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ABSTRACT: 

The use of digital multispectral imagery for thematic classification has become standard practice. In a conventional 
approach only color attributes of individual pixels are used in classifying terrestrial objects. Since many terrestrial 
features possess similar color attributes, thematic classifications solely based on color attributes are often 
inaccurate. A new approach has been implemented that in addition to color takes also into account the spatial 
relationship of individual pixels to their neighbours. The use of spatially related information greatly enhances the 
analyst's ability to make improvements to the type of thematic classes that can be extracted and to their accuracy. 
This was demonstrated by a successful application of this approach to the classification of crop types using TM 
imagery. 
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1. INTRODUCTION 

Although twenty years have passed since the first 
Earth Resources Satellite (Landsat 1) was launched, 
the utilisation of imagery data provided by this type of 
satellite for thematic mapping has not yet fulfilled the 
early expectations raised by this new type of 
environmental data (Ryerson, 1989). While the quality 
of the data both in terms of spatial and spectral 
resolution has improved during this time span (e.g. 
TM vs. MSS), the same cannot be said for the 
computer-based methodologies applied to the 
extraction of thematic information from the physical 
data. In particular, the approaches and techniques 
used in these methodologies have not progressed 
substantially since that time. The conventional 
approach assumes that individual picture elements 
(pixels) represent actual classification objects by 
ignoring any other pixel attribute but color. As 
pointed out by Sijmons (1987): "treating scene elements 
as independent objects is an incorrect model that 
ignores structural features which explicitly consider 
the spatial relationship between neighbouring 
elements". If the spatial element is not taken into 
consideration, "mixture" pixels, those pixels where 
two or more terrain cover types mix, cannot be 
distinguished from "pure" pixels that represent a 
single land cover type. In addition, many land 
features characterized by a typical spatial 
configuration, such as roads, cannot be distinguished. 
Usually, roads generate spectral signatures very 
similar to all other man-made objects found in built­
up areas. Clearly, the discriminating algorithm to be 
applied in any attempt to identify the linear pattern of 
roads will have to take into consideration both the 
spectral and spatial attributes of pixels. The addition 
of the spatial configuration of pixels to multispectral 
color in the analysis of remotely sensed imagery data 
is not only useful for classifying specific thematic 
categories, such as roads, but should be considered an 
essential element for improving the accuracy of any 
type of thematic classification. In fact, using spatial 
attributes it is indeed possible not to be any longer 
bound by the erroneous concept of representing pixels 
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as classification objects. Through a segmentation 
process a terrestrial scene can be partitioned into 
areal and linear structural elements. characterized by 
the association of pixels having similar spectral and 
spatial properties. These structural elements will 
have a much closer link to land features than 
individual pixels, bringing about significant 
improvements to the entire process of image 
classification. This paper describes the design and 
development of GEOCLASS, the first computer-based 
methodology commercially available capable of 
analysing multispectral imagery in both the spectral 
and spatial ·domain. 

2. CONVENTIONAL APPROACH 

To illustrate the advantages to be gained by the 
GEOCLASS methodology, a short review of the 
shortcomings of the conventional approach based on 
pixel processing is required. The basic premise in 
computer-assisted multispectral classification of 
remotely sensed imagery is that terrestrial objects 
display sufficiently different reflectance properties in 
different regions of the spectrum to allow specific 
colors to be associated to specific objects. This is in 
general a valid assumption. However, this 
assumption should not be meant to imply that every 
picture element of two different objects is different in 
color. For instance, if it is true that the average color 
of a wheat field in a satellite summer image is 
different from that of a field of canola, it is not true 
that every pixel belonging to a wheat field is 
necessarily different in color from every pixel 
belonging to a field of canola. Ignoring this fact leads 
to a number of problems that permeate throughout the 
entire conventional classification process. However, 
there is even a more serious drawback. This has to do 
with the most importantaspect of image classification, 
which is the choice of training samples. Training is 
the initial stage of the pattern recognition process 
followed in remote sensing. It consists of determining 
a valid sample for the spectral signatures of all objects 
existing within a selected scene. A valid sample 
means that the sample must best represent an entire 
population of a specific land feature. Since all 
classifiers commonly used in remote sensing rely on 



