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ABSTRACT: 

A general paradigm to image understanding is proposed. As knowl­
edge about the scene captured in a given image plays the central role 
to understanding of this image, generic model-based approach aims at 
the most compact body of visual knowledge. The dynamics of vision 
can be structured in three operations of spatial structure of the scene: 
production (genesis) of scene instances from a generic model, inver­
sion (parsing) of an actual scene instance back to a generic model, 
and learning (induction) of a generic model from a set of provided 
sample scenes. The plausibility of this general paradigm will be not 
only partially proved by theoretical analysis, but also evidenced by 
biological facts and psychological empirical discoveries, as well as sup­
ported by research trends in computational vision. As an instance of 
this paradigm and an actual application of this developing theory, the 
stochastic attributed polygon map grammars as a generic model of 
rurallanduse maps and remote sensing images are demonstrated. 
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1 INTRODUCTION 

Classical mapping science necessarily assumes that the human op­
erator, the subject of a mapping process, already has il model of the 
physical reality, the object of this mapping process, and what he needs 
to do is only to determine the parameters, no matter how many there 
are, of this model. This is to say that the modelling is the prerequisite 
of the mapping. Such a liasion between modelling and mapping may 
not be so obvious in the past as it appears in the time of intelligent 
automation today. Difficulties involved in the full automation of pho­
togrammetry strongly demand the shape and meaning of these models 
invisible behind the photogrammetric process. Disregarding the appli­
cation domains, photogrammetry and computer vision can be consid­
ered as synonyms of each other. Photogrammetry to geoinformatics 
and computer vision to robotics have their emphases respectively, of 
course. However, as the image is the most pervasive interface be­
tween the subject and the object, image understanding is thus central 
to automatic photogrammetry and general vision systems. 
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As an image is nothing more than a recording of physical interaction 
between a 3- or 4-dimensional scene, an illumination condition, and a 
camera, so understanding an image leads necessarily to understanding 
the scene, the illumination, and the imaging process. As the illumi­
nation is already well understood in physics, and the imaging process 
is readily explicitly traceable by ray tracing in computer graphics, so 
the scene, the structure of the scene, its representation and opera­
tions come to be the object that demands a fundamental study and 
theorization. 

The central task ofthis paper is to formalize a theory of generic models 
of the scene from the viewpoint of vision science. Fundamental to 
this theory is the differentiation of three domains of spatial structure 
representation: physical, appearance and conceptual (functional). The 
physical domain is the most original and should be independent of the 
other two domains. Therefore, the taxonomy of models of the physical 
objects are mainly referred to this domain. The purposive information 
flows in vision process are termed vision dynamics. All these flows are 
grouped into three dynamics: production (genesis) of a scene instance 
from a generic model, inversion (parsing) of an scene instance back to 
a generic model, and learning of a generic model from a set of provided 
scene instances. 

This general paradigm to image understanding is illustrated by a sim­
ple but non-trivial example: stochastic attributed polygon map gram­
mar to understanding landuse maps and images in remote sensing 
[FORSTNER 1991b, PAN/FORSTNER 1992]. This grammar represents 
in fact the effort of an ongoing application-oriented research project. 

It should be pointed out that such a general paradigm and the general 
theory are easy to demonstrate amply but hard to prove completely. 
What is important is not who finally finds the truth, but we all con­
tribute to form and keep a stimulating environment from where the 
truth will be approached. 

2 SPATIAL STRUCTURE PRODUCTION, 
INVERSION AND LEARNING SYSTEM 

2.1 Self Model versus World Model 

Image Understanding is a synonym of Computer Vision. A fundamen­
tal assumption behind the concepts understanding and vision is the 
existance of a vision system and a world where this system survives. 
This leads to a distinction between the self model of the vision system, 
and the world m'odel of its living environment. Without such a dis­
tinction, the fully automatic image understanding system e.g. fully 
automatic photogrammetric system is not well-defined. Naturally, the 
scenes this self sees are only parts of this world. Although we usually 
talk about individual fragmented scenes, however we assume there 
is a unified world which is the ensemble of all visible scenes. This 
reasoning leads quickly to the following constructions. 

2.2 Three Representation Domains of Scene Structure 

Monolithic non-representationism in vision science is not attractive 
in epistemology. The three domains discovered so far [PAN 1990] of 
structure representation of the scenes are described below. 

2.2.1 The Physical Domain 

The so-called Physical Domain of scene structure representation refers 
to this unified 3D or 4D world modeling system which is independent 
from any individual scene viewed by any individual vision system. 
Under certain apriori defined assumption (including grain size, scope 



bound, purposive application, etc.) of a closed-world, each scene as 
a part of this world must be uniquely represented in any well-defined 
mathematical and physical modeling approach. In geometry, a scene 
consists of topological and geometrical entities and relations that are 
arranged in a proper order, e.g. boundary models (scene -+ objects -+ 

volumes -+ surfaces -+ edges -+ vertices). All other non-geometrical 
aspects of the scene are called the physical properties e,g. physics, 
chemistry, biology, culture, etc. The so~called generic models of the 
scene or objects which will be discussed later are referred in default 
sense to the Physical Domain. 

