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ABSTRACT 

photogrammetric mensuration procedure is 

described, which does not need the assumption of 

metrically correct photographs, or the assumption of 

additional parameters to compensate for deformations. The 

approach is based on measuring and processing appropriate 

differences of the image coordinate. The approach is 

superior to conventional photogrammetric methods and is 

essential for good results in satellite photogrammetry, 

and when using non-metric cameras. 
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Classical Photogrammetry Revisted 

Let us start with the well known projective relationships 

relating the terrain coordinates N I E I H, of point P to 

image coordinates x,y of image (i). 

Figure 1: The Projective Relationship 

xp(l)= c* a,*(Np-No) + a2*(Ep-Eo) + a3*(Hp-Ho) = PX(f) (Np,Ep,Hp) 

a7* (Np-No) + aa* (Ep-Eo) + ag* (Hp-Ho) 

yp(f)= c* a 4* (Np-No) + as* (Ep-Eo) + ae* (Hp-Ho) = Py(i) (Np,Ep,Hp) 

a7* (Np-No) + aa* (Ep-Eo) + ag* (Hp-Ho) 

Where PX(f), Py(i) denote the proj ecti ve operators. 

In many applications, systematic image deformations are 

present. These are image deformations, which are 

dependent on the position of the image point and repeat 

from image to image. The physical causes of these 

deformations are atmospheric refraction, optical 

aberration and deformation of the filmbase during 

processing. 
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The systematic deformations are usually accommodated by 

adding a function f(x,y) of the image coordinate to the 

projective relations. 

Py(i) (Np,Eo,Hp) + Fy(i) (Xp(i), yp(i)) (1) 

For block adjustment, F is approximated by polynomials in 

x and y with a limited number of unknown coefficients. 

This approach, although valid, poses a large number of 

practical problems, such as: which polynomial to choose, 

how to separate systematic deformations from blunders, 

which ground control distribution is necessary for 

avoiding under-determination etc. (see also Kubik, 1988). 

We therefore propose here a novel and elegant approach to 

this problem, which also is valid for other projections 

such as existing in remote sensing, tomography and other 

fields. 
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The Origin of Differential Photogrammetry 

We regard two image points at identical locations (x,y) in 

adjacent photographs, in a photogrammetric strip. 

.p oq 

( i ) ( 1+1 ) 

Figure 2 

(see figure 2). These two points have systematic image 

deformations of the same magnitude. When forming the 

difference of their projective relations (1), the 

systematic deformation terms F(x,y) are eliminated: 

ox(i) xq(i+l) - xp(i) = PX(i+l) (Nq,Eq,Hq) - PX(i) (Np,Ep,Hp), 

yq(i+l) _ yp(i) = Py(i+l) (Nq,Eq,Hq) _ Py(i) (Np,Ep,Hp). (2) 

We thus have a formulation of the photographic projection 

problem, and indeed for all projections, which is 

independent of the knowledge of the exact proj ecti ve 

relationship. No assumption has to be made regarding 

systematic image deformation, or even on the nature of 

projection. 
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Let us consider a photogrammetic strip of 5 photographs 

with 60% forward overlap, and a regular grid of 15 points 

projected into the 9 standard positions on the photographs 

(see figure 3). The image coordinates were measured. 
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Figure 3 

The strip is described in our approach by 60 difference 

equations of type (2), building the difference of the 

image coordinates: 
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Correspondingly for the y ordinates. 
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There are 75 parameters, which usually are unknown. 

The (N,E,H) coordinate values of 15 terrain points 

(45 parameters) 

The 6 orientation parameters for each of the 5 

photographs (30 parameters) 

In order to determine these 75 parameters from the 60 

observation equations, ground control points are 

necessary. Assume we have given the ground control 

coordinates of the first 6 terrain points. This should 

allow us in principle to perform 2 space resections of the 

first and second photograph and will establish an absolute 

coordinate geometry in these photographs. Once the 

systematic image deformation and the coordinate geometry 

is reestablished in, say, the first photograph, the 

absolute image coordinates for the other photographs can 

be computed from the difference equations (3). 

However, we cannot resect the first photographs with 6 

control points only f otherwise we would get an 

undetermined solution. The task we are given here is the 

task of a full camera calibration in space. The strip 

computation may be regarded as a combined camera 

calibration/strip adjustment exercise, using a proper 

control distribution. 
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The observation equations for least squares strip 

adjustment are derived from (2) as 

ox(i)+vx,p (i) P
x 

(i+1) (Nq, Eq, Hq) Px (i) (Npi Epf HpJ 

oy(i)+vy,p (i) P (i+1) y (Nq, Eq, Hq) P (i) y (Np, Ep , Hp) 

Block adjustment is formulated in an analogue manner. 

Here, difference equations should also be formulated 

between the last photograph of one strip and the first 

photograph of the next strip. 

Final Remarks 

The adjustment is far more robust to blunders or gross 

errors, as they will not be partly absorbed by the 

estimated coefficients for the systematic correction 

terms. Also, proper accuracies are obtained for the minor 

control points after block adjustment, unperturbed by the 

assumption for systematic errors, and ground control 

requirements can be clearly understood, avoiding potential 

hidden singularities as in block adjustments with 

additional parameters (Kubik, 1988). 

Differential photogrammetry teaches us, that in the 

presence of systematic errors, denser ground control is 

required as proposed so far; full model control should be 

repeated at regular intervals in order to stabilise the 

accuracy in the block. Detailed accuracy studies for 

differential photogrammetry will be published by the 

99 



author in this journal. 

Obviously, in practical cases there is not the nice 

consistent 3 * 3 pattern of image points of Figure 2, but 

a less repeatable arrangement. 

In these cases we can segment the image into a grid of 

rectangular meshes, and assume a constant image 

deformation within every mesh. 

Differences are then formed between the image points in 

corresponding meshes. In the presence of "empty" meshes, 

that are meshes without measured points, we form 

differences to the next, nearest meash containing image 

points. 
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