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ABSTRACT: 

A system for automatic data acqUisItIOn from topographic maps using knowledge-based image analysis methods is 
presented. The investigations are part of the interdisciplinary project Environmental P ianing System. The goal is to generate 
a symbolic description of the map contents that may be imported into the ARC/INFO GIS for supporting the geographical 
tasks of the project. 

High resolution color scanned topographic maps (scale 1 :25 000 and 1:5 000) serve as a data source. Binary color map 
layers are produced by a HSI color space guided multi-level segmentation. The processing of each layer includes 
vectorization as well as application of methods like neural network-based symbol and object recognition for the extraction 
of attributed structure primitives. Subsequent analysis is based on a hierarchical structuring of the map scene with map 
objects and their relations. A frame mechanism is utilized for modeling the concepts of all types of map objects. A control 
module driven by the data model supervises the creation of instances of the concepts. The map objects located at the lowest 
hierarchy level correspond to the attributed structure primitives. The interface to ARC/INFO is represented by the instances 
of the upper levels of hierarchy. 
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1. INTRODUCTION 

Geographic information systems (GIS) are gaining impor­
tance for environmental planning tasks. For an efficient 
and flexible use of these systems it is necessary to combine 
data acquisition, creation of a valuation scheme and GIS 
in an integrated concept. This is the objective of the inter­
disciplinary project Environmental Planing System *. For 
an efficient spatial valuation it is necessary to have an 
adequate data base. Maps are an important source of infor­
mation for this data base. At present a lot of relevant maps 
have still to be digitized manually, which is a time con­
suming and error prone process. To improve the situation 
we are developing image analyzing methods for automatic 
data aquisition from maps. These methods are described in 
this paper as part of the above mentioned project. As 
primary data German topographic maps of scale 1 :25000 
and 1:5 000 are used. 

2. SYSTEM OVERVIEW 

An overview of the proposed system is shown in Fig. 1. 
The system kernel contains modules for storage, modifica­
tion, manual digitization, graphic representation and eval­
uation of spatial data. Considering the complexity of the 
system kernel we preferred to use a commercial GIS. We 
decided to use ARC/INFO from ESRI, because it is a 
powerful tool and is in wide-spread use over Germany. 

The acquisition of spatial data is done by means of knowl­
edge-directed map analysis and interactive input of addi­
tional information obtained from soil analysis, remote 
sensing techniques, terrain mapping or other sources. The 
system user will have the opportunity to evaluate the spa­
tial information via an expert system connected to the data 
base. 

The principle of the proposed knowledge-directed image 
analysis is shown in Fig. 2. A raster image of the map is 

* This work was supported in part by DFG (German Research 
Association) under contract Stablein/Besslich: 
Environmental Planing System (Sta 126/19-t). 
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created using a color scanner. Symbolic image information 
is extracted by splitting the map image into color layers 
which are processed using raster object recognition and 
vectorization. The extracted symbolic information, called 
attributed structure primitives serves as data source for the 
knowledge-directed image analysis. The analysis is real­
ized by the control module, the image model, the instance 
storage and the image based conflict solving module. The 
instances represent the extracted map information and 
have finally to be converted to the ARC/INFO data base 
format. 

Map raster image 

Fig. 1: System overview. 

3. SCANNING OF TOPOGRAPHIC MAPS 

The topographic maps we use are mainly printed in four 
colors printing technique (Schoppmeyer, 1991). The 
colors are cyan, magenta, yellow and black. Therefore, a 
24-Bit-RGB color scanner is necessary to create the raster 
images. The smallest objects contained in the maps are 
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Fig. 2: Proposed scheme of knowledge-directed image analysis. 

raster dots (e.g. meadow texture) of size 0.05 to 0.1 mm. 
The minimum scanning resolution is therefore 800 to 
1000 dpi. We use an OPTOTECH overhead repro scanner 
which is connected to the host computer via SCSI inter­
face. The scanner allows a resolution of 2000 dpi or more 
in all scanning modes. 

Using the technique described in this paper, it is not nec­
essary to scan a whole map or the complete set of binary 
map layers of which the final map is produced. It is 
possible to scan and process only the area of interest in the 
final map. If binary map layers are used, the complete 
layers have to be digitized. Otherwise there would not be 
any control marks available to support spatial registration 
of raster data. 

4. PROCESSING OF RASTER DATA 

The raster data of the map is processed to create a symbolic 
attributed description (attributed structure primitives) of 
all basic elements contained in the map (vectors, symbols, 
regions). This is done in five steps. The first step is the 
separation of the color layers contained in the map (cf. 
Fig. 3). 

Fig. 3: Separation of color layers. 