2.2.2 The Appearance Domain 

Let us suppose there is an illumination condition onto the given scene 
still in this physical world, so the scene will be visible to the vision 
system. All the images (including image flow and range images) that 
may be captured by this vision system through its cameara form an 
ensemble which is called here the Appearance Domain of the struc­
ture representation of this scene. The typical characteristics of this 
domain is that all representations are at the signal level and the basic 
elements are individual 2D images that are viewer-centered. It is pos­
sible to discuss generic models purely in this domain if and only if the 

third dimenson of the scene is not important to the modeling of this 
scene in physical domain. In general, what is meaningful is to discuss 
the characteristic views (or say, general aspect views) of a 3D scene 
in the Appearance Domain. Given a 3D scene model, its character­
istic views can be derived through information-theoretical approach 
upon the images synthesized through explicit ray-tracing. However, 
in case there is no explicit and precise 3D scene model, how to derive 
its characteristic views and how to store them in visual memory (bio­
logical or physical) is a hard unsolved problem in biological vision and 
computational vision. Our basic idea is that the characteristic views 
must exist and are the initial motivation to recall a high-level model 
(model invocation). In many closed-world applications, e.g. industrial 
robotics, pure characteristic views with statistical information can be 
used as a practical and quick tool for object recognition and even for 
object reconstruction [DICKINSON ET AL 1992]. However, character­
istic views of generic 3D physical models is a complex problem. 

2.2.3 The Conceptual Domain 

The Conceptual Domain refers to the complete semantic modeling sys­
tem upon the given physical scene domain. E.g. a house is so called 
because it is used for human to live inside; a chair is so called because 
it is used for human to sit upon. Imagine one sees a tree and one tries 
to call this tree a building. In this case, one feels uncomfortable. This 
feeling is not an unexplainable emotion, but a manifestation of an 
information-processing dynamics. Here we hold a Strong A.I. point of 
view. There are sufficient evidences as those to the existence of such 
a Conceptual (or say, functionaQ Domain of the scene structure repre­
sentation. The representations in this domain are not directly related 
to the measurable geometrical and physical properties of the scene. 
The typical and currently known best form of representation in this 
domain is semantic nets, which is initially derived from psychological 
and linguistical research [QUILLIAN 1968). It is shown recently that 
semantic maps can be formed through self-organizing neural networks 
[RITTER/KoHONEN 1989]. This is a biological cybernetics evidence to 
the existence of the Concept Domain. The models in this domain will 
be mathematized gradually and will enrich the models in the Physical 
Domain incrementally. 

In fact, in AI there are notions such as belief systems, world views, 
naive theories, etc. that correspond to our notion of world model. 
These notions have been disgraced due to the overwhelming develop­
ment of the procedural knowledge approach e.g. production system, 
but they are coming to a resurgence today [MINSKY 1986, SAND­
BERG/BARNARD 1991). 

Now let us concentrate on the geometrical and topological models of 
the objects in our daily vision experience. 

2.3 A Taxonomy of Models 

A scene is generally formed by a background and a number of fore­
ground objects. In fact the so-called background is nothing more than 

a large object underlying all other relatively small objects. E.g. an 
urban scene consists a topographical terrain as background and build­
ings, trees, bushes, roads, etc. as foreground objects dispersed over 
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the terrain. In general, the generic models discussed below refer to 
that of the objects. 

A taxonomy of object models is illustrated in Fig.l according to the 
degree of modeling capability. Generic models are so called in contrast 
with specific models that have been used dominantly in the past in 
Pattern Recognition and Computer Vision. 

2.3.1 Specific Models 

The key feature of a Specific Model is that the topological structure 
(including topological entities and relations) is fixed, so the number 
of the mathematical parameters is fixed. 

2.3.1.1 Maps 

The type of the simplest specific model is the map, e.g. topological 
map. Each Map is an one-to-one mapping of a physical reality, so 
that the map for one physical object represents only a mathematical 
informatic reconstruction of that object, but cannot apply to any 
other object. Typical example is that one cannot use the map of one 
city in another city. We still call a map a model, although there is no 
variable parameter in this model, because a map is still an informatic 
reconstruction of a reality, and such reconstructions are not unique 
due to different purposes. 

2.3.1.2 Shape Fixed Models (SFM) 

The second type of specific models is the Shape Fixed Model (SFM). 
A SFM has a fixed set of geometrical relations but the position, ori­
entation and scale (size) of object is variable. Typical examples of 
this type are industrial products and machine parts in robotic vision. 
Obvous geometrical examples are square, circle, ellipse with a fixed 
ratio between two axes, etc. 

2.3.1.3 Number of Parameters Fixed Model (NPFM) 

The type of most general specific models is called here the Number 
of Parameters Fixed Model (NPFM). Typical exampels are human 
faces. Each human face has a fixed topological structure (fixed set of 
topological entities such as eyes, nose, mouth, etc. and fixed set of 
topological relations and possibly qualitative geometric relations e.g. 
the nose is between the eyes and the mouth). Of course, the value 
of these parameters are variable. Obvious geometrical examples are 
rectangles with the variable ratio between two perpendicular sides, 
quadrilaterals (number of sides is fixed at 4, but the geometry of these 
4 sides is variable), general ellipses, etc. 

