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ABSTRACT

The paper considers
multidimensional speckled images;

the presence of some statistical dependence between the value of one
aseesement
provides a common approach to segmentation procedure
generation under stated

and the validity of value

processes feature of image

the method of se

he

entation and analysis of one alass of
specific feature of these images is
component

of the

other. The proposed method
irrespective of physiecal
conditions. For normal

parameter assessment distribution based on a maximum a posterior{ probability

criterion. Each region beir
algorithm allows to carry ou
is not cnly a se

segmented is
analyeis of the reference scene, since its output
ented image but also characteristics of each of regions being
extracted (locatlon and parameter vector).

assigned an index. At the same time
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INTRODUCTION
In the automatic analysis of scenes, the
main problem is  the conversion of
information, the image of a scene
represented as a two-dimensional
function, into some description of this
image. This deseription can be stored in
a memory section which is thousands times

smaller than that required for sioring
the image. At the same time, the
information contained in the original
image and essential for the above

analysis is retained and converted into a
processable form {(Duda,1973).

An indispensable
processing  aimed
desoription is
oonsists in fragmenting the dimage into
regions which are ooherent by  some
attribute. Segmentation can be aimed at
discerni soene  cobjecte =and suppres-—
si ) insignificant details (Bopueesnxo,
1987).

We shall have a loock at
image types -~ a oclass
images which feature some statistical
correlation between the observed value of
one component and the degree of certainty

stage of
at  preparing
segmentation

image
li%s

which

one of numercus
of 4-dimensional

of the estimated value of another ocompo-
nent. This correlation is  characteristioc
cf multidimensional  speckle images

generated by remote smensing faecilities,
such as radars, radio-optical ranging and
detection systeme and laser radars. In
the course of the generation of these
images, each pilxel (7,Y) is assigned =a
detector-cutputied signal/neise ratio and
scome parameter of the reflected signal is
estimated. The fourth, egtimated
component of the image can be represented

by such parameters as the velooity,
range, radiation polarization  factor,
ete, or their combination, for which the
degree of estimate certainty is
probabilistically related to the
signal/noise ratio.

Ima%es obtained by means of ochersnt
systems feature z specific effect. The
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reflected signal which is received is =a
superposition of functicns of scattering
by a set of elementary refleotin%
surfaces, characterized by differen
phases and amplitudes. Interference
results in that in each pixel the
intensity of the reflected =signal takes
random, Weibull-distributed value, which
generates the so—called speckle
struecture. The speckle structure of the

image has a considerable effeat on the
acouracy of estimates of the ocomponent
being evaluated, which, in the first

approximation, is specified by the ratio

(Dansac,1985):

g N (1)

/A /A

where A is the intensity of the

signal
received, A is the power of

internal

noises. Therefore values of different
elements of the speckle image component
being estimated can have  essentially
different estimate variances resulting

from ocoasional fluctuations.

For the above class of images, (Lisitsyn,
19903 JIMCHIHHE, 1990) DPTCpOSEE an
iterative algorithm for segmenting
Doppler laser radar images. This
algorithm formed =a binary image whose
pizels belonging to  patterme  which
represented moving objeocts had a value of
" and the remaining pixels had a value
of "O". Drawbacks of the algorithm are
instable operation when patierns
representing different objecots touched
each other or =cene objeects partially
ghade each other. Moreover, that the
segmented image is binary makes it
diffiocult to resolve disoerned pattemns.

The algorithm which will be proposed

below opan  be considered as a
generalization of the algorithm for
binary segmentation of Doppler  laser

of nonbinary
cther
zame

radar images, to the ocase
segmentation and its extension 1o
types of images belonging to the




olass.

For definiteness s=sake, let a Doppler
frequency generated by remote sensi a
gurface with a  heterodyne-reception
infrared ocoherent laser radar be the
parameter to be estimated. Segmentation
will be considered fto be aimed at
discerning patterns of moving objects of
the soene.

PROELEM FPORMALIZATION
Given: the Doppler image specified in the
form of a MxN frequenoy matrix F={fmy}, a
gimilar intensity matrix A={amy} and

image segment types numbered from O +to
R-1. Assume that each pixel (z,y) can
take an arbitrary state Sry’

ocorresponding to one of the segment type
Nos. Segmentation is zimed at generating
the image Q consisting of the subseet Q,

UQ=Qanaq,n Q =@atVi#], (2
where Q£={(x,y):8my= Li},Li w(Qy e, B=1).

