distribution at a high 
signal/noise ratio (JIeE];lli,1974). Then, 
considering a set of the pixels Ff, 
corresponding to Of, as a veotor and with 
an expectation G

i
, the oonventional joint 

density of the probability of Doppler 
frequenoies of the area 0i pixels oan be 
written as 

p(F i IOi) 1 e,xp{-~(F i-G3'M~(F i-G.t)} 
1(2'1t)nilM~ I 2 -

•• 1, (13) 

where Mi is the correlation matrix of 
measurement errors, IMil is the matrix Mi 
determinant, n

i 
is the vector Fi nl~ber 

of dimensions, equal to the number of 
region 0i elements. 

Since frequenoy measurement errors of 
different pixels do not oorrelate 
(Sullivan, 1980; Wang, 1984), the 

oorrelatic['na;t:~ II is d]iagonal 

Mi= (14) 
"0 2 

2 where at is the 
varia..'1.oe for the I-th 
region. 

n i 

Doppler . , plxe ..... 
frequenoy 

of the 

For definiteness srute, let elements of 
two regions, Q~ a..'1.d 0, whioh will be 

~* m * designated by Q~ = Q~n W and Q = Q n W, 
~ J;;i m m 

will be in the ourrent position, in the 
slidin~ window W. It is neoessary to 
determ1.ne the state S of the oentral ::cy 
pixel (x,y), i.e. to select one of the 
following hypotheses: Ho- (X,Y)E Qk and 
S = k or H

1
- (X,y) E Q and S ffi. xy m::cy 

Sub s t i tu t ing (11) , (1 3 ) in ( 1 2 ) and 
taking the logarithm of it, we obtain 

L !lna{+ (f!-!!)2]+L[ln a
J
+ (1:;))2]_ 

iEO; (x.y) 2af, iEO; c.. J 

S =m 

-EI x~ L [In a l+ (f,- g{)2]+ 
(XtY)EQ; * 2 0 2 

S =k iEO i ::cy - k 
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where E is the exponential fl.mction index 
in (11). 

E};:-pression (15) includes the unlmown. 
parameters gi' To use the proposed 
algori thm, .~.gi shall be substituted by the 
estimates gt" In Doppler images, movir~ 

object patterns are planes. In this case 
f of an object element is defined by 

xy 
the expression 

(16 ) 

where Kr is a projection of an object 
- " 

translatory motion on to the lL'1.e of 
sight; 8

i
.,c..u

i 
are angular rates of an 

objeot rotation relative to the orthogon­
al axes lying in the plane perpendicl.uar 
to the line of sight; q is a proportion­
ality faotor; x,y'""are the pixel ooordina­
tess 

Then the veotor F.t oan be represented as 

(17 ) 

where Ti= ( Ii' X, Y ) is the transforma­
tion matrix of dimension '11-

i
)(3; 

G
i
= ( gi' 8 i , Wi)T is the ith region 

velooity veotor; Si is the measurement 
errors veotor; 'n

i 
is the number of pixels 

in ith region. 

The veotor G
i 

oan be fOlmd by the 
least-squares teohnique for varying­
aoouracy measurements. It is easy to 
demonstrate that it is aooomplished by 
solving the following linear-equation set 

(18 ) 

Here summation is taken over all the 
pixels of the region Q~ or Q*. Sinoe the 

J;;i m * found value of the veotor estimate Gi has 
its own oorrelation matrix of errors, the 

f · d' 2 d 2 h'l b re me var1.anoe~ . .., a i an,.~ 0 J s a...... e 
substituted for Of,,:;". and OJ2 in (15). When 
the oentral pixel state varies, its value 
has an effeot on unknown parameter 
estimates being oomputed. It results in 

2 2 ". 
that in (15), values of ai' OJ ' gi' g J 



in the left-hand side and right-hand side 
are not the same and hypothesis 
comparison computations are very tedious. 
However, if the central pixel (X,Y) value 
is ignored in determining the above 
parameters, i.e. the predicted value is 

2 in fac~ com~uted, all the values of at ' 
2 a J' gt' g.; are the same, excludin.g 

estimates for the pixel being analysed. 
Then (15) will transform into 

A ? 

