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ABSTRACT 

A key issue in knowledge based remotely sensed image classification is the approach to deal with the uncertainty 
existing in inexact knowledge. The uncertainty problem can be differentiated into two types: one is the uncertainty 
directly associated with uncertain knowledge; the other refers to the uncertainty existing in the certainty values of 
inexact knowledge. Expert system research has provided numerous theories for dealing with the former type of 
uncertainty, while few endeavors are found to address the latter type. This paper is devoted to the second type of 
uncertainty, namely, the Uncertainty In Uncertainty (UIU) problem. Based on an analysis of the importance of this 
issue, the paper presents a mathematical model for dealing with the uncertainty in uncertainty values, and 
discusses the methods to estimate various variables and parameters involved in the model. A case study is 
presented which has preliminarily proven the effectivity of the uncertainty model. 

Key Words: Uncertainty reasoning, Uncertainty in uncertainty, Knowledge-based system, Expert system, Image 
classification, Mathematical modeling, Remote sensing. 

INTRODUCTION 

The incorporation of ancillary data into the 
classification of remotely sensed images has proven to 
be effective in improving classification accuracy 
(Middelkoop and Janssen, 1991; Skidmore, 1989; Kenk 
et al. 1988; Wu et aI, 1988). Ancillary data, such as 
topographic information, soil maps and temporal 
relationships, can be applied effectively only if they 
have known relationships to the classes in the images. 
This implies that the utilization of ancillary 
information in image classification requires the 
incorporation of declarative knowledge that indicates 
such relationships into spectrally-based classification. 
Thus, the knowledge based system approach has been 
widely applied to multi-source image classification. 
Meanwhile, knowledge on the relationships between 
ancillary data and image classes is usually acquired 
from relevant specialists or based on statistics, 
therefore, the declarative knowledge inevitably 
encapsulates uncertainty or ambiguity. This makes the 
methodology for uncertainty reasoning an important 
issue in multi-source remote sensing image 
classification. 

Research in the expert system domain has provided a 
variety of methods for dealing with the uncertainty 
problem. Among them are probability theory, 
uncertainty theory, the Dempster ISchafer theory, 
possibility theory, plausibility theory, etc. (Frost, 1986; 
Payne and McArthur, 1990). These theories, though 
differing from each other, all deal with the 
representation of inexact (or uncertain) knowledge and 
reasoning based on inexact knowledge. However, 
beneath the uncertainty values of inexact knowledge, 
there actually exists another type of uncertainty, 
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namely, the reliability of the uncertainty values. For 
example, a certainty factor associated with a rule stated 
by an expert may have uncertainty related to the 
sufficiency and representativity of the sample used by 
the expert to derive this rule; the probability of certain 
diseases' occurrence given certain symptom has its 
inherent uncertainty related to the data accuracy and 
sufficiency in the database where the probability is 
derived. This type of uncertainty is not handled in all 
those theories dealing with uncertainty. 

This paper addresses the uncertainty in uncertainty 
(UIU) problem of inexact knowledge. The necessity of 
addressing this topic is discussed through the analysis 
of the sources that cause the UIU problem, and the 
inadequacy of uncertainty reasoning methods 
commonly used in knowledge-based systems to the 
UIU problem. An approach for dealing with this 
problem is then given. It includes the definition of the 
UIU concept, the establishment of a mathematical 
model for dealing with the uncertainty, and the 
estimation of variables and parameters involved in 
the model. Based on the uncertainty model, a case 
study is presented in order to demonstrate the 
utilization and effectivity of this model. A 
preliminary conclusion is drawn based on the 
experiment that, by taking the UIU problem into 
account, the classification accuracy can be improved. 

NECESSITY OF CONSIDERING THE UNCERTAINTY 
IN UNCERT AINTY VALUES 

The Uncertainty in Remote Sensing Image 
Classification 

Much of the knowledge with which humans reason is 



inexact or uncertain in some respect or other. As 
analyzed by Frost (1986), this is due to several factors: 
a) the universe of discourse is truly random; b) the 
universe of discourse is not strictly random but for 
some reason there is insufficient data; c) available 
knowledge represents a 'gut feeling' and such 
judgmental knowledge can be useful when more 
sound knowledge is not available; d) available 
knowledge is couched in terms which are themselves 
vague (e.g. the word 'usually' in 'Canary grass usually 
will not follow canoIa'); and e) the knowledge source is 
imperfect. 