The segmentation is implemented according

t0 a posteriort probability  maximum
ceriterion

3)

p(FIQ,,~,Q)P(Q,-,0,)

P(Q1’M,QE!F)_ PR A ) [ ) S - max,

p(F)
where P(Q,,...,QEIF) - is the probability
of Q,,...,Qk regions presence in Image on

condition that F image is observed;
P(F|Q1’---:Qk) - i Jjoint probability

density of all pizels Doppler frequencies
on condition that dimage is partitioned
into regions Q1,...,Qk; P(Q1,...,Qh} - is
a preobability of Q1,...,Qh
presence in  image; p(F) - is
unconditional Jjoint probability densit
of all pixels Deoppler frequencies.

Consider +the cofactor P(Q,,...,Qh) in

{(3). To desoribe laser radar images, use
can be made of Markovian random-field
meodels (Kelly,1988; Besag,1974; Derin,
1986; Hanson, 1982; Therrien, 1986) where
each region is desoribed by iis own
stationary random procese  and the
transition from one image region  to
another is modeled by a Markovian
pProcese.

Let us use 3
{zy)

states of eight pixels adjacent
and 0 to symbolize a set of

(zy) )
all the pixels without (2.}).

Markovian model satisfies
PQ,,...,0,)= B(s_ @ _ )=

4
zy’ (xy)
=P(a_ 1G4, . )P =P (s
P8, 10,0 )=F (s

to designate a set of

to (1,Y)
states of

Now the

(4)
)P

<
(zy) myl“(my) “(myg
where P(Sxyls(xy))

g state probability

- is the (r,y) pixels

on condition that
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neighbouring pixels have S(xy} states,
correspending to specified image
partitioning.

It i known that the Markovian model

patisfies the Gibbs distribution (Derin,

1986), whieh can be written as

P(Q,..,0Q)= —— exp

{_1. Z vcm)} (5)
BD T CE

where ¢ 1is the pixel set termed the
olique which oonsists either of
individual pixels or of their OUPE ,
satisfying the condition that if (¢,4)€c
and (r,1)€c for (1,7)#(k,1), then (1,)
and (k,1) are adjacent pixels. ¢ dis the
set of oliques belonging to different
types. VC(Q7""’Qk> is the function

depending only on pixels of type "oV
oliques, intended for the specified
fragmentation of the image and termed the
potential function. T is the constant. BD

is the normaliration faotor.
it
types

is

in

the above problems,
clique

Ta solve
expedient to determine
accordance with Fig.t.

BB B

#® jz.ovl B

Bl BB type a type b type o
type 4 type e

Fig.1. Cligue Types for B-Commection
Neighbourhood of Pizel (Z,Y).

A potential funection for the Type 1
clique consisting of two pixzels (x,y,)

and (Iéyg) can be speoified in the form

B‘L!if Sa_‘ =8

3 ; = 4 LY

Villeyyy)s lazu5))= {'ﬁz else ' 1 FF
(6)

where @l is the parameter corresponding

to the Type 1 olique. For
individual-pixel cliques, the potential
funetion can be defined as

Vl(z.y} =a,, if Smy=1 (7T)

where Q. is the parameter assooiated with

the Type 1 eclique. Then the potential
function for the type "¢" clique, V_(Q),

gpeoified all over the image Q will be =&
sum of potential funections (8) or (7) for
the entire image.

The normalization factor BQ shall be
selected on the basis of the condition




n n

1
2P£(511’”’SNM)=§ EEXP{E EVO(SM""’SN'M)}:1
i=1 ol=1 o£(
(8)
where n is the number of possible

segmentations of the image.

Now we shall make specific the potential
funcetion type for the above clique types.
In accordance with and using the
funetion sign(r), whish tzkes the values

1, it x> 0

glgn(r) =
= { 0D, if z =0,

we can write

e wfn-) Yimls )

R B S |

y=1 x=1
M-1 N

Veuo B[00t )N~EZ Eignlsw— sm/”n

y=1 x=1
M-1 N

Vk+;63((m;1)(NM1)_8§:§§1gnlswyaﬂm—f.y+1|]

y=1zx=2
M-1N-1

Vk =ﬁd[(M—1)(N‘1)’2§:§§15nlsmy—sm+1.y+7l)

+4 y=Tx=1

Here x is the number of image area types,
V, are potential functions for individual

k
-pixel oliques (type gy and for
different area types, Vk+7 to Vk#d are

potential functions for cligques of types
"bn’ncn, "d"'"e",

In aceccordance with (4), the probability
of the specified =segmentation ocan be

eplit intc two parts
1 5YV,(5. )
PQ,,...,0 )= — ex { Yy T imay)’ } «
1 T D, P ' T