The separation corresponds to the reverse process of the 
composition of binary map layers during printing. In op­
position to map production process, the separation will 
result in layers containing information printed using the 
same color instead of layers containing information of the 
same type (e.g. symbols, roads). The second step is the 
recognition of raster symbols and objects in the color 
layers. Recognized raster symbols and objects are then 
removed from the layers. The third step is separation of 
layers containing mainly region and line information. 
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These two types of layers have to be processed in a differ­
ent way. A different strategy has to be used to cut off 
symbols (e.g. houses) from lines (e.g. road borders) if they 
are connected to each other. 

The fourth step consists of vectorization of the line layers. 
The region layers are processed using a contouring tech­
nique. In the final step of raster image processing, vector 
data is refined to reduce redundancy. 

4.1 Separation of color layers 

The color layer separation is based on an unsupervised 
classification technique. The location of clusters in color 
space is different for every map. It depends on the type of 
the map, the production process, the condition of the map, 
the type of illumination and the spectral characteristics of 
the scanner unit. The number of clusters to be created, i.e. 
the number of colors contained in the map has to be defined 
manually. Typically there are five or six colors contained 
in a topographic map including background. The separa­
tion process may be subdivided into four principal steps: 

• Preliminary determination of color class centers using 
a 3-D histogram, 

• Improvement of the cluster center positions using a 
topological colormap technique based on Kohonen' s 
self organizing feature maps (Lippmann, 1987), 

• Classification of map raster data, and 
• Region growing of classified data to remove unclass­

ified regions. 
For a preliminary determination of centers of color clusters 
a 3-D histogram is calculated from 

n m 

H ijk= L L d «rxy - i), (gxy - j), (bxy - k)) (1) 
y=lx=l 

{
I for a = b = c = 0 

with d (a, b, c) = 0 otherwise ' 

where H is the 3-D histogram with indices i, j, and k. m 
and n are the image dimensions and rxy, gxy and bxy are 
the color stimulus values of the pixel represented by the 
coordinates x and y. Although the color stimulus values 
are in the range [0,255] they are limited to [0,31] by a right 
shift operation due to restrictions in memory space and 
processing time. 

After calculating the 3-D histogram, all maxima of the 
histogram are determined. This is done using an algorithm 
described in (Chaudhuri et aI., 1986) which we expanded 
for 3-D arrays. The idea in the algorithm is to find values 



in the 3-D histogram that are not maxima, find connected 
components of same value and delete them. The undeleted 
values constitute the local maxima. 

The number of histogram maxima has to equal the number 
of predefined map colors. Therefore, the existing maxima 
have to be coalesced iteratively until this condition is 
satisfied. This is done using the following procedure: 

1) Calculation of a distance measure of the maxima to all 
the others using a weighted sum of the distance in the 
RGB and IHS color space. The intensity value i, hue 
value h and saturation value s are determined using the 
following equations derived from (Data Translation, 
1989): 

._ r+g+b 
1- 3 ' (2) 

s=31.0st (3) 

{ 

0 for r= b = g 

with s t = 1 _ min (:' g, b) otherwise and 

h = 4.9338 ht (4) 

{ 

0 for r = b = g 

with ht ~ i +tan (~~5 °1;~; ~.~ ) otherwise' 

These equations include a scaling of i, hand s to the 
range [0,31]. The distance drgb between two maxima in 
the RGB color space is determined by 

drgb= ...Jtd2+ ~g2+ ~b2 . (5) 

The distance dihs between two maxima in the IHS color 
space is determined by 

d ...j A 2 A~2 h2 ihs = LlSn+ Lll + n 

with sn=~ and hn=dh 3
s
2 ' 

(6) 

where dh is the minimum angular distance (clockwise or 
counter-clockwise) between two hue values. Finally the 
distance measure d is calculated by 

d = drgb+ dihs . (7) 

2) Mark couples consisting of m maxima that have to be 
coalesced in a coalition table. m is determined by 

m = rna - mp , (8) 

where ma is the present number of maxima and mp is the 
predefined number of colors including the background. 
If the distance measure of a couple of maxima is less 
than a predefined threshold, this tuple is a privileged 
candidate for coalition. 

3) The table with marked couples is processed recursively 
to find tuples of maxima that have to be coalesced. 

4) A new maximum is created out of the previously 
grouped maxima using the following equation: 

c = ~s L Cn Hn with Hs = L Hn , (9) 

n n 

where Hn is the histogram value of the maximum n of 
the processed tuple, Cn is the R, G or B value of the 
maximum nand c is the resulting new R, G or B value. 