Among these factors, b) is a typical situation in 
spectrally-based remote sensing image classification. 
For example, suppose crop types are to be identified 
only based on spectral information. A commonly used 
supervised classification method is to compute the 
likelihood that a field grows a type of crop using 
probabilistic reasoning, based on the evidence obtained 
from training areas. 

Furthermore, ancillary information, such as soil types 
and digital terrain models, may be used to improve 
classification accuracy. This is achieved through the 
representation of relationships between ancillary data 
and crop types using certainty values such as 
probabilities and certainty factors, and the 
incorporation of these certainty values into the 
probabilistic reasoning. These certainty values are 
usually estimated from two sources, i.e. databases and 
human experts. Databases are used as samples to 
compute probability values, while the statements may 
be expressed in different ways by experts. For example, 
an expert may state: "Oats usually grow well on the 
land with elevation between e1 and e2, soil types tl, t2, 
and t3, and slope ranging from s1 to S2". This 
statement is an empirical rule. It is judgmental; a 
vague term (usually) is included in the statement; and 
maybe only part of the ancillary themes of concern are 
addressed, hence being imperfect or incomplete. Thus, 
in addition to the uncertainty situation b), situations c), 
d), and e) may all be encountered in the classification 
of remote sensing image based on multiple knowledge 
source reasoning. 

The UIU Problem in Remote Sensing Image 
Classifica tion 

A way to examine the UIU problem in remote sensing 
image classification is to look into the sources where 
related knowledge for the classification is generated. 
These sources can be generalized into three types: one 
is non-time-serial databases, such as spectral image 
databases for sampling training areas; the second is 
historical databases or time-serial databases which are 
used in the elicitation of ancillary knowledge; the last 
is human experts who provide expertise related to the 
ancillary information of concern. Figure 1 outlines the 
major sources that cause the UIU problem. 

Beneath the probabilities generated from non-time­
serial databases, there exist at least two types of 
uncertainty, One is database accuracy, which deals 
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Figure 1 Major Sources Causing the UIU Problem 

with data quality. The other is the sufficiency of the 
sample size available in the databases for statistics 
purpose. For example, a database with ten th,ousand 
records indicating the relationship between soIl types 
and vegetation distributions may have over thousand 
records addressing soil type A, but only a few records 
addressing soil type B. Thus, the probabilities 
representing the relationship between soil types and 
vegetation distributions would be more rehable or 
certain for soil type A than for soil type B. 

For time-serial databases, there are even more 
uncertainties existing in the probability values 
generated from the databases. The uncertainties of 
database accuracy and sample sufficiency also apply to 
time-serial databases. In addition, two other factors 
affect the probability values based on this type of 
databases. One is the number of time periods (e.g. the 
number of years), since statistics based on few time 
periods may be seriously biased, especially for the 
themes that are closely related to socio-economic 
situations. The other is the standard deviation of an 
event's occurrences during different time periods, 
since a large standard deviation may suggest the effect 
of some factors (e.g. socio-economic factors) that are 
not of concern in the knowledge elicitation. This can 
be depicted through an example, as shown in Figure 2. 
The height of the bar represents the number of fields 
that grew flax in that corresponding year. The large 
difference of flax field occurrences between 1986 and 
other years, which causes a large standard deviation, 
suggests a possibility that the high occurrence of flax in 
1986 results from social economic factors such as the 
crop price. If statistics based on such a database aim to 
generate crop rotation rules, the result would probably 
be biased. 
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Figure 2 Occurrences of Flax Fields in An 
Experimental Area 



The UIU problem in the knowledge provided by 
human experts refers to the reliability or accuracy of 
human expertise, which is mainly affected by the 
soundness of experts' knowledge. 