(1Q)

&
o YNz )

J=1

Then, in view of (2), we have
&

VS, )
i’ 4 e
exp{z____é_x_ﬁ,}_axp{ﬁ [e-siemies,,, L 1-

i=1
—sign|k~sx_1.y;]

B

&€&

+ ﬁg[z—sign[k—sm'y+7|—
—sign]k—sx'y_1§] + ﬁ3[2~sign;k—s$_7‘y+7|-
“Signlk'5m+f.y-1!]+64[2'81gn|k'8x-1‘y—7!—
_sign gk-sw‘w|]+ ak[‘i—sigl[sxy ~1{;]}

(1)
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Provided certain assumptions are made,

(11) oan be further simplified.

SYNTHESIS OF SEGMENTATION ALGORITHM

The sliding-window image  processing
{(Therrien, 1986; Pratt, 1978) is an
acoeptable technique which can Dbe
employed for solving the problem.

Let some initial Doppler image
partitioning i= given and all pixels are
assigned specific siate values. The

initial segmentation procedure will be
discussed below.

After that we choose an arbitrary (z,y)
yixel and superpose the window center on

it. Then we vary the ceniral pixel state
without other pizels state ohange and
caloulate the oorresponding values of a

pogteriori probability ( with an acouracy
of up to 1/p(F)

P@IDR@=p(F|5,, LS, )P (5, T
Note that
L A T TOUUEY b 1 Lo | ST M L JOSY b

= p(p{my) lsmyzL’S(my)) ¥

Q(zy)J

where F(xy) is the image F without the

pixel (7,Y). The second oofactor in the
right-hand side of the relation does not
depend on Sx , 50 account can be taken
only of p(fwyiF 1,5 ).

(zy) " Poy " (2y)

In view of the remarks made and of (3)
the search for the maximum value of a
posteriori probability at pizel (7,Y)
state variation is reduced fto maximizing
the expression

e(f_|F ,s_=L,5 JP(s_=L|S )— max
Ty [§:378 zy 7 {zy) it (zy luarL
and the assignment of a new state to a

(x,Y) pixel. It is necessary o apply the
given rule for all pizels to get a2 more
preocise image partitioning and then 1o
lterate all the procedure. As a result we
get = following rule of Doppler image
segmentation

n . n+1 n . (12)
PL(fmyiF(my))P(Szy =L]S(xg)JEEF_f max

1 pizxel

are

where S?Z - is a state of a (Z,Y)

for a ocurrent iteration step; chyj
states of the window nei%hbauring pizels
at  the _ previous iteration step;
pL(fzylF(my)D“ a conditicnal probability

density of (7,Y) pixel on condition that
(r,y) pixel ham S..= L, and the window

L
neighbouring pixels which were assigned

s= L at tge previous step, have freguenocy
values F .

(xy)
Now consider the cofactor P(FIQ?,...,Q
of (3). Sines all Fi are independent,

P(FIQ,,---,Q,)=P(FIQ,)p(FIQ,) .. .xp(P|Q,)

h)




EPTOTE  can
normally distributed,
meaning that actual Doppler signals are
desoribed by narrow-band normal random
processes (Papurt,.1981),. characterized by

Doppler frequency measurement
be taken 3o be alls

an asymptotically normal instantaneocus—
freguency  distribution =2t a high
ulgnalfnnlsP ratic (Jeswms,1974). Then,

considering a set of the pixels {
as a veotor and with
an expectation Gi’ the conventional Joint

denesity of the probability of Doppler
frequencies of the area Q pixels can be
written as

sorresponding to Q,

1 -1 T -1 )
p(FilQ{_)=———————————exp{ ;(Fi—Gi‘)M,L(Fi—Gi)}
(2m) "M, | - :

(13)
where M{ is the ocorrelation matrix of
measurement errors, |[M,| is the matriz M,
determinant, n, is the vector Fi number

of dimensions, equal to the number of
region Q, elements.

