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ABSTRACT 

In this work a three-layered feedforwrd Neural Ne­
tork (N-N), trained with the backpropagation algo­
rithm, has been used for classifying a multitemporal 
Thematic Mapper image. The analisys has been ex­
tended to the case where the input data are obtained 
integrating the satellite image data-set with non Re­
mote Sensed data, as digital elevation data. The aim 
of the research is to evaluate the effectiveness of a 
neural network approach with respect to a Maximum 
Likelihood (M-L) statistical one: in order to achieve 
this goal the overall classification accuracy has been 
evaluated both for N-N and M-L, comparing the dif­
ference in performance on training and test data-sets. 
Moreover the results obtained with the two different 
approaches have been related to the statistical mea­
sure of the separability on the input training data. 

KEYWO RD S: Maximum-Likelihood classification, 
Neural Network, Multitemporal data-set, Digital El­
evation Model. 

1. INTRODUCTION 

1.1 Purpose 

The objective of the present work has been to state 
the applicability of a Neural Network approach to 
the analysis of Multitemporal Remote Sensed Im­
ages integrated with ancillary data. In order to 
achieve this goal, it has been constructed an inte­
grated data-set, composed by three Thematic Map­
per (TM) geocoded images and the corresponding 
Digital Elevation Model (DEM). From this data-set, 
the points belonging to 25 homogeneous fields of 
known ground truth have been extracted; some of 
them have been used as training and some as test 
set. The selected points have been analyzed us­
ing both a Maximum-Likelihood classification algo­
rithm and a neural network based approach. The 
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results obtained (preliminary results was presented 
in (Pasquariello, 1992)) refer to the following exper­
iments: a) classification of each single TM image; b) 
classification of the multitemporal TM data-set and 
c) classification of one TM image integrated with an­
cillary data. In a) the points belonging to each im­
age have been classified separately; in b) the spectral 
values of all the images have been merged and then 
classified; in c) the points of the worst classified im­
age have been merged with the elevation values and 
then classified. In the fourth section the results of the 
comparison of the two approaches will be presented; 
in section three the analogies between the N-N and 
the statistical pattern recognition tools will be shortly 
recalled together with a description of the N-N archi­
tecture used. In the following we review the previous 
applications of N-N to the Remote Sensing. 

1.2 Related Works 

The use of Neural Networks for classifying Remote 
Sensed images, has been recently investigated by sev­
eral authors. Some of them have discussed the advan­
tages and limits of this technique when compared to 
conventional statistical methodologies. Evaluations 
of the classification performance are generally based 
on parameters such as different numbers of features, 
different numbers of training samples per class, CPU 
time and overall accuracy for training and test data. 
Benediktsson et al (Benediktsson, 1990a, b) have pro­
duced experimental results of classification using both 
Neural Network models and statistical methods. In 
the first work these authors have analysed Land­
sat and topographic data, while in the second they 
have used subsets of very high dimensional simu­
lated HIRIS data. In the experimentation, they have 
evidenced the major limitations of the conventional 
Bayesian classification method: the need of having 
specific assumptions about the probability density 
functions of the pattern data and the nature of co­
variance matrix that could be singular in classifi­
cation of very high dimensional data involving lim-