Theories for Dealing with Uncertainty 

Numerous theories have been developed to 
accommodate uncertainty problems in knowledge 
based systems. The commonly used methods are 
probability theory and uncertainty theory. In addition, 
a number of other theories, such as the 
Dempster 15chafer theory of evidence, possibility 
theory, and plausibility theory, have also been 
proposed, in order to solve some of the problems 
unab~e to be solved. by probability and uncertainty 
theones. ~owever, It can be found by looking into 
these theones that none of them takes into account the 
reliabil.i~y. of kn~wledge. sources used for deriving 
probablh~les or ah~e certamty measures. An exception 
IS foun? l~ Neap~htan (1990) where the uncertainty in 
probabIlIties provlded by human experts is mentioned, 
and a method for dealing with this uncertainty is 
proposed. However, as discussed previously, the UIU 
problem not only exists in the knowledge provided by 
human experts, but also in all other knowledge sources 
such as time-serial or non-time-serial databases. 
Therefore, existing theories for dealing with uncertain 
problems in knowledge based reasoning are 
madequate, and how to solve this adequacy should 
become an issue in the research on uncertainty theory. 

MODELING OF THE UNCERTAINTY IN 
UNCERT AINTY 

Three issues need to be addressed in order to build a 
model to take into account the UIU problem in 
reasoning with inexact knowledge. Firstly, a formal 
definition needs to be given to the UIU concept, so as 
to formulate the scope of the problem. Based on this 
definition, the second step is to formulate a model to 
rep:esent the de.fined concept. Methods for estimating 
vanable values mvolved in the model then need to be 
developed. Further, the method for integrating the 
UIU measure into the reasoning of inexact knowledge 
should be formulated 

Definition of The UIU Concept 

Althou?h different theories for dealing with 
u~certamty represent the uncertainty concept in 
dlfferent ways, they can all be transformed into such a 
syntax that, given certainty evidence, a certainty value 
refers to ~ measure, such as a likelihood, a probability, 
or a certamty factor, which indicates the certainty of an 
event occurrence. Thus, we can define the UIU 
concept as follows: 

Let CV be a certainty value indicating the certainty of 
an event occurrence, given certain evidence. Then, 
the reliability of the certainty value CV or the 
quantitative measure of the UIU problem is termed as 
Certainty In Uncertainty, and denoted by CIU. If CV is 
provided by experts, CIU is a measure of the reliability 
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of the expertise; if CV is extracted from an existing 
non-time series database, CIU is a function of database 
accuracy and sample size; if CV is elicited from a time 
series database, CIU is a function of database accuracy, 
sample size available in the database, the number of 
time periods included in the database, and the standard 
deviation of an event's occurrence over time periods 
in the database. The range of CIU is [a, 1], where a 
means that a certainty value is completely uncertain, 1 
means that a certainty value is completely certainty, 
while values between a and 1 represent the varied 
degrees of certainty of a certainty value. 

Mathematical Modeling of the UIU Problem 

Based on the definition of the uncertainty in 
uncertainty values CIU, we can construct a function 
between CIU and the factors related to CIU as follows: 

CIU = \}I(T, 5, 5d, A) 

where: 

CIU - the uncertainty in uncertainty values to be 
evaluated; 

(1) 

T - the number of time periods (year, month, day, etc.) 
involved in the database; 

S - the size of a sample available in the database for 
eliciting the certainty value of an evidence; 

Sd - the standard deviation of occurrence of an event 
over time periods involved in the database; 

A - the accuracy of data in a database or the reliability of 
an expert's statement. 

In order to define the functional relationship \}I in 
equation (1), we start with an analysis of the 
differential relationships between (CIU, T), (CIU, 5), 
(CIU, 5d), and (CIU, A). Based on the characteristics of 
the variables involved, we can find that a positive I1A 
would produce less increase of CIU with the increase of 
A; the same would be true for 115 and 11 T., while 
contrary to these variables, a positive 115d would cause 
larger decrease of CIU with the increase of Sd. In 
addition, the function should have such a 
characteristic that, as CIU is getting closer to its upper 
or lower limits, it becomes very difficult to produce 
any more change in CIU. Thus, we can establish the 
following partial differential equation: 

ilCIU = CIU(1-CIU) [ (1 IT)il T + (1/S)t5 + (11 A)LlA - SdilSd] (2) 

Applying calculus to the equation, we thus obtain a 
mathematical model for the uncertainty in uncertainty 
values CIU: 

CIU= S*T*A* exp(- Sd2/2 + c)/(1 + S*T*A* exp(- Sd2 /2 + C» (3) 

where C is a constant. Other variables are as defined in 
equation (1). 