(f- Cl' )"-
(19 ) 

[In; + xy 0xy + E] -----'), min 
xy A 2 

2 a xy 
B = xy 

N . th f t.h . 1 () t t ... ow, In e case 0 UJ. e p~xe \X,!j/ sa e 
variation, the estimates ~ a~d a are c xy xy 
obtained on the basis of the set of the 

* elements of the area Ok (at s = k) or of * ,xy 
the area ° (at s = m). As has been 'm xy,,-
noted, the value of g can be fOlmd by xy ,'. 
solving system (18). To determine a ,a xy 
correlation matrix of vector G

t 
estimate 

errors shall be found. In accordance with 
(TrucOHOB, 1982) 

RG - ( B )-1 ::: ( TT y-1 T )-1 (20) 

where T = ( I. X, Y ) is the 3 x n 
matrix; I is the unit vector; X~ Yare 
the vectors of the coordinates of the 

* al"'ea Q elements; M is' the oorrelation 
matrix of measurement errors. 
SUbstitutin~ the above quantities in 
(20), we ob uain 

1 x t Y1, -1 

2: a 2 2:~ 2: ---z 
t i a,t 
Xi X, X,tYi 

RG =( B )-1= 2: 2: a ~ 2: ---z 
at i at 

Y,(. XtY t y t
2 

2: a 2 2: a 2: 
,t t 

and matrix RG elements are 
the expression 

(21 ) 
defined by 

(,-1 ) 'i+.} mt .} 

det ( B ) 
where m

t
.} is the corresponding minor 

the matrix B. 

Since the pixel (X,Y) coincides with 
window centre and its coordinates in 
Sliding-windOW coordinate system 
(0,0) 

A • .., 

a " xy 
a 2 + 

xy det (B) 

(22 ) 

of 

the 
the 
are 

(23 ) 
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The result oan be easily generalized to 
the case in which there are more than two 
hypotheses. 

INITIAL SEGMENTATION PROCEDURE. 

Now oonsider the initial segmentation 
procedure. To implement the proposed 
algorithm, very stringent requirements 
shall be imposed on the initial 
segmentation since in case any se~ent 
does not ~et its No. dltring the inltial 
segmentatlon, its will be impossible to 
fltrther segment it, provide it with an 
identifyir~ index and determine its 
parameters. To solve this problem, the 
following two-step proeedure !Jan be 
proposed . 

The first step is the detection ~)f planes 
and the second step consists In their 
marking. Planes shall be detected as 
follows. 

1. The ima~e F shall be processed with a 
sliding wlndow whose size shall be 
deliberately smaller than the expected 
sizes of regions to be discerned. In each 
window position, regression coefficients 
lllied in plane approximation of the window 
by the least-squares technique for 
varying-accltracy meaSltrements shall be 
estimated with regard for all the window 
pixels and proceeding from the hypothesis 
that all elements belong to the plane. 
Use shall made of expression (18). 

2. Squares of the distances d t between 
the observed values of the window pixels 
F a~d the approximation plane shall be 
determined. 

3. Variances of frequency estimates for 
the window pixels shall be determined by 

~x~ °x:+ de:(B) { mll+ x
2

m22+ y2m33-

where det(B) is the 
determinator, m",.} is the 
minor of the matrix B, a xy 
by (1). 

4. The quantity 

(24 ) 

matrix B 
corresponding 
is deterined 

n ? 

S = ~ d: / 0",2 (25) 
t=1 

(where n is the number of the window 
pixels) shall be determined. In case all 
the window pixels are in a pl&~e, the 
quantity S is? characterized by the 
distribution x'""(n) with n degrees of 
freedom. 

5. The confidence interval (0,0) shall be 
specified in accordance with values of 
percentage points of the distribution 

? 

x~(n). If S E (0,0), then the window 



shall be oonsidered to be entirely in the 
plane. If S > C, the window shall be oon­
sidered to be at a j'lmction of different 
planes. In this oase the central pixel 
shall not be marked out. 