ited training samples. Therefore the authors have 
proposed three Neural Network models, considering 
them more appropriate for classification of multi­
source and multidimensional data, because of their 
intrinsic non parametric and distribution free na­
ture. The coniugate-gradient linear classifier (CGLC) 
and the conjugate-gradient backpropagation classifier 
(CGBP), are ·modified versions of the conventional 
delta rule and backpropagation methods. These two 
models, in fact, are derived using the coniugate­
gradient optimization approach for the minimization 
of the cost function, instead of the most commonly 
used gradient descent approach. The third proposed 
model is a hierarchical neural network (PSHNN), in­
volving self-organizing number of stages (SNN), that 
could be considered as a single particular networks. 
Similar to a multilayer neural network, exept that in 
training error-detection phase, this model has shown 
the best performance among the three neural net­
works. These three models have been introduced by 
the authors to overcome the two experimented limi­
tations of conventional Neural Network models: they 
are timely expensive in training phase and their per­
formance is strongly dependent on the heuristic choice 
of input parameters. The results of the authors con­
firm that Neural Networks compared well to statical 
methods, however, statistical methods have the best 
performance in terms of speed, accuracy and gener­
alization for classification of the data sets considered 
in their work. 
After comparing the network techniques with several 
statistical methods, Mulder et a1.(Mulder, 1991) have 
evidenced that training time changes widely on the 
difficulty of the analyzed problem, on the choice of 
the training pattern set size and on the choice of in­
put parameters. For this reason Kahny et a1. (Kahny, 
1991)have focused their attention on the selection of 
optimal input feature to improve the output perfor­
mance of a three layered Neural Network applied to 
the classification of multifrequency polarimetric Sar­
Data. 
Fortuna et al.(Fortuna, 1991a,b) have applied a Neu­
ral Network, based on the Backpropagation Algo­
rithm to classify seismic events and to model the in­
fluence of noise sources on same type of geophysical 
signals. In the first work, they have illustrated some 
expedients to speed up the training phase of the net­
work. 
Lee et 0.1. (Lee, 1990), and Key et a1. (Key, 1990) have 
explored the suitability of a Neural Network tech­
nique for the classification of cloud Glasses. They have 
demonstrated that very high cloud classification accu­
racy can be attained with the introduction of spatial 
information, in the form of textural indices, in con­
junction to a Neural Network architecture. The four 
layer Neural Network classifier used a single-channel 
multitemporal Landsat-Mss data set, outperformed 
other non parametric statistical methods applied to 
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the same data, with a smaller number of training 
data. It also provided important information con­
cerning the significance of each feature vector to the 
classification of the selected classes. 
Also Bishof et a1. (Bishoff, 1991) have discussed the 
utility of including texture information and knowl­
edge based methods for the improvement of classi­
fication Neural Networks performance. They have 
essentially proposed an hybrid system for remote 
sensing classification problems, having first demon­
strated that Neural Networks performs better than 
a Bayesian classifier in the interpretation of Landsat 
images. 
The interest for the usefulness of Neural Network in 
the analysis of remotely sensed data have produced 
the development of new and improved models in 
more recent works. Kanellopoulos et al(Kanellopulos, 
1991) have proposed a hierarchical multiple net sys­
tem for the classification of two date Spot images in 
20 cover classes. However they have verified that the 
performance of the system is almost the same of that 
obtained with a single multilayer net, exept for the 
overall training time, that resulted almost halved. 
Kwok et al(Kwok, 1991) have investigated an unsu­
pervised Neural Network model, considered more use­
ful than a supervised one, for automatic and real-time 
classification of sea ice SAR images. 
Benediktsson et al(Benediktsson, 1991) and Teno­
rio et 0.1 (Tenorio, 1990) have proposed new Neural 
Network architectures for classification of multisource 
data, based respectively on the statistical consensus 
theory and on a Self Organizing Structure Algorithm. 

2. BACKGROUND 

2.1 N-N for Pattern Classification 

In many problems Neural Networks seem to offer an 
interesting alternative approach to traditional sta­
tistical ones. In particular, multilayer perceptron, 
trained with the well known backpropagation train­
ing rule, has been widely used in alternative to Bayes 
classifiers in evaluating a posteriori class probabili­
ties for classifying stochastic patterns. One of the 
main problems in Pattern Recognition can be sum­
marized as follows: given an input data. X, where X 
is a Nb-dimensional vector X €!RNb , assign it t6 one of 
Nc classes wd i = 1, ... , Nc} of interest. From a sta­
tistical point of view, the best decision rule assigns an 
input observation X to the most proba.ble class. If we 
define P(Wi I X) the probability of the class i given 
a pixel X (a posteriori probability), a Bayes classifier 
simply implements the following decision: 

X € Wi ¢:=:} P(Wi I X) > P(Wj I X) 

Vj#i,j=1, .. ·Nc (1) 



The probability for the i-th class of originating a pixel 
P of value X is expressed by the probability distribu­
tion function (pdf) P(X I W.) times the a priori prob­
ability P(Wj) of occurrence for that class. Applying 
Bayes theorem we obtain: 

P(Wi I X) = 
P(X I w')P(wd 

P(X) 
(2) 

Substituting Eq. 2 in Eq. 1, we obtain the well known 
Maximum-likelihood classification rule: 

X € Wi {::=::} P(X I Wi )P(w.) > P(X I Wj )P(Wj) 
V j f- i, j = 1, ... Nc (3) 

In the analysis of multi band Remote Sensed images 
the pdf associated to a class is normally assumed to 
be a multivariate normal density function: then a set 
of point representative of each class (training set) is 
used to calculate the Nb values of the mean and the 
Nb(Nb + 1)/2 elements of the covariance matrix for 
that class. These values are used in Eq. 3 to classify 
each unknown input vector X. 