Equation (3) can be applied to the three different 
knowledge elicitation cases (as discussed before) in the 
following ways: 



1) when an uncertainty value is extracted from a time 
serial database, the quantitative measure of the UIU 
concept is as the form expressed by equation (3); 

2) when an uncertainty value is extracted from a non­
time serial database, the quantitative measure of the 
UIU concept can be derived from equation (3) by 
instantiating T=l and Sd=O. Thus, the equation 
becomes: 

CIU = S*A * exp(C) / (1 + S*A * exp(C» (4) 

3) when an uncertainty value is based on experts' 
statements, the quantitative measure of the UIU 
concept can be derived from equation (3) by 
instantiating T=l, S=l, and Sd=O. Thus, the equation 
becomes: 

CIU= A*exp(C) / (1 + A* exp(C» (5) 

Estimation of the Variables and Determination of the 
Constant 

Four variables (T, S, Sd, and A) are included in the 
generic uncertainty in uncertainty model (3). This 
section discusses the estimation of these variables and 
the determination of the constant C. 

Estimation of Variable T. T relates to the time 
period involved in a time serial database. The time 
period could be, for example, the number of 
photograph periods for a remote sensing image 
database; it could also be the number of crop rotation 
periods for a crop inventory database. A 
straightforward way to valuate T might be to directly 
use the number of time periods included in a database. 
However, the number of time periods which is 
regarded as being sufficient for statistical purpose 
essentially varies with applications. For instance, 
more time periods would be required to elicit crop 
rotation knowledge based on a crop inventory database 
than to extract the relationship knowledge between 
land types and crop yields. This is because the 
elicitation process in the former case mainly depends 
on time periods, while time periods are used as a 
minor factor in the knowledge extraction in the latter 
case. Therefore, it is necessary to assign a standardized 
value of time periods, instead of the number of time 
period itself, to the variable T. Thus, T can be defined 
as: 

T = Nt/SNt (6) 

where Nt represents the number of time periods 
involved in the database, and SNt stands for the 
number of time periods sufficient for eliciting an 
uncertainty value. 

Estimation of Variable S. S deals with the 
sample size related to an event in a database for use in 
statistics. Its straightforward meaning is the sum of the 
occurrences of an event over the time periods 
involved in a database. For example, suppose that 

941 

there is a crop inventory database in which crop 
distributions of N time periods for a certain area are 
included. Then, in the rule elicitation of the rotation 
from crop type A to crop type B based on this database, 
S could refer to the sum of the occurrences of crop type 
A in the first N-1 time periods ( N-1 results from the 
fact that a rotation has to be based on two consecutive 
time periods, or in other word, the time period in the 
crop rotation case refers to two consecutive crop 
growing periods). Namely, 

N-l 

SA=L SAt 
t= 1 

where SAt would be the number of occurrence of crop 
type A in each of the first N-1 time periods. Similar to 
variable T, however, S is also a variable with relative 
meaning, since the sufficiency of a sample size is 
application dependent. For instance, the sample used 
for generating training area data would be much larger 
than the sample size needed for eliciting crop rotation 
rules. Therefore, it is necessary to standardize this 
variable through the division of the total sample size 
of an evidence by a sample size sufficient for 
conducting the statistics. Thus, 

Nt 

S=(L St)/SS 
t=l 

(7) 

where St refers to the sample size of an evidence's 
occurrence in time period t, and SS represents the 
sample size sufficient for the statistical purpose. t 
ranges from 1 to Nt. Generally, Nt refers to the the 
number of time periods included in the database, but 
specific consideration should be given to the cases 
where a time period used as a basis for statistics is 
different from the straightforward number of time 
periods included in the database. 