5) If the present number of maxima after the coalition is 
above the number of predefined colors, the algorithm is 
continued with step 1. 
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The next step in classification is improvement of initial 
estimates of cluster centers. This is done using a topologi­
cal color map algorithm (Springub et ai., 1990) which is 
based on Kohonen's self organizing feature map. The color 
map size is set to ne*ne*3 with 

ne=feeilCftTIP") (10) 

{

X if the fractional part 
with feeil (x) = of x is equal 0 

x + 1 otherwise 

In contrast to the algorithm of Springub, the color map is 
not initialized with random values but with the predeter­
mined cluster center positions, and the color map size is 
kept constant. The color map algorithm is executed in the 
following iterative steps: 

1) Creation of an index image. The index of the color map 
entry with minimum Euclidian distance will be assigned 
to each pixel. 

2) Calculation of mean value x of color stimuli of each 
index group. 

3) Calculation of new color map entries Zt+l using the 
equation 

Zt+l = Zt + wdx - Zt) , (11) 

where Zt is the present value of a color map entry and 
Wt is a weight factor, which is calculated from the 
present number of color map hits hp in this iteration and 
the overall number of color map hits ho for this entry 
using 

-~ 
Wt- h h . 

0+ P 
(12) 

U sing this weight factor the influence of large clusters 
to the learning process is smaller. Therefore, suppres­
sion of small clusters produced by small color spots is 
prevented. 

4) Creation of a new index image. 

The iterative steps 2 to 4 are repeated until less than 5% of 
the pixels of the new index image have changed compared 
to the index image of the previous iterative step. After 
finishing the iterations, the cluster center positions are 
determined. 

The classification is done using a minimum distance classi­
ficator with a fixed rejection threshold (Richards, 1986). 
For each cluster the rejection radius is set to a value that 
guarantees that cluster spheres are not overlapping. Thus, 
the radius fi of cluster i is set to 

ri = 0.45 min (dij) for all j * i , (13) 

where dij is the distance between the centers of clusters i 
and j. This kind of classification will result in a lot of 
unclassified pixels mainly on the borders between two 
regions of different colors. If a classification of these 
border pixels is done using a larger rejection threshold, this 
will result in a high misclassification rate and in the crea­
tion of corroded regions of different colors along the object 
contours. In this case the following image analysis algo­
rithms would extract a lot of wrong information that pre­
vents the knowledge-directed system from a sensible data 
interpretation. Therefore, it is better to fill the unclassified 
regions by a region growing technique. This is done using 
the following algorithm for each unclassified pixel: 

1) Calculation of a histogram of the 8-element neighbor­
hood. 



2) If the pixel has no classified neighbors, continue with 
step 1 for the next pixel. 

3) If the pixel has already classified neighbors, the class 
of the most frequent neighbor will be assigned. 

4) If there are several histogram entries having the same 
frequency, the class of the pixel located in the north­
west direction will be assigned. 

The steps 1 to 4 are repeated until all image pixels are 
classified. 

From the classified image mp-l binary color layers may be 
separated. Some of these layers still include textured re­
gions or they have some defects caused by overprinting 
with other layers. If for example a tree symbol (black) is 
printed over a wood region (light green), the assignment 
of the symbol to the black layer will result in an equally 
shaped defect in the light green layer. These defects may 
be corrected using region growing techniques with a de­
fined set of rules, as for example, 

Set a O-pixel in the light green layer to i if it belongs 
to a closed O-region and there is a i-pixel either in 
the black or brown layer. 

A textured region like a lake area, which is printed using 
blue raster dots, may be filled using structural texture 
analysis methods in combination with a texture element 
grouping algorithm (Fumiaki et aI., 1990). With this step 
the separation of color layers is completed. 

4.2 Recognition of raster symbols 

A rotation and size invariant recognition of separate, not 
overlapping raster symbols and objects (e.g. tree symbols, 
characters) can be obtained using a neural network based 
technique (Lauterbach et aI., 1991). The major algorithm 
extracts rotation and size invariant feature vectors based 
on polar distance measures. Several types of these meas­
ures may be combined for the classification of a single 
raster symbol or object, for example 

• the distance from the center of gravity (CO) of the 
raster object to its outmost border, 

• the distance from the CO to the change of first pixel 
value, 

• the sum of the raster object pixels counted from the 
CO. 

All these measurements are determined for a predefined 
number of directions depending on the object size. The 
direction for the polar measurements starts from the main 
axis of inertia of the object, using additional contour or 
diameter measurements that are necessary to distinguish 
between an object rotation of ±n. 
The feature vectors are evaluated using a hierarchical 
structure of multi-layer perceptrons. There is one percep­
tron for the direct evaluation of each feature vector (stage-
1 network). The number of network inputs corresponds to 
the vector size, the number of outputs corresponds to the 
size of the object set. The outputs of the stage-l networks 
are combined using the following equation 

nf 
1 ~. On = -- LJ Imn Wm , 

Omax m= 1 

. ISmin 
WIth Wm = ISm ' (14) 

where n is the index of the output or input unit, m is the 
index of the stage-l network and nf is the overall number 
of the stage-l networks. Omax is the output with the maxi­
mum activity. Wm is a weight factor, ISm is the number of 
learning steps necessary to train the stage-l network m and 
ISmin is the minimum number of learning steps that has 
occmed. 
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The output of this combination stage is fed into a further 
perceptron, which makes the final decision about the raster 
object classification. After recognizing a raster object, it 
is deleted from the layer and the recognition result is put 
into a temporary data base, where it is available for further 
interpretation. 