Since frequency measurement errors of
different pixels do not correlate
(Bullivan, 1980; Wang, 1984), the
sorrelation matrix M is diagonal
2
9y 2
O“:‘
Hi= = . . (14)
= =1
IG [
By
where 012 iz the Doppler  Irequency
variance for the 1-th pixzel of the Q,
region.
For definiteness sake, let elements of
two regions, Q and Q . whinh will Dbe
designated by Q = QN W and Q =Qnw,
will be in the ourrent positi on, in the
slidi window W. It i neosssary 1o
determine the state S, of the oentral
pizel (z,y), i.e. to Eelect one of the
following hypotheses: H - (T,Y)e Qk and
szy-korﬂ—(:ry)eczmand smy = .
Substituting (11), (13) in (12) and
taking the lngarlthm of it, we obtain
(1,-g,) (f,-8,)%]
E 1no+—-————i—~ 5 Inog+ —L 20 |-
20® * ! 202
zsak (z.y) 1 teq J
B (1 2
— g ~
-E 2 [ln a,+ —t t
(m.y)éQ 2 g2
—k {'(:Q}e i
(f,- g,)% (15)
+ }:: in oj+ Sy .
ieqUcz,yy =9 m

887

where E is the sxponential function index

in (11).

Expression {(15) includes the  unknown
parameters g To uee the proposed
3lgorithm,ﬂgi shall be substituted by the

estimates g, . In Doppler images, moving

object patterns are planes. In this ocase
fmy of an objeoct slement defined by

is

the expression

w8

is a projection

m+m,y]q (16)

whers g, of an objeet
ki

translatory motion on +to the line of
sight; &,,0, are angular rates of an

object rotation relative to the orthogon-

al azes lylng in the plane perpendioular
to the line of sight; q is a proportlon~

%llty factor; z,Y are the pizel coordina-
es.

Then the veotor F{ can be represented as

Fi= Tiqu + 8{ (17)

where T = I X, ¥ ) is the transforma-
tlon matrlx of dimension n, w3y

= (& 8, )T the ith region
velocity veetnr, Et is the measurement
errors veoctor; n, is the number of pixels
in ith region.

is

i

The veotor Gt can be found by  the
least-squarses technigue for varying-
soouracy measurements. It is easy o

demonstrate that it is accomplished by
solving the following linear-equation set

( (18)

J
f%ﬂmz&s J]q‘ Z 4%
H J=1

Here summation die iaken over all the

pixels of the region Q; or Q;. Since the
found value of the vector estimate G: has

its own correlation matrix of errors, the

. shall be
substituted for o iﬁ and G, in {15). When

the central pixel state varies, its value

refined varlancps e} Eand O

has an effect on unknown  parameter
estimates being ocomputed. It reqults in
that in (15), values of Gi . O . gi, gj




in the left-hand side and right-hand side
are not the same and  hypothesis
comparison computations are very tedious.
However, if the central pixel (z,Y) value
is dignored in determini the  above
parameters, i.e. the predicted value i=
in facf comguted, all the values of Uig,
sz, g, gj are the excluding

estimates for the pizel being analysed.
Then (15) will transform into

same,

~ 2

(19)

= (fwy— gzy)L
In Gmy + - ¢ + F| —— min
2 o b= 5$y= h.m
zY

Now, in the case of the p}xel {x,g) state

variation, the estimates gmy and Gwy are
obtained on the basis of the set of the

elements of the area Q; (at Smy= K} or of

the area Q; {(at Smyf m). As has been
noted, the value of gmy aan be fognd by
solving system (18). To determine Uwy s 8
correlation matrix of veotor G estimate

i
errors shall be found. In accordance with
(TuxoHOE, 1982)

Ry = (B) "= (1t w"2)™ (20)
where T= (I, X, Y ) dis the 3 = n
matrix; I is the unit vector; X, Y are

the vectors of the cocordinates of the

* . .
area ' elements; M is- the oorrelation

matrix of measurement errTors.
Substitutin§ the above quantities in
(20), we obiain
[ 1 Iy Yy 1
2 TF LT L oE
9 9y 9y
r T I,y
{ t 191
= -1_
Ry =(B ) "=, Z g 2 2 g 2 o2
1 i ‘i,;,
3 by T4, 5 Yy
2 2 2
L a, a, a,” )
(21)
and matrix RG elements are defined by
the expression
1y i+
(1) mij ("5'7
r,,s — 22)
o get (B
where My, iz the corresponding minor of

the matrix B.

Since the pixel (7,Y) coincides with the
window centre and ite coordinates in the

?éiging—window coordinate system  are
m
~ 11
02=02%2+—r (23)
i Y det (B)
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The result can be easily generalized to
the case in which there are more than iwo
hypotheses.