Estimation of Variable Sd. Sd stands for the 
standard deviation of St over the time periods used in 
statistics. As generally defined, Sd can be obtained as 
follows: 

Nt 

Sd = Sqrt { L [St - Mean(St) ]2 / Nt} 
t=l 

(8) 

Where St is the sample size of an evidence's 
occurrence in time period t, Nt is the number of time 
period used in statistics, and Mean(St ) is the average of 
St over the Nt periods. 

Estimation of Variable A. A refers to the 
accuracy of a database or the reliability of expertise 
provided by experts. In the database case, the accuracy 
mainly deals with data quality, which is often case­
dependent. For example, the accuracy of a crop 
distribution database generated from remote sensing 
image classification is the image classification accuracy 
performed for identifying crop distributions, while the 
accuracy of crop inventory can be regarded as the 



accuracy of a crop inventory database. The case­
dependent property determines that the assignment of 
values to A in the database case could only be 
conducted on a. case-by-case basis. 

In the case where an uncertainty value is generated 
from experts' statements, however, it is possible to 
provide a generic method for quantifying A, since 
experts' judgment is the dominant factor affecting the 
uncertainty value. Examining the judgment-making 
process, we can find that experts' confidence in making 
a judgment is a key factor that contributes to the UIU 
problem included in the judgment, and essentially, 
this confidence is mainly based on the sample size 
used by the expert in making the judgment. This 
analysis allows us to directly apply the approach 
addressed by Neapolitan (1990) for obtaining the 
uncertainty in probabilities. 

Consider first the case where a propositional variable, 
say D, has precisely two alternatives, d1 is the presence 
of a particular event, and P(dl) is the probability of dl'S 
occurrence. If we let x be a variable which represents a 
possible value of P(dl ), then the general formula for 
the beta distribution is given by 

(a + b + I)! 
~(a,b) == ------------------ x a (1-x)b 

a! b! 
(9) 

where a, b >== O. This function is a probability density 
function ~(x) for the possible values of P(dl)' For all a,b 
>= 0, it is proven that 

if 

then 

and 

~(x) = ~(a, b) 

f~(x) d(x) = 1 
o 

P(d1) = Ix ~(x) d(x) = (a + 1) / (a + b + 2) 
o 

(10) 

(11) 

(12) 

Neapolitan (1990) points out that the values of a and b 
are based on the expert's confidence with the estimate 
of probability P(dl), and a+b can be liken to the sample 
size Se essentially used by the expert in the estimation, 
namely: 

a + b =Se (13) 

Using equations (12) and (13), we can solve for a and b. 
Replacing the values of a, band P(dl) in equation (9), 
we thus obtain a probability value that indicates the 
certainty of the estimated probability by the expert. The 
obtained probability value can be regarded as the 
accuracy of expert's knowledge in the case where the 
propositional variable has two alternatives. 

Furthermore, Neapolitan (1990) extends the case of two 
alternatives of the propositional variable to t 
alternatives, and concludes that the density function 

942 

for the possible value of P(di) is the Dirichlet 
distribution: 

(bi + ai + t -I)! 
Diri (aI, a2, ... , at) = ---------------------- X ai(1-x)(bi+t-2) (14) 

where 

ail(bi + t -2)! 

bi = Laj-ai. 
j = 1 

(15) 

Similar to the two alternative case, if ~(x)= Diri (aI, a2, 

"" at), then 

f ~(x) dx = 1 
o 

and 

P(di) = J x ~(x) dx = (ai + 1) / (al + a2 + ". + at + t) 
o 

(16) 

(17) 

To estimate the value of Diri , the expert needs to 
specify values, aI, a2, , .. / and at! which are all >= 0, such 
that his experience is approximately equivalent to 
having seen dl occuring al times, d2 occuring a2 times, 
.. " and dt occuring at times in al + a2 + ... + at, total 
occurrences. Thus, the estimate of Diri can be used as 
the accuracy value being addressed in the case where 
the propositional variable has multiple possible 
values. 

Neapolitan's approach to the estimation of the UIU 
value included in experts' knowledge can be applied to 
the situation where time dimension is not involved in 
the estimation. When this is not the case, a better 
approach is to include the variable of time periods in 
the estimation, thus, the Neapolitan's approach needs 
modification, or a new approach needs to be devised. 
This is a topic remained for further research. 