the measure of distances of pixels from class centres, 
the sample that best represent a specific land feature 
is the one which best define the centre of such class. 
In conventional methodologies samples are either a) 
arbitrarily selected by visual inspection of a video 
display of imagery data (supervised classification) or 
b) automatically selected by implementing some form 
of clustering technique on raw data (unsupervised 
classification). Both of these techniques could possibly 
work only if color distinctions between populations of 
terrestrial objects would be sharp and no color overlap 
would exist between neighbouring classes, which is 
certainly not the case in remote sensing. In fact, in 
the majority of cases only a few radiance levels 
separate a class from the next. Even a skillful image 
analyst would find very difficult, if not impossible, to 
outline visually on a video screen samples that will 
define the actual location of class centres, so that valid 
statistical discriminating functions can be applied. 
Moreover, if variance values are also computed from 
these samples, as normally done with the maximum 
likelihood decision rule, the wrong assumption is also 
made that the sample variance, which in the majority 
of cases depends mostly on local factors (e.g. the 
presence of discontinuities in the canopy of crops), 
does somehow reflect the actual variance of an entire 
class of objects. As to the application of clustering 
techniques, the presence of "mixture" pixels together 
with the color overlap existing among various classes 
makes it very difficult to find valid histogram peaks, 
i.e. peaks that do represent class centres. 

3. GEOCLASS APPROACH 

3.1 Image Segmentation 

Let us look now at the solutions to these problems 
provided by the GEOCLASS approach. First of all, it 
was found necessary to isolate object populations from 
each other through a segmentation process based on 
the extraction of boundaries that delimit regions of 
homogeneous color. This process is done in stages 
and is illustrated by Figure 1. The upper left quadrant 
depicts a 4.5x3.5 kms agricultural test site located in 
Manitoba, Canada. This site ',., as used for an in-depth 
evaluation of the capabilities of the TM sensor to 
discriminate a variety of field crops: potatoes, flax, 
cereals, peas, rapeseed (canola), etc. (Steffensen and 
Mack, 1986). This enhanced portion of a TM scene 
gathered on July 1,1984 was produced using band 4: 
red, band 7: green, band 2: blue. Fallow and potatoes 
appear as green tones, cereals as red tones, peas and 
canol a as pink tones, woodlands as dark red tones. 
The upper right quadrant shows the results of 
extracting gradient values for each pixel. This is done 
by measuring a non-directional gradient value 
occurring within a 3x3 cell centered on each pixel. 
This process is applied band by band. If a pixel is 
surrounded by pixels of the same value in a specific 
band it will have a zero gradient value in that 
particular band. The higher the difference between 
the center pixel and its eight neighbours, the stronger 
the gradient value. The end result of this automated 
computation is a subimage in which dark areas are 
areas of color homogeneity and bright lines mark the 
color changes occurring within the scene. It can be 
seen on figure 1 that high gradient values affect a few 
pixels at the edge of each agricultural field and that 
different gradient values occur in different bands 
depending on the crop types involved. Yellow line~ 
(high gradient values in bands 4 and 7) mark the 
boundaries between exposed soil and vegetation, while 
purple lines (high gradient values in bands 4 and 2) 
mark boundaries between different green crops. To 
further understand how the upper right quadrant of 
figure 1 is related to the upper left quadrant, one can 
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focus his attention on the triangular feature 
appearing on the upper left quadrant. This is an 
abandoned airport. Since the runways are 
represented by more than one pixel in width the 
gradient algorithm is capable of isolating a black low­
gradient pixel having on both sides bright high­
g;radient pixels (se~ right si.de). Now, by applying a 
rIdge-edge extractIOn algorIthm to the upper right 
quadrant we obtain the subimage illustrated in the 
lower left quadrant, where precise boundary lines are 
defined. This process is an iterative process whereby 
the image analyst chooses the proper thresholds for 
achieving satisfying results. The final step in this 
segmentation process is an automated filtering of the 
boundary lines of the lower left quadrant from the 
upper left quadrant to obtain the lower right quadrant. 
A zero value in all bands is assigned to the filtered out 
pixels resulting in the black areas shown on the lower 
right quadrant. Notice that the parcels resulting from 
the segmentation process do follow in the large 
majority of cases in shape and size the different field 
crops and that only rarely individual fields are divided 
in multiple sub-units. 