INITIAL SEGMENTATION PROCEDURE.

consider the initial segmentation
To  implement the  proposed
algorithm, very stringent requirements
gshall be dimposed on  the initial
segmentation since in ocase any segment
does not get its No. during the initial
segmentation, its will be dimpossible to
further segment it, provide 1t with an
identifying dindex and determine  its
parameters. To sclve this problem, the
following two-step procedure can be
proposed.

Now
procedure.

The first step is the detection of planes

and the second step consisis in  thedir
marking. Planes shall be deiected as
follows.

1. The image F shall be processed with a
sliding window whose size shall be
deliberately smaller than the expected
sizes of regions to be discerned. In each
window position, regression oocefficients
used in plane approximation of the window
by the  least-squares  technique for
varying-accuracy measurements shall be
estimated with regard for all the window
pizxels and proceeding from the hypothesis

that all elements belong teo the plane.
Use shall made of expression (18).
2. Squares of the distances di between

the observed values of the window pixels
F and the approximation plane shall be
determined.

3. Variances of frequency estimates for
the windew pixels shall be determined by

- z 1 2 2
= — o 1 -
U:r:y Omy+ det (B) { My T Mogt Y Moy

. 24)
— 2 2 k8
2rmt2ym.+ 2 xy mzs}
where det(B) i= the matrix B
determinator, mij is the oorresponding
minor of the matrix B, Dwy is deterined
by (1).
4. The gquantity

k3 z s

3 = E dt / a,” (28)

i=1
{where n is the number of the window
pixels) shall be determined. In case all
the window pixels are in a plane, the
guantity S 1is, characterized by  the

distribution Y~ (1) of

freedom.

with 1n degrees

5. The confidence interval (0,C) shall be
specified in =accordance with values of
percentage points of the distribution

y(m). I 8 ¢ (0,C), then the window




shall be considered to be entirely in the
plane. If S > (, the window shall be con-
gidered to be at a Jjunction of different
planes. In this case the central pixel
shall not be marked out.

Plane marking-out shall be done parallel
to plane deteotion and in the following
order.

1. Plane approximation parameters shall
be memorimed as k-indexed region
parameters (it is initially assumed That
the number of marked-out regions is k-1).
The central pixel of the segmented image

shall be assigned a value of k. A
correlation matrix of  approximation
parameter estimate RG errors shall be

memorized simultaneously. In all cases,
approximation  parameters shall bhe
compared with previously recorded

parameters of areas whose elements are in
some window W, and relative to  the

1
central pixel may be inecoincident

(W

1

with W). The comparison is done with
regard for RG‘

If such parameters are

already existing, for example, in the
n-indexed region, then the central pixel
is assigned a value of n.

2. If elements of 1k —-and kg—indexed

regions, having the same parameters G are
present in the neighbourhood, the
equivalence K1=k2 is fized. Upon

proceseing the entire imsge,  these
indices shall be reassigned, giving the
priority to the least index.

ATLGORITHM GENERALIZATIONS.

Upon segmenting, parameters of
approximation of the discerned regions
shall be refined with regard for all the
pixels. Correlation matrices of errors of
estimates of these parameters shall be
computed simultanecusly. Coordinates of
each of the regions and numbers of their
elements shall be determined. The
algorithm cutputs a segmented image in
which each of the discerned regions has
an identifyin% index, a parameters vector
comprising its coordinates, regression
coefficients used in the discerned-area
plane approximation, a correlation matrix
of estimation errors and the number of
pixels in the area.

It dis not difficult to apply  this
algorithm to other iypes of images of the
olass under coneideration if the proposed
medels are valid for desoribing the
images. In the oase that other image
models must be used, the algoritlu shall
be adapted. For example, in segmentin%
ranging images if scene objeots are no

describable by first-order surfaces. AB a
rule, such problems can be solved using a
model which desoribes the image by first-
and second- order surfaces. Then i1if S
determined by (25) is greater than the
threshold €, it is necessary to check
during the initial segmentation whether
it 8 possible to approximate

s
4
BN
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sliding-window elements with a
second-order surface. To this end, a
sixth-order linear equation set must be
solved. Then approximation  parameters
obtained at the initial segmentation
stage shall be taken dinte account when

determining g, values during iterative
4 ~
segmentation. Determining o, presents

some problems. However, in practice, use
can be made of the lower-bound estimate
of 0, in accordance with (1).

i

MODELLING RESULTS.