In fact, there is no clear cut between SFM and NPFM, because the 
geometric relations can be constrained more or less, e.g. rectangle is 
between square and quadrilateral. 
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The general form of a NPFM is 

(1) 

where {Xl, X2, ... , Xn} are variable parameters, n is the number of pa­
rameters. Here n is fixed, and the geometrical and physical meaning 
of these parameters are also fixed. Therefore, specific models are tra­
ditionally also called parametric models, so the object recognition and 
reconstruction are done through statistical parametric regression. 

However, with this simple formula it is necessarily assumed that the 
geometric solid model is already well represented in our knowledge 
base. This prerequisite is often ignored by those who prefer statistical 
parametric approaches. 

2.3.2 Generic Models 

Generic Models aim at the simp est description of the scene structure. 
In other words, we should not simply collect too many simple models 
into our visual knowledge base. At this point, we emphasize on the 
quality of knowledge. In contrast with the canon of the Expert System 
school in AI: God exists in detail, we hold a proposition such as: God 
has only created the Generic Law of the Nature. Therefore, generic 
models are high-level models, each corresponding to an infinite number 
of object instances. So far we have discovered two meaningful types 
of generic models as follows. 

2.3.2.1 Static Descriptive Generalization Models 

(SDGM) 

Suppose there is a collection of objects that are instances of a model, 
each instance is only an instantaneous manifestation of this model. If 
we simply ignore the infra dynamic relations among these instances, 
and we only collect all descriptive attributes and take the intersections 
of these attributes for all these objects, the resultant set of attributes 
will form the representation of this model. We call such a model the 
Siatic Descriptive Generalization Model (SDGM). The characteristics 
of a SDGM are: 

1. Commonness: The attributes of this model are the intersection 
of all possible attributes of all possible instances. 

2. Freedom: An actual instance of this model must have the at­
tributes of this model, but all other aspects of this instance are 
free. 

3. Static: The representation of this model is static, no dynamic 
relations between static attributes are specified. 

4. Descriptive: The representation of this model is descriptive, so 
it cannot be used to generate instances constructively. 

5. Generalization: The emphasis of this modeling approach is the 
conceptual generalization from specific cases to general formulas. 

Obvious geometrical examples are 

• Polygon: A polygon is a 2D area whose boundary consists of a 
set of straight line segments. The number of the boundary line 
segments is variable. 

• Blocklike building viewed from high attitude aerial photographs: 
Each such building is a polygon of which each edge segment has 
a anti-parallel edge segment in terms of edge gradient direction. 

• Car: there is a space inside for human to sit; it can move with 
wheels; it has a motor system; it has a front window through 
which the driver can see the way; etc. This is typical descriptive, 
but not constructive. 

• 

In AI and also database systems, there are well-designed descriptive 
programming languages to represent this kind of generic models and 
to support reasoning on this kind of descriptive knowledge. The ways 
in which this type of models is represented are versatile: 

• equality systems 

• unequality systems 

• differential equation ,systems 

• relational predicate l~gic 

• object-oriented frames 

• semantic nets 

• 

2.3.2.2 Dynamic Procedural Production Models 

(DPPM) 
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This type of generic models to object instances can be compared with 
the chromosomes (or genes) to biological bodies. Each DPPM is a 
structure consisting of a set of primitives and a set of production rules. 
An object instance is prbduced by iterations of rewriting the starting 
structural primitive. This type of generic models is best represented 
in the form of grammars, however each terminal and non-terminal of 
this grammar must have a geometrical and physical meaning. There­
fore, we will use Spatial Structure Grammars (SSG) to refer to this. 
type ofrepresentation. However, SSG is only a special case of general 
dynamic systems in which all states of an object are a system of func­
tions of the time t, where t in general is continuous. The power of a 
DPPM lies at its capability to geometrically and physically generate 
an object instance but not only describe some aspects. In vision, such 
a capability corresponds to the constructive imagination which is the 
first essential ability to spatial hypothesis construction and verifica­
tion. 

The characteristics of a DPPM can be enumerated as follows: 
1. Representation: There is a unified spatial stru.cture re'prese~ta­

tion scheme in which an actual object at any time (or IteratlOn) 
can be represented uniformly. That means the representations 
of an object at two different times should conform to the same 
scheme, but they may be different geometrically and physically. 

2. Production: The states of an object are functions of the time. 
If the time is discrete, then the iteration is refered to the time. 
These functions are expressed in dynamic systems or grammat­

ical productions. 

3. Seed: There is a seed with its simplest structure and states 
for each type of objects. This seed will grow according to the 

productions. 

4. Limitedness: There are a set of termination conditions for this 
object evolution process. If this process is allowed. running in­
finitely, the objects generated are purely mathematIcal fractals. 
However, any physical object is limited in any aspect. 

There are enormous examples of DPPM, to mention a few: 

• Tree. A tree is a best example of DPPM, its trunck, branches, 
and twists are self-similar, so can be represented in production 
rules. The leafs are the terminal structures. 