Determination of constant C. C is the constant 
included in function (3). To determine the value of 
the constant, we can suppose an ideal condition where 
T = I, S = 1, A = I, and Sd = O. Based on the meaning of 
the variables involved, there should be CIU(T=l, S=l, 
A=l, Sd=O) = I, which means that the certainty in an 
uncertainty value elicited from a database or from an 
expert reaches a maximum in the ideal situation. 
Replacing the values of CIU, T, S, A, and Sd to in 
equation (3), the constant of C can then be obtained. 

Adjustment of Certainty Values Using CIU 

Once the value of CIU is obtained, the next step is to 
adjust the certainty value generated from a database or 
provided by experts using the CIU value. Let the 
certainty value be CV, and the adjusted certainty value 
be ACV, then ACV can be obtained using the following 
simple function: 

ACV =CV*CIU (18) 



This is reasonable since CV and CIU are essentially 
independent from each other. If CV is measured in 
probability and CIU < 1, then CV is reduced to some 
extent. If CV is represented as a certainty factor which 
has range [-1, 1] or [-100, 100], and CIU < 1, then 
equation (18) results in the decrease of the absolute 
value of CV. 

A CASE STUDY 

A case study was conducted in order to test the 
effecti vity of the proposed UIU model. The basic 
objective of the case is to classify crop types using 
Synthetic Aperture Radar (SAR) imagery. To improve 
classification accuracy, crop rotation rules with 
certainty factors were generated based on a five-year 
crop inventory database, and were integrated into the 
crop classification. For the purpose of 
experimentation, two sets of crop rotation rules were 
presented as matrices in Tables 1 and 2, one based on 
two year's rotation data, and the other on five year's 
data. The classification accuracy with and without the 
integration of crop rotation rules is shown in part of 
Table 6. 

Applying equation (3) to each of crop types involved in 
this case, we obtain the values of certainty in 
uncertainty CIU, as shown in Table 3. The same 
operation was applied to the case of two year's crop 
rotation data. The variable values as well as CIU 
values are also presented in Table 3. 

Multiplying five years' and two years' r values 
presented in Table 3 with the certainty factors in Table 
1 and Table 2 respectively, we obtain the adjusted 
certainty factors, as shown in Tables 4 and 5. 

Table 6 summarizes the classification accuracy based on 
spectral information (MLM), on the integration of two­
year-based and five-year-based crop rotation 
knowledge, and on the integration of adjusted crop 
rotation knowledge for both the two-year and five-year 
cases. The classification accuracy was computed using 
two different methods: one is based on the whole set 
of crop field, while the other on the set of crop fields 
where crop rotation rules were applied (notice that part 
of the cells in Tables 1 and 2 have certainty factors of 0, 
which resulted that some of the crop fields were 
classified without the use of crop rotation rules). 

Table 1: Crop Rotation Rules with Certainty Factors Based on Two Years' 
Crop Inventory Data 

Oats Wheat Peas Canoia Canary Barley Flax Fallow 

Oats 0 0 0 0 0 0 0 0 
Wheat 0 0 0 0 0 0 0 0 
Peas 0 52.3 -83.0 -100 0 25.3 0 -100 
Canoia -100 0 0 -84.6 -98.2 0 0 -96.3 
Canary 0 0 0 0 0 0 0 0 
Barley 0 -76.0 0 0 0 17.4 0 0 
Flax 0 0 0 0 0 0 -100 16.5 
Fallow 0 0 -100 52.6 0 -100 0 -100 

Table 2: Crop Rotation Rules with Certainty Factors Based on Five Years' 
Crop Inventory Data 

Oats Wheat Peas Canoia 

Oats 0 0 0 0 
Wheat 0 0 0 0 
Peas 0 24.0 -97.7 -74.0 
Canoia -100 0 0 -83.0 
Canary 0 0 0 0 
Barley 0 -69.2 0 0 
Flax 0 0 0 0 
Fallow 0 0 -95.5 50.5 

Let i denote any type of crop growing in the studied 
area, we can instantiate the variables included in 
equation (3) by: 