3.2 Training 

Assuming that each agglomerate of pixels within a 
parcel portrays a single object, which is normally the 
case, the segmentation process provides us with the 
object population needed for classification. A unique 
identification number is assigned to each parcel 
allowing for the average color of parcels to b~ 
computed in each band. Then these vector data are 
displayed as a color scattergram on the video screen of 
an image analysis system. The analyst can either 
assign to the points in the scattergram identical colors 
to those of the corresponding parcels in the image or 
any transformed color (e.g. ratios between bands).' In 
this way the analyst is provided with the capability to 
a) ide.ntify visually the location of class centres by 
groupmg together scattergram points having similar 
color;. and b) define valid training samples, by 
selectmg p'arcels located around class centres as 
bei~g representative of each class. In summary, the 
baSIC advantage of the GEOCLASS approach in 
training is that it allows the identification of valid 
locations for class centres, which is the paramount 
factor for a successful classification. 

3.3 Classification 

In the last phase of the classification process a 
classifier is applied to extend the classification from 
the training samples to the entire image. The 
conventional approach is to carry out this final stage 
as if the structural context of each pixel would be ot no 
significance. In other words, if an image is 
scrambled, or if we would change arbitrarily the 
relative position of the pixels, there would be no 
impact on the classification results. However, 
contextual considerations can be quite helpful in 
finding the correct classification for pixels not having 
a distinct signature and for boundary pixels. 
Boundary pixels should not be processed similarly to 
"pure" pixels. In a conventional system class 
validation is done purely on theoretical grounds. 
Valid classes are those for which the computation of 
certain statistical parameters (e.g. confusion matrix) 
indicates no class overlap in feature space. In this 
case, a high level of accuracy is expected in the final 
classification results. However, even samples that are 
not overlapping in feature space may lead to an 
unsatisfactory classification in terms of thematic 
accuracy, if these samples are not located close to 
class centres. Even relatively small changes in 
selecting training samples can significantly change 



the results of classification, particularly if the 
maximum likelihood decision rule is used as a 
classifier. Let us now look at the solutions to these 
problems provided by GEOCLASS. The first step with 
GEOCLASS is the classification of the color 
scattergram data. This will provide a much more 
accurate validation of the training performed than a 
simple estimation of probability values in 
misclassification. The classification of the two­
dimensional scattergram representing the entire 
universe of parcels precedes the classification of the 
corresponding image. This undertaking will allow 
the analyst to verify whether the classification process 
has indeed grouped together parcels that, according to 
statistical distribution criteria (cluster analysis) and 
color, should belong to the same class. Since a unique 
code number is associated with each parcel, it is 
feasible to cross check scattergram data with imagery 
data. Experimentation has shown that valid changes 
to the number of classes and to the training samples 
associated with them can be introduced at this stage 
by this procedure. Only when the analyst is satisfied 
that the scattergram data are properly classified, the 
actual classification of image data starts. Image data 
are classified in successive passes (Steffensen and 
Smith, 1978). In the first pass each parcel (see again 
the lower right quadrant of figure 1) is classified as a 
single class. In each of the successive passes, the 
individual pixels that were filtered out during the 
segmentation process will be also classified. Before 
deciding about a pixel attribution to a class or a 
combination of two classes (boundary pixels), 
reference is made to the type of already classified 
neighbours. The logic of this process is that, although 
the signature of a pixel alone would not be necessarily 
sufficiently distinct to determine unequivocally its 
thematic nature, the proximity to an already classified 
pixel will help in making a correct decision. To 
provide an example, if a "pure" pixel has a signature 
which is similar to two different classes but all its 
neighbours belong to only one of these two classes, it is 
most probable that the pixel in question also belongs to 
the same class as its neighlJours, although in pure 
probabilistic terms it may actually belong to the other 
class. However, if the sii:,.;ature of the pixel in 
question would be such as to exclude the possibility 
that it belongs to the same class as its neighbours, the 
mere presence of neighbours having different 
attribution is not a valid reason for overruling the 
decision made. Unfortunately, post-classification 
filters widely used commercially do just this. 