• Block-like building. Each consists of a number of floors, each 
floor consists of a number of rooms. 

• City. Each city consists of road network, buildings, trees, grass 
lands, etc. Although there may not be one or a few formulas 
underlying their spatial arrangement, there must be a set of 
rules no matter how many, but limited number. The states 
of a ~ity is typically a historical evolution which is a complex 

function of the time. 

• Animal body. Each human being from his infancy t~ adulthoo~ 
possesses the same topological structure, however hIS geometrI­
cal, physical, and biological states are not fixed. There must be 
state changing rules underlying this process. 

• 

As vision does not equal physics, object models in vision science need 
not necessarily be isomorphic to their underlying physical structures. 
Therefore we distinguish two types of object modeling: 

1. Appearance modeling. What is aimed at is only that the images 
generated through graphical rendering of the 3D models resem-



ble the real images of the 3D objects. Typical examples are 
Particle Systems for modeling clouds, fire, fog, explosion, wa­
ter, etc. Because if each particle is treated as an object, there 
are simply too many of them, so direct graphical rendering by 
computer would be impossible. 

2. Physically based modeling. The behavior and form of many ob­
jects are determined by their gross physical properties (here 
'physical' includes physics, chemistry, biologiy, etc. i.e. all other 
than geometry). A typical example is that a chain suspended 
between two poles hangs in an arc determined by the force of 
gravity and the forces between adjacent links that keep the links 
from separating. 

In daily vision experiences, the naive (qualitative) physics [MINSKY 

1990] of the world is involved. Physics-based vision [KANADE 1991] 
is becoming a trend in the field of computer vision. However, most 
of this modeling uses mathematics well beyond the general geometri­
cal modeling. Naive physics belongs to the commonsense knowledge, 
which is the hardest field in AI as well. 

2.3.3 Limits of Computationally Based Modeling 

Computationally based models of spatial structure are still stored in the 
form of computer programs. As Fredkin and Wright [KURZWEIL 1990] 
point out, there is a basic difference between the analytical approach 
associated with traditional mathematics, including differential equa­
tions, and the computational approach associated with algorithms: 
one can predict a future state of a system susceptible to the analyt­
ical approach without figuring out what states it will occupy between 
now and then, but in the case of many cellular automata (computer 
programs), one must go through all the intermediate states to find out 
what the end will be like, there is no way to know the future except to 
watch it unfold, there is no way to know the answer to some question 
any faster than what's going on. If we accept the Quantum Mechan­
ics Theory as fundamental to the world, we would believe, following 
Fredkin, that the universe is very literally a computer and that it 
is being used by someone, or something, to solve a problem, then 
all the computers we actually have and will have will· never be suffi­
ciently powerful to do the exact physical and geometrical modeling of 
the universe. Therefore, the scene modeling involved in vision science 
must be superficial at the large extent and physical at a shallow degree. 

In the following discussions, the models are mainly referred to the 
generic models, especially the Dynamic Procedural Production Models 
(DPPM). 

2.4 Three Dynamics of Spatial Structure in Vision 

The three dynamics of spatial structure in vision discovered so far 
are: production, inversion and learning. This triplex is configured ac­
cording to three most important visual abilities: spatial imagination, 
spatial recognition and spatial cognition (learning). 

2.4.1 Spatial Structure Production (SSP) 

Given a generic model, run this model through iterations of spatial 
structure rewriting till the termination conditions are met. The re­
sult will be an object instance of this model. As most general generic 

models have a stochastic behavior, so running a same generic model 
through different life circles will produce individual object instances 
that are different at topology and geometry as well as physical prop­
erties. Therefore SSP represents a mapping from one model to many 
instances. 

Merely in Physical Domain, SSP means starting at a large physical ob­
ject, run the generic model (e.g. 3D solid production rules). This leads 
to revolute this coarse large object into a corhplex object consisting 
of smaller objects at successive levels. Merely in Conceptual Domain, 
SSP means to derive a concept inheritance tree (e.g. a taxonomy). 

Significant SSP occurs at the boundary between the three domains 
from conceptual through physical till appearance. This means, start­
ing from a concept e.g. 'tree', generate a geometrical and physical 
3D modeled tree instance in Physical Domain, and then render this 
modeled tree into 2D images in Appearance Domain. Therefore, SSP 
basically refers to two levels of dynamics: 

1. From concept to physical object instance. This level includes 

the 3D modeled object evolution through 3D solid production 
systems. 

2. From 3D modeled object instance to 2D images through render­
ing e.g. shading or ray tracing. This dynamics also corresponds 
to the imaging process in real vision. 

The above two levels of dynamics correspond to the imagination abil­
ity of human being. 

2.4.2 Spatial Structure Inversion (SSI) 

Given an object instance, try to relate to the original Generic Model 
that has produced it. As the Generic Models have a stochastic be­
harior, this instance may be produced by several Generic Models each 
with a probability. Therefore, in general, the result is a membership 
vector that indicates how possible this instance belongs to different 
Generic Models. So SSI represents a mapping from one object in­
stance to many Generic Models. However, if we take the most possi­
ble model, the SSI dynamics represents a mapping from one instance 
to one Generic Model. Although SSI aims at the inversion of SSP, 
however, in general there is no direct inversion for SSP in real world. 