4.3 Separation of region-based and line-based layers 

The region data and the line data included in a layer has to 
be processed in different ways. Region data must be con­
tourized while line data must be vectorized. Thus, for 
every layer it is necessary to detect whether it contains 
mainly region or line structures. 

This task is performed using a distance histogram based on 
a medial axis transformation (Pavlidis, 1987). The histo­
gram values Di are calculated using the equation 

n m 

Di = L L d (fmed (pj (x,y» - i) (15) 

y=lx=l 

with d (x) = {I for x = 0 o otherwise ' 

where m and n are the image dimensions and pj(x,y) is the 
value of the pixel represented by the coordinates x and y 
in the layer j. Function fmed yields the minimum distance 
of the pixel at position (x,y) from the raster object border. 

The histogram of a line-based layer has a tall shape 
whereas a region-based layer yields a wide histogram. 

4.4 Vectorization 

Vectorization is performed on one pixel wide line struc­
tured images. Therefore, the region-based layers have to 
be contourized. This is done using a contour tracing algo­
rithm described in (Pavlidis, 1987). The line-based layers 
have to be thinned before vectorizing them. Most line 
thinning algorithms are critical to use, because they pro­
duce a number of short line fragments connected to the 
skeleton which do not really exist in the line image. There­
fore, we use an algorithm which is not very fast but pro­
duces a clean medial line of the raster objects in the input 
image. This algorithm is based on a smoothing and strip­
ping technique with a skeleton adjustment to the medial 
line of the pattern (Chu et aI., 1986). 

The vector data is based on nodes and vertices. In the first 
vectorization step the nodes are extracted from the line 
image. A node is represented by a pixel that has either less 
or more than two neighborhood pixels belonging to a line 
segment. The second step is the conversion of the line 
segments connecting the nodes into Freeman chain codes. 
Some line structures like circles cannot be converted to 
nodes and segments because they consist only of pixels 
with two neighbors. These line structures are converted in 
the third vectorization step. The vertices connecting the 
nodes are created using a split and merge technique on the 
Freeman coded line segments. Nodes that are directly 
neighbored in the raster image have to be coalesced and 
the vertices connected to them have either to be corrected 
or deleted. Finally, attribute data like color, line width or 
variance of the line width is extracted from the raster image 
for each vertex. 

4.5 Refinement of vector data 

Although the skeleton created by the line thinning algo­
rithm of (Chu et al., 1986) is of high quality, there may be 
some unnecessary lines and nodes in the thinned image. 
These lines will also be vectorized. They may be removed 



in a vector data refinement step. This can be obtained 
applying a set of rules. In a first step short branch vertices 
(d. Fig. 4, vertice A) are removed. Subsequently corre­
spondingV -shaped arrangements of vertices (node B) are 
straightened by deleting the center node. After refining the 
vector data, the nodes and vertices will be stored in the 
primitive base. 

Fig. 4: Illustration of vector refinement. 

5. BASIC IDEA OF KNOWLEDGE-DIRECTED 
IMAGE ANALYSIS 

The attributed structure primitives extracted by the raster 
image processing methods described above are the data 
source for subsequent analysis strategy. The description 
level of the analysis is based on a hierarchical structuring 
of the map with map objects and relations between these 
objects. These relations may be of topological type as well 
as of thematical type. Associative nets (Quillian, 1969; 
Brachman, 1979; Minsky, 1979; Hayes, 1979) based on 
frames are used as a formalism for representation of know 1-
edge which is characterized by these objects and their 
relations. 

For the following description of the system it is important 
to distinguish between map objects representing more or 
less complex cartographic facts (e.g. terrain area) and 
simple raster objects. The structure primitives are defined 
at the lowest hierarchy level. At higher levels a map object 
represents the composition of one or more map objects of 
the lower levels of abstraction. 

Knowledge-directed image analysis tries to attach a mean­
ing to an image scene. One way of doing so is to use an 
explicit model of what the image can contain and then 
construct a mapping between the model and the image. 
Hereby the model represents the necessary a priori knowl­
edge. Since a particular image scene is only an instance of 
the class of possible image scenes, the model must be in 
some sense larger than the image. That is, a useful model 
of the domain of the image typically contains a large 
amount of information on possible image contents. The 
mapping processed during analysis normally uses only a 
small part of the model. This surplus of knowledge 
guarantees a flexible image interpretation. 