3.4 Classification Results 

The GEOCLASS approach was tested by comparing 
the results of classifying the agricultural test site data 
of figure 1 with the results previously obtained in 1986 
by Steffensen and Mack (ref.cit.) using a conventional 
maximum likelihood pixel-by-pixel classifier. To 
overcome the difficulties inherent to the multispectral 
classification of crop types at this early stage of growth 
(crops were seeded only 30 to 60 days earlier) extensive 
use of ground truth information (a detailed field map 
recording ground cover, color, growth stage, etc., for 
more than 100 fields) was made. Actually, all training 
samples were selected within the ground truth 
sample. The comparison of the results of 
classification with the ground truth map data yielded 
an average accuracy of 87%. This level of accuracy 
would have been impossible to achieve in a 
conventional classification without the availability of 
the ground truth information. In contrast, the 
GEOCLASS approach was applied without any 
reference to the ground truth data. Ground truth data 
were only used to assess the accuracy of the results of 
classification. This assessment indicated that an 
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equal, if not better, accuracy was obtained for each 
crop type previously classified with the conventional 
approach, and that an average accuracy of 90% was 
achieved. 

4. CONCLUSIONS 

This paper illustrates the philosophy behind the 
development of a new approach to the thematic 
classification of multispectral imagery. Instead of 
individual pixels, agglomerates of pixels having 
similar spectral and spatial attributes are the objects 
of classification. The key factor for a successful 
implementation of this methodology is the ability to 
subdivide any multispectral image into segments 
closely related to terrain features of interest. Beside 
the successful experiment conducted with the 
GEOCLASS image analysis software on an 
agricultural test site in Manitoba, Canada, illustrated 
above, a number of other agricultural areas in 
Canada and Europe were also successfully processed, 
involving not only LANDSAT-TM but also LANDSAT­
MSS, MOS and SPOT images. It appears, therefore, 
that this innovative approach could provide universal 
application to agriculture. GEOCLASS was also 
applied to the automated identification of individual 
tree species using large scale (one meter pixel size) 
Multispectral Electro-optical Imaging Scanner (MEIS 
II) airborne data (Mc CoIl et al., 1983). The scene used 
was acquired on Oct.29, 1985 over the Petawawa 
National Forestry Institute research forest located 
near Chalk River, Ontario. Using the GEOCLASS 
segmentation algorithm, the central portions of 
individual tree crowns of Red Pine, White Pine, White 
Spruce, Red Spruce and Norway Spruce occurring in 
pure and mixed stands with open to dense crown 
closures were successfully isolated. The filtering out 
of the crown portion mostly affected by large 
variations in reflectance, i.e. the rim, eliminates an 
unavoidable source of error in pixel-by-pixel 
classification. Without having access to a precise 
ground truth that would provide species identification 
tree by tree, accuracy figures cannot be quoted. 
However, preliminary classification results indicate 
that higher classification accuracies can be obtained 
with GEOCLASS that with any other conventional 
approach. 

5. REFERENCES 

Mc CoIl, W.D., Neville, RA., Till, S.M., 1983. Multi­
detector Electro-optical Imaging Scanner MEIS II. 
Proc. 8th Can. Symp. on Remote Sensing, 3-6 May 1983, 
Montreal, pp.71-79. 

Ryerson, R, 1989. Image interpretation concerns for 
the 1990s and lessons from the past. Photo Engn. and 
Remote Sensing, 55 (10), pp.1427-1430. 

Sijmons, K., 1987. Computer-assisted detection of 
linear features from digital remote sensing data. ITC 
Journal, No.1, pp. 23-31. 

Steffensen, R, Mack, A.M., 1986. An evaluation of 
Landsat TM and MSS data for crop identification in 
Manitoba. Proc. 10th Can. Symp. on Remote Sensing, 
5-8 May 1986, Edmonton, pp. 579-589. 

Steffensen, R, Smith, A.M., 1978. An analysis of the 
spatial and temporal distribution of surficial waters 
in the Minnedosa wetland district of Manitoba, 
Canada. Proc. 12th Int. Symp. on Remote Sensing of 
the Environment, Manila, Philippines, pp. 1015-1024. 



906 