Similar to SSP, SSI occurs significantly at the boundary between three 

domains: 

1. From given images to physical objects. This process includes the 
object delineation, shape reconstruction, etc. 

2. From physical objects to concepts. It includes the regulariza­
tion of the raw object shape onto structured specific model, and 
parsing this specific model back to its original Generic Model. 

The above two levels of dynamics corresponds to the human ability 
of object reconstruction and recognition. 
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2.4.3 Spatial Structure Learning (SSL) 

SSL refers to the expansion of the knowledge base, i.e. the Generic 
Model base. There are three types of learning: supervised, unsu­
pervised and reinforcement learning. Supervised learning of spatial 
structure means, given a set of examples each being a tuple of object 
instance and model type, try to form the~mathematical mapping func­
tions from object instance space to model space. There are two types 
of mapping: the first one is from many object instances to one model 
type, so this is a many-to-one mapping; the second is to store several 
such many-to-one mappings in a superimposed memory, so it is called 
many-to-many mapping. Unsupervised learning is synonymous to cat­
egory formation. The initial input is only a set of object instances, 
then try to cluster these instances, and for each cluster, construct its 
mathematical represen.tation. Reinforcement learning is an intermedi­
ary between these "two extremes. For each object instance, there is no 
apriori known mod~l type. To each output model type hypothesized 
from this input, a score is assigned to say good or bad. Through iter­
ations of such evolution process, a stable clustering in object space is 
formed and the mathematical representation is also established. 

An obvious example of SSL is to find the common topology and qual­
itative geometry of human face. Given a number of human faces, 
this task is trivial for our experience. However it can be difficult and 
takes months to do for an infant. The resultant concepts are e.g. eyes, 
nose, mouth, ears, etc. Each concept is associated with its geometrical 
structures and attributes. 

SSL takes place significantly also at the boundary of three domains: 

1. Given several images that are different aspect views of a S)1me 
physical object, then try to relate to this object. This corre­
sponds to the formation of characteristic views of physical ob­
jects in our memory. 

2. Given several physical objects that are instances of a same con­
cept ( class), then try to find the commonness of their geometri­
cal and physical structure as well as to construct the productive 
inheritance. 

SSL corresponds to the human ability of spatial cognition. It, how­
ever, can hardly start from scratch except for the very infants. The 
more spatial knowledge (Generic Models) we possess, the easier new 



Generic Models we can form through this kind of structural and sta­
tistical learning. 

2.5 SSPILS Compared with Grammar 

In Syntactic Pattern Recognition (SPR) [Fu 1982], there are three 
notions that are directly related to our three dynamics: syntax rules 
(production), parsing (inversion) and grammartical inference (learn­
ing). SPR differs from SSPILS at the point that SP R works purely 

at symbolic level, and the production is directly inversible in parsing, 
and so the grammariicai inference is a direct induction process. E.g. 
if a production says: 
x ---+ yz 
then in parsing, if there is a 'yz' in the sentence, we can directly 
replace it by 'x', i.e. 
yz ---+ x 
Note that here x, y, and z are pure symbols, therefore the production 
and inversion are pure symbol replacement operation. No physical 
meaning is necessarily involved. 

In SSPILS, first of all, the production can be a complex process involv­
ing 3D geometrical and physical operations, e.g. perspective projecton 
of a 3D physical object to its 2D images. As it is known, such a pro­
duction has no direct inversion. This key difference shows the vital 
limitation of pure SPR and indicates that SPR is only a special case of 
SSPILS indeed, while SSPILS serves as a general paradigm to generic 
model-based image understanding. 

2.6 Explicit Computer Vision - A foundation of Com­
puter Vision as a discipline of science 

The quest of computer vision as a discipline of science needs the 
quality control of vision algorithms and systems. Although there 
are a number of robust techniques e.g. Least Median of Squares 
[ROUSSEEUW /LEROY 1987], Random Sample Consensus [FrsHLER / 
BOLLES 1981], statistic approach [FORSTNER 1991a], Minimum­
Description-Length principle [RISSANEN1989, GEORGEFF /WALLACE 
1984, LECLERC 1989, FUA/HANSON 1989], Genetic Algorithms [BE­
LOW /BOOKER 1991] etc. available to treat the noise and spurious 
data, however, it seems to me that a most important basis is missing, 
the explicit representation of the desired output (reconstructed scene) 
from vision algorithms and systems. Take as example the stereopsis for 
surface reconstruction. Whether your scene is real natural e.g. moun­
tains viewed from aerial photographs or microworld (blocks world), 
the exact geometrical and physical model of this scene is missing, al­
though it may seem easy to measure blocks world by hands, or the 
blocks world may be made by computer aided design. The situation 
is not changed in principle, because a physical object made of real 
material under a real illumination condition is always different from 
its exact mathematical model in computer. The Explicit Computer 
Vision is a method to study vision in the exact mathematical world. 
It requires: 

1. The scene is a mathematical reality explicitly stored in com­
puter. This mathematical scene is usually a number of 3D solid 
modeled objects whose physical attributes are explicitly assigned 
to their geometry. Thereference source of these objects may be 
some real scene from which the modeled scene is made through 
interactive solid modeling techniques or image processing in­
cluding photogrammtric techniques. Once the modeled scene 
is constructed, the reference scene will be completely ignored. 