Plane marking-out shall be done parallel 
to plane deteotion and in the following 
order. 

1. Plane approximation parameters shall 
be memorized as k-indexed region 
parameters (it is initially assumed that 
the number of marl{ed-out regions is k-1 ). 
The oentral pixel of the segmented image 
shall be assigned a value of k. A 
correlation matrix of approximation 
parameter estimate RG errors shall be 
memorized simultaneously. In all oases, 
approximation parameters shall be 
oompared with previously reoorded 
parameters of areas whose elements are in 
some window W

1 
and relative to the 

oentral pixel (W
1 

may be inooinoident 
with W). The comparison is done with 
regard for R~. If suoh parameters are 

{..1 

already existing, for example, in the 
n-indexed region, then the oentral pixel 
is assigned a value of n. 

2. If elements of 1k -and k2-indexed 
regions, having the same parameters G are 
present in the neighbo'ltrhood, the 
equivalenoe k1=k2 is fixed. Upon 
prooessing the entire image, these 
indioes shall be reassiz.ned, giving the 
priority to the least index. 

ALGORITHM G~~LIZATIONS. 

Upon se~enting, parameters of 
approximatlon of the discerned regions 
shall be refined with re~ard for all the 
pixels. Correlation matrloes of errors of 
estimates of these parameters shall be 
computed simultaneously. Coordinates of 
each of the regions &Y},d numbers of their 
elements shall be determined. The 
al~orith~ outputs a segmented image in 
WhlCh eaoh of the disoerned regions has 
an identifying index, a parameters vector 
comprising its coordinates, regression 
ooefficients used in the disoerned-area 
plane approximation, a correlation matrix 
of estimation errors and the number of 
pixels in the area. 

It is not difficult to apply this 
algorithm to other types of images of the 
olass under oonsideration if the proposed 
models are valid for describing the 
images. In the oase that other image 
models must be used, the al~orithm shall 
be adapted. For example, ln segmenth~ 
ranging images if soene objeots are not 
desoribable by first-order surfaces. As a 
rule, such problems can be solved using a 
model whioh desoribes the image by first­
and second- order surfaces. Then if S 
determined by (25) is greater than the 
t~~eshold 0, it is necessary to oheok 
during the initial segmentation whether 
it is possible to approxL~ate 
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sliding-window elements wi th a 
seoond-order s'ltrface. To this end, a 
sixth-order linear equation set m'lwt be 
solved. Then approximation parameters 
obtained at the initial segmentation 
stage shall ~e taken into acoo'lmt when 
determining 81, values d'ltri~ iterative 
segmentation. Determining at presents 
some problems. However, in praotice, 'lwe 
oan be made of the lower-bo'lmd estimate 
of a i in aooordanoe with (1). 

MODELLING P~SULTS. 

Mathematioal modelling has shown that the 
algorithms are workable with different 
types of images. The segmented image is 
uS'l~llu generated in 5 to 10 algorithm 
iterations. Depending on the scene 
oomplexity, the labo'ltr requirements for 
Doppler images are 300 to 350 operations 
per pixel. The labour requirements for 
the initial segmentation procedure is 
about 40% of the total labour 
requirements for the algorithm. 

Fig.2 shows an image whioh is a source 
for the Doppler image. Patterns of moving 
objects touoh and shade eaoh other. Fig.3 
shows an image of the reflected signal 
intensity. Intensity generation has been 
based on the assumption that propagation 
and reflection conditions of all the 
pixels are the same. Fig. 4 shows the 
image F. All the images have been 
quantized into 16 levels. Fig.5 shows a 
segmented image, a result ofJthe initial 
segmentation. Fig.6 shows a final image 
obtained after 8 algorithm iterations. 

Good results have been also obtained in 
applying the algorithms to other types of 
images. However, when second-order 
s'ltrfaces are used in the model. the 
accuracy of estimated-component 
measurement shall be very high. 
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