Mathematioal modelling has shown that the
algorithms are workable with different
types of images. The segmented iImage is
usuallu generated in 5 to 10 algorithm
iterations. Depending on the =ocene
complexity, the labour requirements for
Doppler images are 300 %o 350 operations
per pixel. The labour requirements for
the initial segmentation procedure is
about 40% of  the total labour
requirements for the algorithm.

Fig.2 shows an image whioch is a Bsource
for the Doppler image. Patterns of moving
objects touch and shade each other. Fig.3
shows an image of the reflected signal
intensity. Intensity generstion has been
based on the assumption that propagation
and reflection conditions of al? the
4 shows the

pizels are the same. Fig.
have been

image F. All the images
quantized into 16 levels. Fig.5 shows =a
segmented image, a result of the initial
gegmentation. Fig.6 shows a final dimage
obfained afier 8 algorithm iterations.

Good results have been alsc obtained in
applying the algorithms to other types of
images. However, when second-order
surfaces are used in the model, the
acouracy of estimated-component
measurement shall be very high.

REFERENCES

1. Besaf, J.,1974. Special interactions
and statistical analysis of Lattice
systems. Journal of the Royal Statistical
Society, ser. B. v. 36:192-236.

2. Bopucenxo H.B.,  3aamonosbcHull A.4.,
YyuHur A.5.,1987.CerMeHTalIMA U300DaKeHIA.
ABTOMATHEKA ¥ TeJeMeXaHwKa, M 7: 4-25.

3. Dansac, J., Meyzonnette, J.L., 1985.

CO,-laser  doppler rangefinding with
heterodine detection and chirn pulse
sompression. FProoeedings of the BSPIE,

v.590:380-388.

4. Derin, H., Cole, W.5.,1986. Segmenta-
tion of textured Images using  Gibbs
randomfield. Computer vision, graphios
and image prooessing, v.35:72-98.

5. Duda, R.0., Hart, P.E.,1973. Pattern
olageification and scene analysis. John
Wiley, New York.




BB
R
ROOSR

8

X
REXRRRARN:
S R
R AKX

SRARY
o
25
5

2

i

3%
3%
2

5

REREEREIRINN

AR,
R0 esocs

+

$x
XHHX AR LN
AR RNK RN

%

%
P

5
i
Lo
SRR
&

Bni,
“&«n”ﬂ KXRRX
;x*x unﬂ%“%
e
i
g
T

890




6. Hanson, F.R., Elliott, H., 1982,
Image segmentation using simple Markov
fields models. Computer vision, graphies
and image processing, v.20:101-132.

7. Kelly, P.4A., Derin, H., Hartt, K.D.,
1988. Adaptive segmentation of speckled
images using a hierarchical random field
model. I Transactions on Acousties,
speech, and signal processing. v. 36(10).

8. JeBun B.P.,1974. TeopeTHYeCKNe OCHOBH
oTaTHeTHYe CKOM pamuoTexsuMEu, T.1. M.:
CogpeTcKoe pamio.

9. Lisitayn, V.M., Obrosov, K.V., Pasec-
hny, N.N., Stephanov V.4., 1990. Laser
radar images iterative segmentation for
dynamic scenes. In: Int.Arch.Fhotogramm.
Remote Sensing, Vietoria-Canada, Vol.28.
Part 7-1,pp.716-723.

10. Jucuywn B.M., O0O0poco8 K.B., Haceunwtl
H.H., CmegaHo8 B.4., 1990. AnropuT™M
cerMeHTAaLMN IOTINePOBCKUAX  ONTHYE CKUX
usodpaxermt. RBECTHA AH  CCCP.
TexHruecKasa KudepHeTU®a. M 2: 203-213.

1. Papurt, D., Shapiro, J., 1981.
Atmospheric  propagation  effects on
coherent laser radars. Proceedings of the
SPIE, v.300:86-99.

12.Proft W.1978.Digital Image Processing.
John Wiley, .New.York, .pp.318-355.

13. Sullivan, D.R., 1980. Activ 10.6 um
image processing. Proceedings of the
SPIE, v. 238:103-118.

14. Therrien, GC.W., Quatiere, T.F.,
Dudjion, T.E., 1986. Statistical model-
based algorithm for image analysis.
Proceedings of the IFEE, v.74(4):532-551.

15. Turoxo8 B.H., 1982. CrarTHCTHYeOKasd
PaIIOTEXHIKAE . M.: Pammo ®m CBA3E,
orp.460-467.

16. Wang, J.Y., 1984. Imaging (€O -laser
radar field test. Applied opties. v.
23(15):2565-2571.

891