This modeled scene is used as the input to vision system and 
also the upmost ideal output. 

2. The illumination is a pure mathematical reality that the relevant 
physical laws govern. This corresponds to ideal light source that 
are digitally controllable. 

3. The imaging is a pure mathematical process, e.g. ray-tracing. 
The underlying geometry can be perspective projection (geo­
metrical optics) or general optical transfer function (physical 
optics). 

4. The images can be taken at different aspects, and the noise and 
outliers can be explicitly added. 

Under these conditions, the vision process starts at the images gener­
ated from this 3D modeled scene, and should end at the ideal output 
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scene. With this ideal experiments, the quality of any vision algo­
rithms and systems can be explicitly analyzed. If a vision system 
cannot solve an explicit vision problem, its success at solving a simi­
lar real vision problem is at least partially an illusion. 

3 STOCHASTIC ATTRIBUTED POLYGON MAP 
GRAMMARS: A CASE STUDY 

Stochastic Attributed Polygon Map Grammars (SAPMG) is a case of 
SSPILS. It serves as a generic model of the landuse parcel aggrega­
tion structures. Forstner (1991) has observed the structural regularity 
of land use maps and remote sensing images is essentially a recursive 
partitioning of larger landuse parcels into smaller ones during reallot­
ment. A cooperative effort of Forstner and the author has led to a new 
approach to interpretation of land use remote sensing images. This ap­
proach models the landuse fields viewed from remote sensing images 
in three levels: at the top is the structural modeling of the hierarchical 
spatial containment which results from the recursive partitioning dur­
ing reallotment; at the mid del is the geometric modeling of the form, 
size, orientation, etc, of each individuallanduse parcel which are usu­
ally encoded in vectors or chains; at the bottom is the modeling of 
the physical properties whithin each parcel which are encoded as the 
spectral intensities of the image including intensity surface, texture, 
sensor noise and possible outliers. The interpretation of a given image 
is thus formulated as a problem of global optimization of these three 
aspects under the Minimum-Description-Length (MDL) principle. 

Let S denote the Structural model, G the Geometrical model, I the 
ideal image Intensity model, D the real image Data, PO the Proba­
bility, and LO the description Length, then the best interpretation of 
a given image can be formulated as an optimization problem, namely 
maximizing the joint probability of these three aspects 

P P(D,I,G,S) 

P(DJI, G,S)· P(IIG, S)· P(GIS), P(S). (2) 

Maximizing (2) is equivalent to minimizing the the total description 
length L = -lb P: 

L = Ld(DII, G, S) + Li(IIG, S) + Lg(GIS) + L,(S) (3) 

The SAPMG refers to this last term, i.e. the structural model that 
captures the wide context for local image interpretation. It is expected 
to be decisive in case only weak or conflicting hypotheses result from 
the low-level image segmentation. Obviously, such a structural model 
itself belongs to the structural description of segmented image, which 
is one level higher than pure image segmentation. 

3.1 Polyplex versus Simplex-Complex 

As it is pointed out in section 2.3.2.2, for DPPM type of generic model, 
there must be a uniform representation of spatial structure. In the 
case of SAPMG, the spatial structure are Polygon Maps for which 
there are two basic representations: raster (labeled image, runlength 
coding, or quadtree coding) and vector. Here we concentrate on the 
vector forms because they are directly related with the structural rep­
resentation. Two types of vector forms are distinguished: Polyplex 
and Simplex-Complex. 

3.1.1 Polyplex 

Polyplex refers to the explicit, direct, and most compact vector form 
[PAN 1991cj in which a map consists of nonoverlapping polygons, a 
polygon is defined by its boundary edges, an edge is defined by its 
starting and ending vertices and its internal corner points, and fi­
nally a vertex as well as a point is defined by its x-y coordinates. 
In database, there are three global data lists: polygons, edges, and 
vertices. The internal points are stored implicitly in their edges. All 
spatial relations between polygons, edges, and vertices are stored in 
database as well. 

Although this representation is the most direct and compact, there are 
inherent deficiencies with regards to the topological and geometrical 
operations because a polygon can have an arbitrarily complex shape. 

3.1.2 Simplex-Complex 

As any complex polygon can be decomposed as a complex of non-



overlapping triangles, so it is possible to transform any topological 
and geometrical operations of polygons into that of triangles. As all 
possible operations of triangles can be exhaustively enumerated and 
implemented independent of any application purposes, therefore any 
operation of polygons can thus be implemented on top of the black­
box of opertions of trangles. This is a direct motivation to use Sim­
plicial Complex [EGENHOFER ET AL 1989] as a basic data structure 
for geoinformatics, computer vision and computer graphics including 
geometric modeling. 

In 2D polygon maps, there are three types of simplex: 

1. OD-simplex: a point defined by its x-y coordinates. 

2. 1D-simplex: a line defined by its two extreme points 

(OD-simplices) . 