Attributed " structure primitives ... III ... ell ...... " ... ' 
, ! 

1 
Instances ~ ... ~ +~ .. ~ (low hierarchy level) 

I· ••. " ••. • ••. " ... 

' ... '+' .. ' .. 
I , -,' 

+C:) + 

Instances 
(high hierarchy level) 

Fig. 5: Example of a hierarchical map description 
(coniferous forest). 

Fig. 5 shows the principle of the hierarchical map descrip­
tion by example of a coniferous forest. The map object 
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coniferous forest consists of a combination of coniferous 
tree objects, forest border and the forest area signature. 
Each coniferous tree object is again described by a com­
position of an inverted V symbol and several dots in a 
defined topology. The forest border is composed of a 
sequence of dots. Hereby, the area signature, the dots and 
the inverted V symbols are the attributed structure primi­
tives. 

6. KNOWLEDGE REPRESENTATION 

6.1 Concepts and Instances 

The a priori knowledge necessary for map interpretation 
is provided by a model acting as long term memory. As 
mentioned previously, an associative net serves as knowl­
edge representation scheme. The basic structure of the net 
is the data structure concept. A concept contains the inten­
sional description (Sagerer, 1985) of a term which is nec­
essary for the model of the given problem. The intension 
of a term is the abstract definition of its meaning. It in­
cludes a characterization of properties which must be 
satisfied by a concrete fact to be valid for this term. On the 
other hand the extension encloses the set of all concrete 
facts of a case which satisfy the definition of meaning. The 
elements of the extensional set of a term are called in­
stances of the corresponding concept. For applications of 
map interpretation, the concepts represent cartographic 
objects as well as abstract notions necessary for solving 
conflicts in interpretation. As an example the concept vir­
tual continuation of a contour line may be considered. This 
clause characterizes connections of contour lines that can­
not be derived from the existing attributed structure primi­
tives in case of overlapping line segments. 

In the present state of our system the intensional descrip­
tion of a concept is given completely by necessary parts, 
structure relations and attributes. For generation of an 
instance of a concept the following conditions have to be 
considered: 

• Instances of concepts have to be made available. These 
instances are related to the concept to be instantiated 
by the relation necessary part. 

• The defined structure relations have to be satisfied. 
If both conditions are met, the valuation of the possible 
instance is performed. This valuation is a measure for the 
similarity of the instance with the intensional description, 
i.e., the concept. The valuation represents the certainty 
factor (d) for the membership of an instance to the set of 
realizations of the concept. Thus, the valuation depends on 
the actual problem and is therefore a part of the a priori 
knowledge given by the model. The procedure to obtain 
the valuation of an instance has to be defined within the 
concept. The instantiation is successful if the valuation is 
above a threshold dth also defined within the concept. In 
this case, the attributes of the instance will be evaluated 
using information in the concept. The instance is then 
stored in the instance base, which acts as a short term 
memory. A reference to the instance is also made available 
within the concept. 

Concerning evaluation of the structure relations, attributes 
and valuations, the model encloses declarative knowledge 
as well as procedural knowledge, i.e., algorithms. Using 
the procedural knowledge, a quantitative characterization 
of the qualitative facts of a case represented by the asso­
ciative net may be performed. For this purpose, the struc­
turing of the instances is analogous to the one of the 
concepts. The procedures of the model correspond to con­
crete values of the instances. 



6.2 Frames 

Frames (Minsky, 1979; Rich, 1983; Harmon et aI., 1985) 
are used for representation of both concepts as well as 
instances. The aspects of an instance or a concept are 
described with a set of slots. These slots may be filled by 
other frames describing different aspects. An inheritance 
mechanism is integrated in the frame description of a 
concept. That is, more concrete concepts summarize their 
own slots and those of the concepts at higher levels. This 
inheritance economizes redundancy in defining concepts. 
In case of more concrete concepts only some specific 
declarations are needed. The inheritance is realized by the 
slot generalization. This relation generalization and the 
relation necessary part along with their inversions repre­
sent hierarchies of the net. Fig. 5 shows the hierarchy with 
regard to the relation necessary part. 

A simplified definition of the concept for a coniferous tree 
is presented in Fig. 6. The corresponding ideal shape of the 
coniferous tree is shown in Fig. 7. 