A feed-forward neural network with Nb input units 
and Nc output neurons implements a mapping, F: 
~Nb -+ ~Nc by means of a set of P training examples 
{(Xl! Yt}, ... , (Xp , Yp H, where Xi and Yi are Nb­
pIes and Nc-ples of values, respectively. The mapping 
function found by the network minimizes the quantity 
E(I Y (X) - F(X) /2), where E(/) is the expectation 
value of Ii from this point of view, it is possible to say 
that the network could be used to find out an estima­
tion of E(Y I X), i.e. an estimate of the a posteriori 
probability of Eq. 1. 

2.2 Neural Architecture 

The architecture studied in this work is a feed-forward 
NN in which units are arranged in layers: all connec­
tions have the same direction and are allowed only 
between contiguous layers which are, in general, fully 
connected. Each neuron k, belonging to the layer j, 
receives as input the outputs of all the neurons 1 in 
the j - 1 layer, which it is connected to by a synap­

tic strength represented by a real number w,~). On 
the other hand, the neuron k is also connected, with 
strengths W~1+1), to all the neurons i of the layer 
(j + 1), to which it sends the outputs 

y;(j) - g(xj (;3) 
k - k' k (4) 

where g(x,8) is the transfer function, usually defined 
as 

g(x,8) = 1 

1 + exp( -.B( x ,- e)) 
(5) 

e{ is the threshold associated with the neuron k in 
the layer j , .B is a parameter (gain) describing the 
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slope of g, 

'" ur(jh.r(j-l) 6 Yl'lk .II • (6) 
I 

This sum runs over the neurons in the layer (j - 1). A 
N-N with Ni input and No output neurons is trained 
with a supervised learning algorithm in which the net 
outputs Y(X) is compared to the known expected an­
swers T(X). The back-propagation algorithm is 
a supervised learning algorithm, based on minimiz­
ing an error function E, by using a gradient descent 
method. In particular, if (Ti, ... , T~o) is the desired 
output pattern, where JL = 1, ... , P and P is the total 
number of examples in the training set, (Yi, ... , YtJ 
is the actual NN output in reply to the input pattern 
(Xr, ... ,X~) and W is the matrix of the intercon­
nection weights, the error function can be written as: 

1 p No 

E[w] = 2 L L(1't - Tr)2 ; (7) 
l' i 

if the weights are updated after all patterns have been 
presented to the NN inputs (batch learning), or 

E[w] = ~ L(1't - Tt)2 (8) 
i 

if the weights are updated after each pattern has been 
presented to the NN inputs (incremental learning). 

In both cases, the gradient descent algorithm consists 
of changing each Wij by an amount D.. Wlj propor­
tional to the gradient of E[w]' so as to slide downhill 
on the surface defined by the error function: 

(9) 

with 

(10) 

The momentum term (Rumelhart, 1986) a~ Wi~ld) is 
introduced to give each connection Wij some momen­
tum so that it tends to change in the average downhill 
direction, avoiding sudden oscillations. 

For the simulations described in the next section, We 
have always used one hidden layer with Nh = 2Ni + 1 
which should be sufficient according to a general the­
orem (Kolmogorov, 1957). The number Ni of input 
units corresponds to the number of bands Nb consid­
ered for each experiment, whereas the number of neu­
rons in the output layer is given by the number of the 
selected classes (in all experiments No = 7). Fig. 1 
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Figure 1: Three-layer feedforward Neural Network architecture 

gives a graphical representation of the used network. 
In our simulations we have used an incremental learn­
ing strategy with a momentum parameter Q = 0.9, a 
strength parameter TJ = 1 and a gain factor f3 = 1 

3. DATA ANALISYS 

3.1 Input Data. 

As input data we have considered three Landsat-TM 
images and a Digital Elevation Model, obtained digi­
tizing contour lines form 1 : 50,000 topographic map, 
with 25 m contour interval (the height error, com­
puted as rms error on a set of fiducial points, is 
about 15 m). The study area is a region of Southern 
Italy, fully covered by Landsat-d 31.188 imagery (for 
the characteristics of that area see (Blonda, 1991): 
the spring image was acquired on April, the sum­
mer on July and the autumn one on October. Only 
the six bands at higher spatial resolution have been 
considered, for each image. The class selection was 
based upon information derived by visual interpre­
tation of aerial photographs and by local inspection. 
The classes selected for the analysis are the following: 
l)Bare soil; 2) Urban areas; 3)Pasturej 4) Coniferous 

925 

reafforestationj 5) Olive groves; 6) Vineyards; 7) Crop­
land. In order to perform the comparison between 
the two approaches, a set of near 8,000 pixels has 
been extracted from the data-set, corresponding to 25 
homogenous fields of known land coverage. The per­
centage of occurrence of the selected classes are 3.5; 
4.1; 22.2; 2.1; 30.7; 8.7 and 28.7 for class from 1) to 7), 
respectively. As training set we used 800 pixels ran­
dom selected (corresponding to the 10% of the whole 
data set); the remaining 90% of points has been used 
for testing. The same points have been used both 
for training Neural Network synaptic strengths and 
to extract the statistical features (mean vector and 
covariance matrix) associated to each ground class. 