3. 2D-simplex: a triangle defined by its three sides (lD-simplices). 

A complex is a collection of simplices. All usefull operations on sim­
plex and complex can be defined, designed and implementd to facili­
tate various high-level applications. 

In the following discussion, we assume a basic data structure is avail­
able, therefore all the polygon rewriting operations will be well s~p­
ported. 

3.2 Formalization of Grammar 

The most significant characteristic of land use structure is the fractal­
like recursiveness of the partitioning. The first representative geo­
metric primitive is quadrilateral. However, we assume each bound­
ary can be a smooth non-twisting curve or polyline. This geometric 
shape primitive corresponds to a sufficiently large set of geometric 
shapes. Our grammars are based on such generic primitives. The 
grammars are called Polygon Map Grammars, because the primitives 
are polygons, and the interrelations between primitives should reflect 
the infrastructure of landuse maps, i.e. the recursive polygon splitting 
process. 

3.2.1 Grammar 

A grammar is a 4-tuple 

(4) 

with 

• S being the set of starting symbols, in our case the starting 
polygon, 

• V N being the set of non-terminal nodes, in our case the inter­
mediate polygons, 

• VT being the set of terminal nodes, in our case essentially the 
finallanduse units, and 

• P being the set of rewriting or production rules. 

3.2.2 Primitives and Relations 

The first studied shape primitive is the topological quadrilateral of 
which each side needs not necessarily to be a straight line. With­
out loss of generality, however we first take the simplest geometrical 
shape primitive: the rectangle, to demonstrate this grammar. Inher­
ent to each rectangle, there is a local coordinate system to which its 
son rectangles can be meaningfully said being horizontal or vertical. 

Therefore, there are two types of rectangles. We denote them by H 
and V or h and v, depending whether they are nonterminal or terminal 
nodes. The set of primitives is thus 

Vp = {H, V,h,v} (5) 

Each rectangle has a list of attributes (x, y, w, h), where x and y denote 
the coordinates of the top-left corner, wand h the width and height 
of this rectangle. Therefore, each primitive is characterized by a five-
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tuple (t, x, y, w, h), wher~ t .denotes the primitive type (H, V, h or v). 
In case the type of a node is not specified we denote it by N or n, in 
case we do not want to explicitely refer to the attributes we abbreviate 
the nodes with H, V, h or v, thus N E {H, V}, and n E {h, v}. 

There are two types of spatial relations among polygons: one is the 
spatial containment which we denote by the symbols '[' and ']', the 
other is the spatial adjacency. In case of rectangle shapes and. given 
the global coordinate system parallel to the local one, the adjacency 
relations can be further distinguished between left-right, denoted by 
'I', and top/bottom, denoted by 'I'. In this case, the set of spatial 
relations is 

VR = {[, ], I, f} (6) 

Note that the productions have to guarantee that '[' and '1' are always 
coupled. 

This leads to the sets 

3.2.3 Productions 

{H,.V} 

{H, V} 

{h, v, /, I, [,]}. 

(7) 

(8) 
(9) 

In order to demonstrate the idea of the type of grammar we aim at, we 
assume the attributes oreach newly generated rectangle are stochastic 
with the production set: 

p={ 
H Pl 

----+ [Vl 
V P2 [Hl ----+ 

H Ps h ----+ 
(10) 

V 
p. 

----+ v 

Here ,~, denotes derivation of the right part from the left with 
the given probability Pi. The first production says that a horizontal 
rectangle is partitioned through vertical cuts into a variable number 
n of vertical rectangles. The second production is complementary to 
the first. Here nand m are variables, and the width of each Vi in 

the first production and the height of Hi in the second production are 
variables. The third and fourth production denote primitives not to 
be split any further with a certain probability. 

Formula (10) reveals the grammar to be stochastic. As the primitives 
have attributes on which the probabilities of the productions depend, 
the structure of this stochastic attributed grammar seems to be rich 
enough to cover a large percentage of real situations. The depen­
dencies and the probabilities have to be learned from real data. The 
result of running such a grammar is represented in a tree called Poly­
gon Split Tree (PST). For an example grammar with constraints and 
the formulas for the probabilistic aspects of the polygon partitioning 
and the joint probability of a PST, see [Pan/Forstner 1992]. 

3.3 Parsing of Segmented Images (Inversion) 

Parsing of segmented images contains two tasks: 

1. correction of errors in the imperfect segmented image resultant 
from existing low-level image segmentation algorithms. 

2. construction ofthe Polygon Split Tree above the completed seg­
mented images. This tree represents the structural interpreta­
tion of the image, which is one level higher than pure image 
segmentation. 

We have realized that there are two types of solution to the first task: 
the one is based on global optimization which exhaustively searches 
for the most possible correction of the segmented image based on the 
Minimum Description Length principle; the other is based on strong 
heuristic rules which in fact corresponds to dynamic programming. 
The second solution is now implemented. 

We first describe the algorithm for construction of Polygon Split Tree 
from a complete segmented image because this standalone algorithm is 



an essential component to the solution of the error correcting parsing 
of the imperfect segmentation. 