CONCEPT Coniferous Tree 

Generalization 
Necessary Parts 
Structure Relations 
Attributes 

value: 
value: 
value: 
value: 
value: 

{Tree} 
{T, 01, 02, 03, 04, OS} 
{SRi, SR2, SR3, SR4, SR5} 
{Position, Size} 

CF [(sri & sr2 & sr3 &sr4 & sr5) 
if True: [cf = 100] 
if False: [cf = 0]] 

arguments: {(SRi), (SR2), (SR3), 
(SR4), (SR5)} 

CF-Threshold value: 99 

T value: {Inverted V} 
restriction: nil 

01 value: fOot} 
restriction: [10 < diameter < 12] 

02 value: {Oot} 
restricton: [8 < diameter < 10] 

03 value: {Oot} 
restriction: [6 < diameter < 8J 

04 value: fOot} 
restriction: [4 < diameter < 6] 

05 value: {Oot} 
restriction: [2 < diameter < 4] 

SR1 value: [Procedure S1] 
arguments: {(T Position), (01 Position)} 

SR2 value: [Procedure S2] 
arguments: {(T Position), (02 Position)} 

SR3 value: [Procedure S3] 
arguments: {(T Position), (03 Position)} 

SR4 value: [Procedure S4] 
arguments: {(T Position), (04 Position)} 

SR5 value: [Procedure S5] 
arguments: {(T Position), (05 Position)} 

Position value: [Procedure ConiferousTreePosition] 
arguments: {(T Position), (01 Position), (02 Position), 

(03 Position), (04 Position), (05 Position)} 
Size value: [Procedure ConiferousTreeSize] 

arguments: {(T Size), (01 Size), (02 Size), 
(03 Size), (04 Size), (05 Size)} 

Fig. 6: Simplified definition of concept coniferous tree. 

It 
•• «I •• 
d1 d2 d3 d4 d5 

Fig. 7: Ideal shape of a coniferous tree. 

For a successful instantiation of the concept coniferous 
tree shown in Fig. 7, an instance (t, dl, d2, d3, d4, d5) of 
the corresponding concept (inverted V and dot) has to be 
available for each part of the tree in a defined topology 
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with necessary attributes. For the intensional description, 
the necessary parts (T, Dl, D2, D3, D4, D5) are defined in 
the slot necessary parts. The single elements of the list are 
references to further substructures represented by slots. 
Each substructure owns a facette value and a facette re­
striction. The facette value contains a reference to the 
concept and therefore also to the instances of interest. 
Considering the entry of facette restriction, a subset of 
instances may be determined that is relevant for the instan­
tiation. Thus, T, Dl, D2, D3, D4 and D5 characterize lists 
of relevant instances.The entry of slot structure relations 
defines the structure relations that have to be satisfied for 
a combination of instances (t, dl, d2, d3, d4, d5) to execute 
a successful instantiation. The combination of instances is 
determined from the lists T, Dl, ... , D5. With regard to the 
example, SRI defines the necessary topology of t and d1. 
For testing of structure relation SRI, facette value (of slot 
SRI) contains the corresponding procedure S 1. The argu­
ments are determined by the argument list defined by the 
facette arguments. Each element of the list represents a 
relational description. The relational description (T Posi­
tion) for instance means that the position of t has to be 
transfered to the procedure S 1. If a combination of in­
stances (tk, dm, dn, do, dp , dq) exists, which satisfies the 
structure relations, a valuation using the procedure of 
facette value located in slot cf is executed. The necessary 
arguments are determined analogously to the .testing of t~e 
structure relations. For that, the argument hst located In 

the facette arguments of slot cf is used. The instantiation 
is successful, if the result of valuation exceeds the thre­
shold given by the facette value of slot cf-threshold. Sub­
sequently, the attribute values are evaluated according to 
the testing of structure relations. The relevant attributes 
are defined by the slot attributes and specified by the slots 
position and size. In case of successful instantiation, an 
instance Ix (i.e. now x instances of the concept coniferous 
tree are existing) will be created and stored in the instance 
base using the data structure shown in Fig. 8. The list of 
instances located in facette value of slot instances will be 
extended by the instance Ix. 

INSTANCE Ix 
Instance Of value: 
Necessary Parts value: 

Structure Relations value: 

CF value: 

Coniferous Tree 
{(Ttk), (01 dm), (02 dn), 

(03 do), (04 dp), (05 dq)} 
{(SR1 true), (SR2 true), (SR3 true), 

(SR4 true), (SR5 true)} 
100 

Fig. 8: Example for an instance Ix of the concept coniferous 
tree. 

The presented mechanism for knowledge representation is 
a simplified description. The following system extensions 
give an idea of the additional features integrated in the 
present system. They are necessary for professional utili­
zation of map interpretation. 