3.2 Results 

The obtained results refer to the following experi­
ments: 

a) : The points of each image have been separately 
analyzed. The network for each image is com­
posed of a 6 - 13 - 7 neurons. The overall per­
centage of correct classification P is reported in 
table 1. Figs. 2, 3, 4 show P versus itera­
tion number for April, July and October image, 



Overall Classification accuracy (%) 
Date training test 

M-L N-N M-L N-N 
April 91.0 95.0 89.0 90.0 
July 93.5 98.0 91.3 95.3 
October 91.0 96.4 88.4 90.0 

Table 1: Results of the Single Image experiment. The 
ratio between test and training points is 9 : 1. The 
N-N consists of a 6 - 13 - 7 architecture. 

Overall Classification accuracy (%) 
training test 

M-L N-N M-L N-N 
3-Date 98.9 99.8 95.5 98.0 
Oct+Dem 92.7 98.3 91.0 94.5 

Table 2: Results of Multiple Image and multisource 
Single image plus DEM experiments. 

respectively (in the figures, the constant values 
refer to the M-L pelrlorman'ces 

b) : Each point is considered as a 18-dimensional vec­
tor! i.e. the three images are classified together. 
In this case for the N-N we consider a 18 - 37-7 
architecture. The comparison between statistical 
and connedionistic approach is reported in raw 
1 of table 2. 

c) : The spectral values of the Odober image are 
merged with the value of DEM. The results of 
the 7 - 15 - 7 N-N are shown in table 2. Figs. 
shows P versus iteration number for this data­

set. 

The statistical separability of each input training data 
set has been evaluated by computing the average 
Jeffries-Matusita (JM) distance (Swain, 1078): 

Nc Nc 

J Mave = I: L P(wdP(Wj)J Mij (11) 
i=l jii 

where J Mij is the distance between the class i and j, 
defined as follows: 

{ 

2 } 1/2 

JM,; = Ix [VP(X I w,) - JP(X I Wj)] dX 

(12) 
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Data-set Jave PE(%) 
April 1.348 95.4 
July 1.370 96.9 
October 1.284 91.2 
3-Date 1.413 99.9 
Oct+Dem 1.340 94.9 

Table 3: J Mave distances and corresponding expected 
probability of correct classification. The values are 
referred to training data. 

The value J Mave gives an estimate of the lower bound 
of the expected probability (PE) of correct classifica­
tion for the corresponding data-set. Table 3 shows 
the value of J Mave and the corresponding PE lower 
bound for each experimental analyzed training set. 
Comparing the values of PE with the results obtained 
applying M-L to training data (second column in ta­
ble 1 and table 2), the actual performance is slightly 
worse then theoretical one, for all experiments. These 
differences give a measure of the error in estimating 
the pdf associated to each class, when using a mul­
tivariate normal density function assumption. From 
a different point of view, they give a measure of the 
improvement expected when a N-N approach. 

3.3 Conclusions 

The results shown in the previous section confirm that 
the performances of the Neural Network approach 
are slightly better if compared with a statistical ap­
proach. This conclusion is easily explained because 
N-N overcome the main limitation of the Bayesian ap­
proach, i.e. the need of having a specific probabilistic 
model ( the a priori assumptions) for describing input 
data, whereas a N-N computes directly the a posteri­
ori probabilities by means of a least squares approach 
on the input data. 
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Figure 2: April Image. Classification accuracies (%) using N-N and M-L classifiers. <:::> Training data value ED 
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Figure 3: July Image. Classification accuracies (%) using N-N and M-L classifiers. <:::> Training data value ED 
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Figure 4: October Image. Classification accuracies (%) using N-N and M-L classifiers.(=) Training data value 
EB Test data values 
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Figure 5: October TM Image and Digital Elevation Model. Classification accuracies (%) using N-N and M-L 
classifiers. 0 Training data value EEl Test data values 
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