3.3.1 Building the Polygon Split Tree bottom-up 

The starting point here is a complete segmentation whose region­
level structure conforms with the Polygon Map Grammars. Initially, 
there is no level label assigned to each region. Therefore, we say all 
polygons are atomic, so the input is an Atomic Polygon Map being 
represented in an explicit polygon-edge-vertex data structure. The 
algorithm consists of two steps that are briefly described below.. 

Algorithm: Search for edge hierarchy 

1. construct the level equality and unequality systems for all the 
edges. For three edges constitute a T-cross, two collinear edges 
have the equal level, while the third edge has a lower level. Any 
two edges of the map boundary naturally have the equal level. 

2. search out the edges of map boundary. These edges have the 
highest level that can be extracted from the level equality and 
unequality system. 

3. recursively search out the edges of all levels from high to low 
one after another. 

This algorithm results in the hierarchy of edges. The number of edge 
levels minus one is the depth of polygon partitions. 

Algorithm: Search for polygon hierarchy 

This is a recursive procedure from the edges of the lowest level to the 
edges of highest level, at each level initially all edges of this level are 
put in a waiting list for handling as follows: 

1. For each edge, search its brother edges that cut a larger polygon 
into a number of smaller ones (see grammar productions). 

2. For these brother edges, search their associated brother poly­
gons, and synthesize their father polygon including the long 
edges. The relations between these brother polygons and their 
father polygon are stored in data base. 

3. Remove these processed brother edges from the waiting list, and 
continue for the rest edges in the waiting list. 

The algorithm will result in the largest father polygon. Because all the 
polygon hierarchy relations are stored in data base, backtracking from 
this largest polygon through low-level descendents will retrieve the 
Polygon Split Tree. Upwardtracking from the lowest-level polygons 
to higher ones will retrieve the Polygon Merge Tree. 

3.3.2 Error-Correcting Parsing of Segmented Images 

The starting point here is an initial segmented image resultant from 
any existing low-level segmentation algorithm. All regions are closed. 
A certain number of physical edges may be lost due to common lan­
duse of neighbouring polygons or inability of segmentatin algorithm 
to detecting these edges. Therefore, there are not only T-crosses, but 
also corners formed by the detected edges. These corners are called 
Growth Vertices from each two possible prolongations can be hypoth­
esized. The task is to determine which prolongation should be selected 
as recovered edge. 

Algorithm: Error-correcting parsing 

1. Search Growth Vertices that are significant corners on the poly­
gon boundaries. 

2. Generate all possible hypotheses from these vertices, two pro­
longations from each growth vertex. 

3. Run the strong heuristic rules according to priority of these rules 
to select the most possible hypotheses and eliminate the alter­
natives. Update the hypothesis data base simulatenously. 
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Strong Rules: 

1. If both two end points of a hypothesized edge are growth ver­
tices, these select this edge, and eliminate two alternatives. 

2. Because any two alternative hypothesized edges should belong 
to two different levels, select the edge with a higher level and 
eliminate the other. 

It should be pointed out that the second strong rule is a complex pro­
cedure, because the prerequisite is that the level for each hypothesized 
edge must be known. Determination of the levels of all hypothesized 
and existing edges can be done by an adapted version of the algorithms 
for constructing Poly~on Split Tree. The essential difference is that 
there are X-crosses in this situation. In order to build the edge level 
equality and unequality systems, for each X-crosses, we only store the 
edge level equality of any two collinear edges (whatever existing or 
hypothesized). The unequality will be resolved through T-crosses in 
the larger context. 

Fig.2 shows a parsing process starting from the errorneous segmented 
image through error-correcting parsing till the Polygon Split Tree built 
bottom-up, with our current implementations. 

A note on Inference of Polygon Map Grammars (Learning). Learning 
of such grammars involves structural induction and statistical estima­
tion. Due to its complexity and our lack of sufficient practice, we do 
not address this problem here. 

4 CONCLUSIONS 

The contribution of SSPILS as a general paradigm to vision research 
is two-fold: (I) It clarifies the representations and dynamics of spa­
tial structure in vision and thus makes possible the structural generic 
model-based image understanding. (2) It promotes the Explicit Com­
puter Vision as a foundation of computer vision in order to study the 
vision problems in pure mathematical world and also to analyze the 
quality of vision algorithms and systems. The Polygon Map Gram­
mars as a case of SSPILS sheds light on the further development of 
techniques to image interpretation in remote sensing. 
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1. All possible hypotheses (thin lines) generated through prolonga­

tion from growth vertices (cross in circle) on a segmented image 
(simulated by the grammar). 
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3. Result after applying the second strong rule: growth vertices 8, 

11, 12, 13 are directly resolved, while vertex 7 demands infor­
mation from a larger context. 
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2. Result after applying the first strong rule: (growth vertices 1, 2, 

3, 4, 5, 6, 9, 10 are resolved. 

4. Search the edge hierarchy: 
level equalities = { A = B, C = D, D = E, E = F } 
level unequalities = { C < A, G < C, H < D, I < E } 
{I, H, G} are brother edges, {A, B} are map boundary edges. 

Fig.2 Error-correcting parsing of segmented ima.e;e (few important stages) 
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