6.3 Extensions of concept definition 

6.3.1 Inclusion of Topological Alternatives The con-
cept definition introduced so far allows only an interpreta­
tion of ideal map scenes. With regard to the topology 
shown in Fig. 7, an instantiation is not possible if dot d3 
is not present. This is contradictory to the flexible and fault 
tolerant human capability of reading and interpreting a 
map. To increase flexibility of analysis, the concept defi­
nition has been expanded. Using a disjunction of combina­
tions of instances in the slot necessary parts, topological 
alternatives can be included. The corresponding defini­
tions located in slots structure relations and cf have also 
to be expanded. Fig. 9 shows the revised concept definition 



for the case of a successful instantiation even if dot d3 is 
absent. If instantiation of several combinations of in­
stances is possible, the one with the largest number of 
necessary parts will be prefered. 

Necessary Parts value: {(T, 01, 02, 03, 04, 05) OR 
(T, 01, 02, 04, OS)} 

Structure Relations value: {(SRi, SR2, SR3, SR4, SRS) OR 
(SR 1, SR2, SR4, SRS)} 

CF value: [(sri & sr2 & sr4 & srS) 
if False: [cf = 0] 
if True: [sr3 isNii 

if True: [cf = 100] 
if False: [sr3 

if True: [cf = 100] 
if False: [ef = 0]]]] 

arguments: {(SRi), (SR2), (SR3), (SR4), (SRS)} 

Fig. 9: Section of concept definition coniferous tree that 
includes topological alternatives. 

6.3.2 Definition of Recursive Structures For analysis 
of recursive structures like contour lines, a special concept 
definition exists, which is based on exactly two necessary 
parts. The first part describes the non-recursive basic ele­
ment. With its help, the recursive structure is defined. In 
the case of a dashed line, this concept describes an in­
dividualline segment. The second part contains a reference 
to the concept itself and therefore represents the recursive 
structure. 

. 6.3.3 Introduction of Constraints So far an assump-
tIOn was made during instantiation process that instances 
of concepts acting as necessary parts of the superior con­
cept are already existing. To obtain flexibility in image 
analysis it is not always necessary and desirable to make 
this assumption. If, for example, an instance of the concept 
connection line is necessary to process the instantiation of 
a concept, it is normally not possible to generate all in­
stances of connection line in advance for the current map 
scene. Trying to do this would result in an overflow of the 
instance base and an unacceptable long processing time. 
But in general, it is not necessary to generate all instances, 
because only one of them is of interest and this one de­
pends normally on the other necessary parts concerned. To 
solve this problem constraints are introduced supplemen­
tary to the restrictions of necessary parts. These con­
straints describe properties which the necessary part has to 
possess for successful instantiation. These properties 
therefore depend on the other necessary parts concerned in 
contrast to the properties forced by the restrictions. If 
constraints are used, it must be guaranteed that the neces­
sary parts determining the desired properties are inde­
pendent of the corresponding parts. Otherwise consistency 
of the definition is violated. To distinguish between con­
cepts that may be instantiated in a direct manner and those 
that are instantiated due to constraints, an additional slot 
has been introduced. This slot defines the type of the 
concept. The possible entries in the facette value of slot 
type are normal and goal driven. Fig. 10 shows an example 
of the definition of a constraint. 

In this example the instantiation of the concept connection 
line is based on the information given by the necessary 
parts NP 1 and NP2. Therefore, only solutions satisfying 
the constraints Cl and C2 are considered for instantiation. 
The constraint C 1, for example, forces the start coordinate 
start given by facette variable of slot Cl to be identical 
with the center coordinate center of NP 1 given by facette 
reference value. The identity of both values is enforced by 
the entry "=" of facette operator (also possible: <, >, ;?:, :S;;). 
Analogously C2 specifies the end coordinate of the desired 
connection line. 
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Necessary Parts value: {(NP1, NP2, NP3)} 
NP1 value: Line Segment 

restriction: nil 
NP2 value: Line Segment 

restriction: nil 
NP3 value: Connection Line 

restriction: nil 
constraints: {C1, C2} 

C1 operator: 
variable: Start 
reference value: (NP1 Center) 

C2 operator: 
variable: End 
reference value: (NP2 Center) 

Fig. 10: Example for the definition of a constraint. 

7. CONTROL MODULE FOR 
KNOWLEDGE-DIRECTED IMAGE ANALYSIS 

The control module supervises and controls instantiation 
of concepts. Two operation modes exist. In the interactive 
mode a concept of interest is given by the user as a goal. 
Thereupon, the control module determines the minimal set 
of necessary concepts at the lowest hierarchy level. Based 
on this set the instantiation of superior concepts is per­
formed successively until the goal concept is reached. In 
the automatic mode the instantiation is obtained in a bot­
tom-up manner using all instances at the lowest hierarchy 
level. Thus, all concepts of superior layers will be instan­
tiated. In both modes the instantiation of a single concept 
is performed in accordance to the methods described in the 
previous sections. 