T = 5/SNt, where SNt is assigned a value of 10, 
Si = Sti/SS, where SSt is assigned a value of 500, 
Sdi is computed based on Si and T (equation (8», 
A = 1, based on the fact that the data used are 

ground inventory data. 
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Canary Barley Flax Fallow 

0 0 0 0 
0 0 0 0 
0 15.7 0 -40.9 
-78.6 0 0 -33.3 
0 0 0 0 
0 6.7 0 0 
0 0 -100 1.3 
0 -82.4 0 -100 

It can be seen from the Table 6 that by integrating crop 
rotation rules based on five-year's crop inventory data 
into classification, the accuracy is improved by 6.7% 
based on the whole field set, while it increases to 9.5% 
if only looking at the crop fields where crop rotation 
rules were used. By adjusting the certainty factors of 
crop rotation rules based on five-years crop inventory 
data, the classification accuracy is slightly further 
improved (0.6%). The experiment also shows that the 
use of rotation rules based on two years inventory data 



Table 3: Estimates of CIU for each crop type 
Oats Wheat Peas Canoia Canary Barley Flax Fallow 

T 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S 0 8 171 691 70 365 191 516 17 74 188 740 21 110 45 180 

Sd 0 3 0 5 0 46 0 55 0 12 0 13 0 23 0 24 

CIU * * * * .58 .87 .79 .89 * * .79 .95 .29 .74 .41 .83 

* means that the CIU IS not calculated, smce there IS no rule for the correspondmg crop. 

Table 4: Crop Rotation Rules with Adjusted Certainty Factors Based on Two 
Years' Inventory Data 

Oats Wheat Peas Canola Canary Barley Flax Fallow 
Oats 0 0 0 0 0 0 0 0 
Wheat 0 0 0 0 0 0 0 0 
Peas 0 30.4 -48.2 -58.1 0 14.8 0 -58.1 
Canoia -79.1 0 0 -66.9 -77.7 0 0 -76.2 
Canary 0 0 0 0 0 0 0 0 
Barley 0 -60.0 0 0 0 13.7 0 0 
Flax 0 0 0 0 0 0 -29.4 4.9 
Fallow 0 0 -41.2 21.7 0 -41.2 0 -41.2 

Table 5: Crop Rotation Rules with Adjusted Certainty Factors Based on Five 
Y • I ears nventory Data 

Oats Wheat Peas Canola Canary Barley Flax Fallow 
Oats 0 0 0 0 0 0 0 0 
Wheat 0 0 0 0 0 0 0 0 
Peas 0 20.9 -85.2 -64.5 0 13.7 0 -35.7 
Canoia -89.3 0 0 -74.1 -70.2 0 0 -29.7 
Canary 0 0 0 0 0 0 0 0 
Barley 0 -66.0 0 0 0 6.4 0 0 
Flax 0 0 0 0 0 0 -74.4 1.0 
Fallow 0 0 -78.8 41.5 0 -67.9 0 -82.5 

Table 6: Accuracy of classification results 
Channel Time Basis MLM 2 year 2 year * 5 year 5 year * 

whole 57.8% 57.4% 63.5% 64.5% 64.9% 
CRR 1989 field set 

Rule applied 55.1% 54.5% 63.1% 64.6% 65.2% 
field set . . *. where the adjusted certamty values were used m the classlflcatIon . 

results in a slightly lower classification accuracy than 
that of the MLM method; however, the accuracy is 
significantly increased (by 8.6%) after the certainty 
factors are adjusted using the values of CIU. This 
suggests a possibility that the less time periods are used 
in eliciting time-dependent knowledge, the greater 
increase in classification accuracy could result through 
the consideration of the UIU problem. 

CONCLUSIONS 

Consideration needs to be given to the Uncertainty In 
Uncertainty (UIU) problem existing in the knowledge 
either generated from databases or provided by human 
experts. A model has been developed in this paper in 
order to estimate the UIU values. Methods have also 
been addressed for estimating the variables involved 
in the model. A case study has shown that the 
proposed model is effective in improving classification 
accuracy based on multiple knowledge sources. 
Further research is needed to estimate the reliability or 
accuracy of time-dependent knowledge provided by 
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human experts. More experiments are also needed to 
further test the effectiveness of the proposed model. 
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