Normally instantiation of a concept results in several in­
stances. Therefore, the control module is able to handle 
different alternatives during analysis. This feature is im­
portant because normally a definite interpretation of a map 
scene requires consideration of the context of surround­
ings. Existence of different alternatives leads to instances 
that are in competition with each other. For management 
of the interpretation hypotheses a graph controlled by a 
belief-revision-algorithm (Puppe, 1987) is used. This al­
gorithm is based on aspects of truth-maintenance-systems 
(Doyle, 1979; deKleer 1986a, deKleer, 1986b; Dressler, 
1988; Petri, 1989). The instance that is relevant for further 
instantiations is selected by an evaluation algorithm. The 
selection depends on the type of concept. For all types the 
certainty factor cfis used. For recursive concepts the num­
ber of non-recursive basic elements is considered. In case 
of recursive and simultaneous goal driven concepts the 
constraints satisfied by the actual instance are compared 
to those of the underlying preceded hypothesis. 

8. KNOWLEDGE-DIRECTED INTERPRETATION 
SUPPORT FOR HIGH COMPLEXITY MAP SCENES 

Problems in map interpretation may occur if the raster 
image is too complex for the context-independent raster 
processing methods presented so far. In such cases of 
conflicts, the instantiation of concepts of map objects may 
not be possible because of lack of appropriate structure 
primitives. A possible reason for complexity may be the 
overlapping of different map symbols. For the solution of 
this problem a hypothesis is generated, that states which 
map symbol is expected in the specific image region (refer 
to concept virtual continuation of a contour line in section 
6.1). Hereby, the actual situation of instantiation is the 
decisive criterion. Based on this hypothesis a more specific 
raster analysis method is used to detect the expected sym­
bol in the corresponding color layer and image region of 
interest. Depending on this analysis the subsequent ins tan-



tiation uses the recognition result obtained in the previous 
step. 

9. INTERFACE BETWEEN ANALYSIS SYSTEM 
AND GIS 

The facts extracted by the map interpretation are stored in 
the instance base. For further use of the corresponding 
information the data has to be converted to data structures 
specified by the INFO-Database of the GIS. This conver­
sion has to be done by the module data conversion (cf. 
Fig. 1). 

10. IMPLEMENTATION AND RESULTS 

Our system for knowledge-directed analysis of maps con­
tains currently the basic ideas and methods presented here. 
So far the module conflict solution, described in section 8, 
is not yet implemented, however this will be done in near 
future. Algorithms for processing raster data are imple­
mented using High-C (from Metaware). The knowledge­
directed system is realized by the object-oriented program­
ming language and development environment Smalltalk-
80 (Goldberg et aI., 1989). 486-PCs are serving as host 
computers. 

Fig. 11 shows a test scene scanned from a topographic map 
of scale 1:5 000 containing the colors black and brown. 
Figs. 12 and 13 show the two color layers BROWN and 
BLACK that have been separated from the original RGB­
image of Fig. 11 using the methods described in section 
4.1. 
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Fig. 11: Example of a topographic map scene (original 
size is 70x44 mm resp.1104x700 pels). 
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Fig. 12: Color layer BROWN separatedfrom image shown 
in Fig. 11. 
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Fig. 13: Color Layer BLACK separatedfrom image shown 
in Fig. 11. 

For first experiments the model represents concepts for 
interpretation of text symbol, coniferous tree, deciduous 
tree, bush, heath, road section, crossing, contour line (lm 
interval) and contour line (5m interval). The correspond­
ing interpretation result for the above example is shown in 
Fig. 14. The image parts without marking symbols are not 
recognized in the present system. 

o deciduous tree A coniferous tree * bush a heath s recognized symbol 

contour line contour line .. "" '" road section ... ~ I 
.. • .... Sm interval - ..... 1 m interval "'.... (parallel lines) ~ cross ng 

Fig. 14: Interpretation resultfor map shown in Fig. 11. 

11. SUMMARY AND CONCLUSIONS 

An overview of an image analysis system for interpretation 
of topographic maps was presented. Methods for raster 
data processing, knowledge organization and knowledge 
use were discussed. The main ideas of raster data pro­
cessing are scanning using a 24-Bit-RGB-scanner, separa­
tion of color layers, raster symbol and raster object recog­
nition and vectorization. The principles of knowledge­
directed interpretation are those of prototypes (concepts) 
as the basic representation building block, generalization, 
and aggregation as interacting abstraction mechanism. Fi­
nally the capabilities of the system are demonstrated on a 
map scene. Further work will be directed towards the 
conflict solution module and the improvement of the al­
ready existing methods. Eventually, the system will be 
tested for more map scenes. Furthermore, it must be inves­
tigated how more complex raster processing steps for ex­
traction of structure primitives (Ebi et aI., 1991) may 
improve the overall system performance. 
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